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On the irregularity of cyclic coverings of the
projective plane

Fumio Sakai

(Preliminary Version)

1 Introduction

The aim of this note is to give a survey on the irregularity of cyclic coverings of the
projective plane P2, Let f(z,y) be a polynomial of degree d over C. Let us consider the
cyclic multiple plane:
2" = f(:E’ y)

Decompose f into irreducible components: f = fi*'--- f*r. We assume that the con-
dition: GCD(n,my,...,m,) = 1 is satisfied. This is nothing but the condition that the
above surface is irreducible. We pass to the projecteve model. Let f(zq,z;,z,) be the
homogeneous poynomial associated to f so that f(l, z,y) = f(z,y). Let C be the plane
curve defined by the equation: f = 0. Let C; be the irreducible component f; = 0. Let
L denote the infinite line: zy = 0. Define e to be the smallest integer with the condition:
e > n/d. Set mg = ne —d. Note that mo = 0 if and only if n divides d. Let W,, be the
normalization of the following weighted hypersurface in P(1,1,1,¢):

Ty = mg“’f(mg, T1,23).

The covering map W, — P? ramifies over C in case my = 0 or over CU L in case mg # 0.
Let 7 : X,, —» W, be a desingularization. Let ¢ : X, — P? be the composed map.

Definition. The irregularity ¢(X,) of X, has three equivalent expressions:
1
¢(X,) = dim H'(X,,0) =dim H°(X,,Q') = ;dim HY(X,.R)

There are four classical references on this topics:de Franchis [dF], Comessatti [C],
Zariski [Z1], [22]. My personal motivation te this question is its application to the analysis
of singular plane curves. Cf. [S].

Proposition 1 (Easy Bound).
2¢(Xn) <Y di(n—n;) —2(n—1)
=0
where n; = GCD(n,m;), d; = deg f; and dy = 1. Note that no = GCD(n,d).

Proof. Let I' € X,, be the inverse image of a general line on P?. We can easily prove that
HY(X,,0) injects to H(I', ©). The Hurwitz formula gives the genus of T'.
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Corollary.
(n—1)(XI_,d; —2) ifn|d

e=1

29(X,) <
(n—1)(Zio,di — 1) otherwise

Let us exibit examples with positive irregularity. Let T'y — P! be a k-fold cyclic
covering. Given a rational map ¢ : P? — P! Suppose that T, is given by the
equation:y¥ = [I(b;yo — a;y1)" (we may assume k|3 4;) and that the map ¢ is given
by (G(zo, 21, 2), H(20, 21, 22)) where both G and H are homogeneous polynomials of
degree £. If n|f -y ¢, and k|n, then the multiple plane X, defined by the equation:
z? = [[(b:G(z) — a;H(z)) factors through T'y. In this case, we say that X, factors
through a pencil. We see that X,, has positive irregularity if I'x has positive genus.

In order to investigate the irregularity of cyclic coverings of P2, there are three ap-
proaches: (i) through the behavior of rational differential forms, cf. Esnault [E], Zuo [Z]
(i1) through the action of the cyclic group Z, on the Albanese variety, cf. Khashin [K],
Catanese-Ciliberto [CC] (iii) through the topology of complements of the branch curves.
cf. Libgober [L], Randell [R], Kohno [Ko], Loeser-Vaquié [LV], Dimca [D].

2 Differential forms

Let ¢ : S — P? be a composition of blow-ups so that the inverse image of C U L has
normal crossings. Write

’lp*(z miC,‘) = Z l/J'DJ.
1=0

Here we set Cy = L. We understand that if j < r, D, is the strict transform of C; and
v; = m, and that for 7 > r, D, is exceptional for ¢. Since ¥*(¥ -, m:C;) € [ny*O(e),
one can construct an n-fold covering of .S, which ramifies over ¢¥*(3I_, m,C;). Let W/
denote its normalization. Up to birational equivalence, we have the commutative diagram:

W, « W, — X,
! ! S P
P2 «~ S

Set ¢ = e>™/*. The eigenspace decomposition of the structure sheaf Oy, has the
following consequence:

Proposition 2 (Esnault [E]). In this situation, we have
HO(Xm Oxn)Ci = HO(Sv ‘C(i)-l )a

where L) = *O(ie) ® O(— T[iv; /n]D;).

As for the eigenspace decomposition of the sheaf Q!, we have
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Proposition 3 ([E], [Zu]). One has

HO(X,,, 0" = H°(S, Q' (log D(i)) ® L7,
where D(i) = Y (iv; — n[iv; /n])D;.
Remark. Note that D; ¢ D(:) if and only if nliv,.

The Bogomolov type vanishing theorem gives the following criterion for the vanishing
of the irregularity.

" Theorem 1 ([E],[Zu]). If D(i) is big for all i, then ¢(X,) = 0.

Proof. If H°(X,,,0')¢" # 0, then one finds that £&) — Q(log D(i)), which is impossible
if D(3) is big, since D(i) € |(£L®)®"].

Since ¢(X) = py(X) + 1 — x(O), one gets the irregularity ¢(X,) if one knows p,(X,,)
and x(Ox,). '

Proposition 4. ' ‘
HO(X,, %) = HO(S,Q%(log D(i)) ® L97).

On the other hand, one has the following formula for the term x(O).

Proposition 5.
n—1 .
x(Ox,) = 3 x(Op2(~(ie = Y _[iv;/n]d;))) — dim R'm.Ox,.
) =0 -

Proof. Taking the direct image sheaf, we see that

x(0x,) = x((¢ 0 $).0x,) — dim R'(¢ 0 ¢).Ox,.
We have -
(¥ 0 $).0x, = ¢ (LY7) = O(=(ie — Y _[iv;/n]d;)),

and

dim R'(¢ 0 ¢).0x, = dim R'm.Ox,.

Problem. Discuss those line arrangements C such that X,, has positive irregularity for
some n.
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3 Albanese map

Let X, be a non-singular model of a cylic multiple plane as defined in Introduction. We
denote by G the cyclic group Z, and let o be its generator. Suppose ¢(X,) > 0. We
have the Albanese map « : X,, — Alb(X,). The group G acts on X,, and naturally on
Alb(X,,).

Proposition 6. If the Albanese image a(X,,) is a curve, then X, factors through a pencil.

Proof. Set I' = «(X,,). The group also acts on I'. We infer that I'/G is isomorphic to P!,
because there exists a rational map from P? onto it.

Proposition 7. Suppose that there exist two liniearly independent holomorphic one
forms w, W' such that c*w = lw, o*w’ = A7’ for some X\. Then the Albanese image
a(X,) is a curve.

Proof. By hypothesis, we find that o*(w A ') = w Aw'. So w A« must be a pull-
back of a holomorphic 2-form on P?, hence w A w' = 0. The assertion follows from the
Castelnuovo-de Franchis theorem.

Proposition 8. Suppose that there exists an n-th root of unity A (A # £1) such that
o*w = Aw for all w € H°(X,,,Q). Then ) can take one of the values +i, £p, +p? where
p = e>™/3. Furthermore,

» Alb(X,) = E},
where E, is the elliptic curve C/Z & Z .
Proof. Cf. Comessatti [C].

Theorem 2 (de Franchis [dF)). If ¢(X;) > 0, then X, factors through a pencil.

Proof. In case n = 2, one must have o*w = —w for all w € H(X,,,2!). So the assertion
follows from Propositions 6 and 7.

Theorem 3 (Comessatti [C]). If ¢(X3) > 0 and if the Albanese image of X3 is a
surface, then Alb(X3) = EY.

Proof. This follows from Propositions 7 and 8.

We can prove this type of results for the cases n = 4,6, which were also proved by

Catanese and Ciliberto [CC].
Theorem 4. If ¢(X4) > 0, then either X, factors through a pencil, or Alb(X,) = E!

[

Proof. 1f H°(X,,Q')""" # 0, then the surface: z2 = 27 f factors through a pencil, so
does X,. In case HO(X,, QY)Y = 0, by Propositions 7 and 8, we see that either X,
factors through a pencil or Alb(X,) & F!.

Example. z* = (y? — 223)z%(2? + 1)?(y + 2z). In this case, X, & E?.
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4 Alexander polynomials

Set
U=C)\{f=0}=P)\CuUL.

Write U, = ¢ '(U) C X,,. We see that ¢ : U, — U is an unramified covering of degree
n. We have a commutative diagram:

U, AN U
i) Lf
C* 3z—-2"¢c C*

The idea of the topological approach is to calculate the first Betti number of X,, through
that of U,,. Namely, we write:

bi(X,) = by(U,) — B.C.

The term B.C. (the boundary contribution) is given by the following:

Proposition 9. We have

B.C. = #{the irreducible components of ¢™'(C U L)} — 1.

This follows from the following:

Proposition 10. Let S be a smooth projective surface and let D = D; U ... UD,, be a
divisor having simple normal crossings. Then

61(S) = b:1(S\D) = (n — p(D)),
where p(D) = dim {& R[D\]} in NS(S) ® R. |
Proof (Esnault [E]), cf. [He]). One can deduce this from the Residue sequence:

0— HY(S,Q) — H(S,0(log D)) » HY(D,0) — H(S, Q)

Corollary. B.C. > r.

Example. If f is reduced and if L meets C transverselly, then B.C. = r. Cf. [L].

One can construct an infinite cyclic covering U of U as follows.

U 2, U
fuo L R
C 97'—)62‘“7.6 C*

It is well known that H,(U,Z) = Z", which is generated by the meridian loops -,
around C;. The map f, : m(U) — 71(C*) = Z factors through H;(U,Z) and it sends
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[v1) -+ [% ] to & mys,. It turns out that U is nothing but the quotient of the universal
covering of U by the kernel of the above homomorphism.

Let T be the deck transformation on U corresponding to the above infinite cyclic

T

covering. The transformation T induces a linear transformation 7, : Hy(U) — H,(U).
We have the exact sequences ([M2)):

— H(0) 2= H(0) — H,(U) —
Since H,(U,Z) = Z’, we infer that the sequence:
Hi(U,Z) 5" H\(U,2)o - 27" — 0 (1)
is exact, where H,(U,Z)o = H,(U,Z)/Tor.

Definition. Under the assumption that H(U,C) is finite dimensional, the Alexander
polynomial of f is defined as follows (cf. [L]):

Af(t) = det(tI — T.).

Since 7. is defined on Hy(U,Z)o, we infer that As(t) € Z[t]. It follows from (1) that
As(t) = (t = 1)V G(t) but G(1) # 0.

Example. Suppose that f(z,y) is weighted homogeneous. Let (a,b) be the weights
of (z,y) and let N be the degree of f as a weighted homogeneous polynomial. Then
U — C* is a fibre bundle, of which fibre is F = {(z,y)|f(z,y) = 1}. Set £ = ¢*™/¥. Let
h:F > (z,y) — (£%z,£%) € F be the monodromy map and we denote by h, the induced
linear map on Hy(F,C). In this case, H,(U) = H;(F) and Af(t) = det(t] — h.). Clearly.
the origin p is the only singularity of the affine curve f = 0 and det(t/ — A.) is known to
be the local Alexander polynomial A,(t) of p [M1].

Definition. In case N = dim H,(U,C) < oo, let ¢,(t), 5 = 1,..., N, be the elementary
divisors of t1 — T,. Set

N(n,T.) = #{distinct n-th roots of unity which are roots of ¢,(¢)}.

Theorem 5. If dim H,(U,C) < oo, then
2¢(X,) =14 N(n,T.)- B.C..
Proof. We have the following exact sequence (cf. [SS]):
— H,(0) Z5 By (0) — Hi(U,) —

We infer from this that b;(U,) = 1+ dim Ker (T — I). We see easily that N(n,T.) =
dim Ker (77 - I).
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Corollary. If T, is of finite order, then

2¢(X,) = 1+ #{n-th roots of unity which are roots of A;(t)} — B.C.

Definition. We say that f is primitive if the general fibre f~!(a) is irreducible. It
is well known that if f is not primitive, then there are polynomials u and g such that

f(z,y) = u(g(z,y)). Cf. [Su].

Remark. Suppose that r» > 2. If f is not primitive, then (i) X, factors through a pencil,
(ii) the infinite line L does not meet C' transversely.

Proposition 11. The vector space Hy(U,C) is finite dimesional if and only if either (i)
r=1,or (ii) r > 2, f Is primitive.

Proof. Suppose that f is primitive. The general fibre of the fibration fo, : U — C is irre-
ducible. By Lemma 7 in [Su], we see that dim H;(U,C) < dim H,(a general fibre, C) <
co. Note that fZ!(7) = f~%(e?™"). Assume now that f is not primitive. Writing f = u(y)
as above, we set u=!(0) = {ay, ..., a;}. Define V = C\{ay, ..., a,}. We have the diagram:

U - U
! lyg
V - V
! lu
CcC - C

If s > 2, it is easy to prove that dim f!](f/,C) = oo. It follows that dim H,(U,C) = co.
If s =1, then V = C and so dim H;(U,C) < 0.

Remark. In case r = 1, this fact was pointed out in [L].

Now we come to Zariski’s result.

Theorem 6 (Zariski [Z1]). Suppose r = 1. If n = p® (p is a prime number), then
q(X,) =0.

Proof. Since r = 1, we infer from (1) that A;(1) = det (I —A,) = £1. If a primitive p'-th
root of unity (1 <7 < a) is a root of the integral polynomial Af(¢), then A(t) must be
divided by the cyclotomic polynomial ®,:(t). Since ®,:(1) = p, this is impossible.

We can generalize this result to the case in which C is reducible.

Theorem 7. Suppose r > 2. Assume that f is primitive or that n|d. If n =p* (pis a
prime number), then
2(X) < (n— 1)(r - 1)

Proof. Assume first that f is primitive. By Proposition 11, N = dim H,(U, C) < co. Let
d;(t) (resp. d;) be the GCD of all j-minors of the matrix ¢/ — T, (resp. I — T.). By the
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r—1
exact sequence (1), we see that the elementary divisors of I — T, are 1,..., l,m. We
infer that d, = 1for j < N —(r—1) and d; =0 for j > N — (r — 1). Since d;(1)|d,, we
find that d,(1) = £1for j < N —(r — 1) and d;(1) = 0 for j > N —(r — 1). Asin the
proof of Theorem 6, any primitive p-th root of unity other than 1 cannot be a root of
d,(t) for j < N —(r—1). Let e1(t),...,en(t) be the elementary divisors of ¢/ — T.. We
know that d,(t) = bye;(t)---¢,(t), b; € Q. Thus any primitive p'-th root of unity other
than 1 cannot be a root of ¢,(t) for j < N — (r — 1). It follows that N(n,T.) < n(r—1).
Since B.C. > r, we conclude that b;(X,) < (n— 1)(r — 1).

In case n|d, since the infinite line L does not appear in the branch locus of X,, — P=,
by taking a suitable line as the infinite line, we may assume that f is primitive.

Corollary. If n =2, r =2 and d is even, then ¢q(X,) = 0.

Definition. Set F = {(z¢,21,2;) € C*|f(zo,21,22) = 1}. Since f is homogeneous,
f:C\{f = 0} - C*is a fibre bundle. The typical fibre is F. Letting n = /7,
we have the monodromy transformation h:F> (zo,21,22) — (20, NZ1,N22) € Pt
induces a linear transformation h, : H,(F,2) — Hy(F,Z). Define

Ac(t) = det (tI — h,) € Z[t),

which is called the Alexander polynomial of the plance curve C. Cf. [R], [D].

Proposition 12. Under the assumption that the infinite line L is in a general position,
we have the equality: As(t) = Ac(t).

Proof. Cf. [R], [D]. We see that U = (C*\{f = 0}) N{zo = 1}. The affine version of
the Lefschetz theorem ([H]) asserts that m (C*\{f = 0}) — m(U) is an isomorphism. It
follows that H,(U,Z) = H,(F,Z). Furthermore, the transformation 7, corresponds to
h.. QED.

Theorem 8. Assume that L is in a general position. We have

2¢(X,.) = 1+ #{n-th roots of unity which are roots of Ag(t)} — B.C.

Corollary. Under the same hypothesis, if GCD(n,d) = 1, then ¢(X,) = 0.
Proof. By hypothesis, we find that 6,(U,) =r —1 and B.C. =r.

We quote two divisibility theorems of the Alexander polynomials. See also [Ko], [LV].
Theroem 9 (Libgober [L]). Suppose f is irreducible. Then
850 | TLA40)
2

where p moves all local branches of Sing(C U L).
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Theorem 10 (Dimca [D]). Suppose f is reduced. Then
AC(t) l H A17(t)5

p€eSing (c)

where A,(t) is the reduced local Alexander polynomial of p.

Corollary (Zariski [Z2]). Suppose L is in a general position. If C has only nodes and
ordinary cusps as its singularities, then q(X,) = 0 unless 6|n and 6|d.

Proof. We know that A,(t) =t — 1if pis a node, =t> — ¢ + 1 if p is an ordinary cusp.
Thus Ac(t) = (¢t — DID(#2 — ¢ 4 1)* for some £. In view of Theorem 8, the assertion
follows from this.

Remark. The assumption that L is in a general position is necessary in the above result.
Let us consider the case:f = (z + y)(z + y + 1). In this case, we find that ¢(X;) = 1.
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