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On the global theory of singularities

Tohsuke Urabe (Tokyo Metropolitan University)
| HRILARHE P ERERA

Recently I am considering on the global theory of singularities.

Perhaps what I have just stated reminds you of the Pliicker formula for plane irreducible
curves. As you know, it is an equality connecting integers defined as local invariants of
singularities and integers defined as global invariants of varieties such as genus, degree, and
class number. It restricts possible combinations of singularities. The data obtained from an
actual combination of singularities satisfy the Pliicker formula. However, given global
invariants and a combination of local singularities satisfying it, there does not necessarily exist a
plane curve with such data. For example, a plane sextic rational curve with unique singularity of
type A,, (the singularity locally defined by x>+ y*=0) never exists, though the data satisfy
the Pliicker formula:
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(In thiscase g=0,d=6 and 6,=10 for an Azo-smgulanty.)

Our point of view is different from this. We use graphs for the description instead of
integers. (By a graph we mean a finite one-dimensional complex with some additional
structure.) Moreover, we aim to give the necessary and sufficient condition for the description
of possible combinations of singularities. The following figure explains our basic framework.
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Here we consider a typical example to explain the above figure. We consider the case of
cubic curves in the two-dimensional projective space P>=P*(C) over the complex field C.
(Below we always assume that the ground field is the complex field C.) Itis easy to give the
classification of plane cubic curves. We have the following 9 items. (Below we draw the figure
of the set of real points, i.e. the intersection of the curve in P*(C) and P*(R), because we
cannot draw the actual figure of the set of complex points.) The graphs beneath the figures are
explained later. ‘
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The eighth item and the ninth have a multiple component, and they have degree 2 and 1
respectively as figures, if we ignore the multiplicity. We can exclude them from our
consideration. Below we consider only 7 items without a multiple component.

Now, we know a series of singularities much closely related to Dynkin graphs. They are
called ADE singularities, i.e., singularities related to Dynkin graphs of type A, D or E. (The
explanation of this relation is one of the deepest aspects of modern achievement of
mathematics.) The concept of Dynkin graphs is well-known because it plays the key role in the
classification theory of semi-simple Lie groups. The local defining equations f(x,y)=0 of
these singularities of dimension 1 are as follows:

Apx*+y’ =0 (k=1,2,3,:-)
D :x'+x*=0  (£=4,5,6.-")
Egox’+y'=0
E:xX’+xy°=0
E

SR B
g X +y =0

(The above are equations of curve singularities. When we consider surface singularities we add
aterm z” to the above respective equation and we consider the singularity defined by -
f(x,y)+2z*>=0. For example the surface singularity of type A, is defined by

492+ 22=0))

The above seventh cubic curve has a unique singularity and it is of type D,. We draw a
Dynkin graph of type D, beneath the seventh curve. By the same method we can associate a
Dynkin graph (possibly with several components) to each cubic curve. We have the empty
graph, A, A,,2A,,A;,3A, and D,. :

Here perhaps you can notice that the classification of cubic curves corresponds to subgraphs
of D,. 7 types of cubic curves have one-to-one correspondences with 7 kinds of subgraphs of
D,. '

In the case of plane cubic curves the basic graph is the Dynkin graph of type D,. The
operation is to pick a subgraph. There is no condition giving restrictions. The set of all graph
obtained from D, under this situation is equal to the set of possible combinations of
singularities. '
~ As suggested by the above example of cubic curves, the meaning of our basic framework
above is as follows.

First we set up an appropriate range of objects we treat. For example we consider one of the
followings ([5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [17], [18]):

1. All plane cubic curves without multiple components.

. All plane quartic curves without multiple components.

All plane sextic curves with only ADE singularities as singularities.

All space cubic surfaces with only isolated singularities.

All space quartic surfaces with only ADE singularities as singularities. ’

All complete intersections with bidegree (2, 2) in the four dimensional projective space.
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7. All complete intersections with bidegree (2, 3) in the four dimensional projective space.
In the seventh case we assume that all singularities are ADE singularities.

For the range of objects we consider, the basic graph is determined. For simpler cases the
basic graph is unique. Some basic graphs can appear in the complicated cases.

Next the operation on graphs is defined. By the operation we can make new graphs from a
given graph. At present we use three kinds of operations — to pick a subgraph, an elementary
transformation, and a tie transformation. These three operations have many choices on the way
of their process, and we can make considerably many kinds of graphs from a given one.

In addition we have some conditions giving restrictions on the process of operations.

Under the above conditions we consider the set of all graphs obtained starting from one of
the basic graphs. A member of this set is not necessarily connected. The type of a connected
component corresponds to the type of a singularity, and the number of connected components
of each type indicates the number of corresponding singularities. In this way a graph is |
translated into the meaning of a combination of singularities, and the set of obtained graphs
coincides with the set of possible combinations of singularities.

So far we have explained the superficial part of our theory. Indeed the greater part is hidden
in the background. First, as the best weapon, we use the theory of periods of algebraic varieties.
By this we translate the problem into the language of integral symmetric bilinear forms. It is
known that interesting groups are associated with bilinear forms. So using the group theory, in
particular using the theory of reflection groups, we translate it further into the language of
graphs.

The above is our philosophy. In the case of sufficiently low dimension, low degree and low
codimension, this philosophy works miraculously well and we can get the splendid description
of possible combinations of singularities. In fact this part is the discovery of English
mathematician Timms at the beginning of this century [6]. English mathematician Du Val wrote
another paper giving interpretation of Timms’ result from his view point little later [1].

We can imagine that we are looking at only a small part, and that there exists a hidden
general principle in the background, since Timms’ result is very beautiful. Therefore we can try
to search how far our philosophy can be applied, and if possible we would be able to find out
the hidden general principle. This is our objective. Today we have theory of periods of K3
surfaces, fully developed theory of integral bilinear forms, the theory of reflection groups
including Weyl groups and the like. Using these theories we can go to a considerably deep
point.

However, the world of actual algebraic varieties is much more complicated than what we
expect. Therefore sometimes the vertical equality in the first figure does not exactly hold and a
few exceptions appear. This is a really strange phenomenon actually occurring, though we have
defined absolutely correct basic graphs, operations, restriction conditions etc. Our theory may
have some defects, or there may be a faint break in the complete law because of the wisdom of
the god.

Besides, at present, only ADE singularities can correspond to connected graphs. More
complicated singularities have appeared in the objects of our study, but I do not know how we
treat them exactly. We have some evidences showing that similar correspondences can be
defined for such complicated singularities.
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Now, even in the modern ages the theory of periods is not complete, and we cannot go
further beyond a certain point. If we go beyond the cases related to K3 surfaces, we encounter
difficulty. In the theory of periods there is little theory for characterizing points in the period
domain corresponding to actual algebraic varieties. We know that we can generalize our
philosophy and framework further, if only the theory for this characterization is developed. (If
we cannot give a necessary and sufficient condition, a sufficiently good condition satisfied by
points corresponding to actual algcbraic varieties is enough for us. Perhaps to give a necessary
and sufficient condition is an extremely difficult problem.)

At present on one hand I am making steady efforts to take complicated worse singularities in
our theory and efforts to develope the theory to other aspects, and on the other hand I expect
that I can find by chance a key to the hidden general principle from a different view point (for
example a view point of the representation theory of Lie groups).

In the above explanation of our philosophy we have omitted some facts to help reader’s
understanding. Here we supplement them.

The most important point is that by the framework in the first figure we can treat not only
combinations of singularities of global algebraic varieties but also other objects. We can treat
the following two items by the present theory of ours:

A. Possible combinations of singular fibers of elliptic surfaces.

B. Possible combinations of singularities of local objects such as deformation fibers in the
semi-universal deformation family of a fixed isolated singularity.

We explain the item A. Let ®: X — P' be an elliptic surface over P'. (X is a smooth
compact complex surface. For any general point x € P' the inverse image ®7'(x) is a curve
of genus 1.) We assume that @ has no multiple fibers. It is known that the Euler number
e(X) of X ispositive and a multiple of 12.

When e(X)=12, X is arational surface, and we can describe possible combinations of
singular fibers using our framework. In this case the basic graph is the Dynkin graph of type
E; and we can apply elementary transformations twice as the operation. There is no restriction
condition. We can associate the resultmg Dynkm graphs with possible combinations of
singular fibers ([2], [7]).

When e(X) =24, X is aK3 surface. Also in this case we can develope our theory Some
partial results have already been obtained ([16]). I think that we can complete the theory in this
case in future.

As for the item B, we know that in the cases corresponding to the following singularities
possible combinations of singulan'ties of deformation fibers can be described using our
framework:

1. ADE singularities.

3 kinds of hypersurface simple elliptic singularities ([2], [4], [7]).
A part of cusp singularities ([3]).

A part of 14 kinds of hypersurface triangle singularities.

6 kinds of hypersurface quadrilateral singularities ([16]).
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