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Introduction

A cusp singularity is known as a normal surface singularity whose exceptional divisor
of a suitable resolution is a cycle of nonsingular rational curves. In [N], Nakamura
showed that each cusp singularity (V, $p$ ) has natural dual cusp singularity (V’, $p^{*}$ ),
and that invariants of these singularities have some dual relations.

One of these relations is the following:
Let $D_{1}+\cdots+D_{r}$ and $E_{1}+\cdots+E_{s}$ are the exceptional divisor of the resolution of

$V$ and $V^{*}$ , respectively. We assume these are cycles of nonsingular rational curves.
Then the following equality consisting of selfintersection numbers holds.

(1) $D_{1}^{2}+\cdots+D_{r}^{2}+3r=-(E_{1}^{2}+\cdots+E_{s}^{2}+3s)$ .

On the other hand, higher dimensional cusp singularities are introduced by
Tsuchihashi [T]. We established an equality which is a generalization of the equality
for these cusp singularities.

Let $N$ be a free Z-module of rank $r<\infty$ and $M$ the dual Z-module. We
assume that $r$ is at least 2. We consider a pair $(C, \Gamma)$ of an open convex cone $C$

in $N_{R}$ $:=N\otimes zR$ and a subgroup $\Gamma$ of $Aut(N)\simeq GL(r, Z)$ with the following
properties.

(1) For the closure $\overline{C}$ of $C,\overline{C}\cap(-\overline{C})=\{0\}$ .
(2) $gC=C$ for every $g\in\Gamma$ .
(3) The action of $\Gamma$ on $C$ is properly discontinuous and free.
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(4) The quotient $(C/R_{+})/\Gamma$ is compact.
For such a pair $(C, \Gamma)$ , Tsuchihashi [T] constructed a complex analytic isolated

singularity $V(C, \Gamma)$ by using the theory of toric varieties and called it a cusp singu-
larity.

This cusp singulairty has a natural dual. Namely, let $C^{*}$ be the interior of the
cone { $x\in M_{R}$ ; $\{x, a\rangle\geq 0,\forall a\in C\}$ and $\Gamma^{*}$ $:={}^{t}\Gamma$ , where $M_{R};=M\otimes zR$ and
\langle , } : $M_{R}\cross N_{R}arrow R$ is the natural bilinear map. Then the pair $(C^{*}, \Gamma^{*})$ satisfies
similar condition and hence defines a cusp singularity $V(C^{*}, \Gamma")$ . We call $V(C^{*}, \Gamma^{*})$

the dual cusp singularity of $V(C, \Gamma)$ . Clearly, the dual of $V(C^{*}, \Gamma^{*})$ is equal to
$V(C, \Gamma)$ .

The arithmetic genus defect $\chi_{\infty}$ and Ogata’s zeta zero $Z(0)$ are numerical invari-
ants defined for cusp singularities. Here note that our cusp singularities are called
“Tsuchihashi singularities” in [SO], and the zeta function is defined by

$Z(s)= \sum_{u\in(C\cap M)/\Gamma}\phi_{C}(u)^{s}$
,

where $\phi_{C}(x)$ is the characteristic function of the cone $C$ [SO, 4.2]. As it is mentioned
in [SO, 4.2], this zeta function is slightly different from the one defined by the norm
function in the case of self-dual homogeneous cones. However, the values at zero
of these zeta functions are equal [SO, 4.2]. In this note, we denote this value by
$Z(0)(C, \Gamma)$ .

On the other hand, $\chi_{\infty}(p)$ for a cusp singularity $p$ of dimension $r$ is described
explicitly as follows: We take a resolution of the singularity such that the exceptional
set is a toric divisor $\bigcup_{\dot{\iota}=1}^{s}D_{i}$ with simple normal crossing. Then $\chi_{\infty}(p)$ is equal to
the intersection number

$[ \prod_{i=1}^{s}\frac{D_{l}}{1-\exp(-D_{i})}]_{r}$

We get the following theorem [I5].

Theorem The rational number $\chi_{\infty}$ $(C^{*}, \Gamma")$ is equal to $(-1)^{r}Z(0)(C, \Gamma)$ .

This is a generalization of the equality (1) since it is written as

$-12Z(0)(C, \Gamma)=-12\chi_{\infty}(C^{*}, \Gamma^{*})$

in our new notation.
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For the convenience to understand the theorem, we will explain $Z(0)$ for $V(C, \Gamma)$

and $\chi_{\infty}$ for $V(C^{*}, \Gamma")$ .
We introduce here some notations in this note.
Besides some open cones as $C$ and $C^{*}$ , cones are always closed convex rational

polyhedral cones. Namely, a cone $\pi$ in $N_{R}$ is equal to $R_{0}n_{1}+\cdots+R_{0}n_{s}$ for a finite
subset $\{n_{1}, \cdots, n_{s}\}$ of the lattice $N$ , where $R_{0}$ $:=\{c\in R;c\geq 0\}$ . For a cone $7\ulcorner$ in
$N_{R}$ , the linear subspace $\pi+(-7\ulcorner)$ of $N_{R}$ is denoted by $H(\pi)$ . The interior of $\pi$ as
a subset of $H(\pi)$ is called the relative interior of $\pi$ and is denoted by rel. int $\pi$ .

We denote $\sigma\prec\pi$ if a is a face of a cone $\pi$ . We denote by $F(\pi)$ the set of faces
of $\pi$ . $\pi$ is said to be strongly convex if $7\ulcorner\cap(-\pi)=\{0\}$ or equivalently if the zero
cone $0:=\{0\}$ is in $F(\pi)$ .

A nonempty collection $\Phi$ of strongly convex cones in $N_{R}$ is said to be a fan if
(1) $\pi\in\Phi$ and $\sigma\prec\pi$ imply $\sigma\in\Phi$ , and (2) if $\sigma,$

$\tau\in\Phi$ , then $\sigma\cap\tau$ is a common
face of $\sigma$ and $\tau$ . For a subset $\Psi$ of a fan $\Phi$ and an element $\rho\in\Phi$ , we denote
$\Psi(\prec\rho)$ $:=\{\sigma\in\Psi ; \sigma\prec\rho\}$ and $\Psi(\rho\prec)$ $:=\{\sigma\in\Psi ; \rho\prec\sigma\}$ . For an integer $d$ we
denote $\Psi(d):=\{\sigma\in\Psi ; \dim\sigma=d\}$ .

For a subset $S\subset N_{R}$ , we denote $S^{\perp}:=\{x\in M_{R} ; \langle x, a\}=0,$ $\forall a\in S$ } and
$S^{\vee}$ $:=\{x\in M_{R} ; \{x, a\}\geq 0, \forall a\in S\}$ . For a (closed convex) cone $\pi\subset N_{R},$ $\pi^{\vee}\subset M_{R}$

is called the dual cone of $\pi$ . It is known that the correspondences $\sigma\mapsto\pi^{\vee}\cap\sigma^{\perp}$

define a bijection of $F(\pi)$ and $F(\pi^{v})$ [ $O$ , Prop.A.6].
We use same notations for cones in the other real vector spaces with lattices.

1 The T-complexes

The notion of T-complexes was introduced in [I2] in order to describe the combina-
torial structures of toric divisors. We briefly review the definition.

Let $r$ be a positive integer and let $C_{r}$ be the category of pairs $\alpha=(N(\alpha), c(\alpha))$

of free Z-module $N(\alpha)$ of rank $r$ and a strongly convex rational polyhedral cone
$c(\alpha)\subset N(\alpha)_{R}$ . For two objects $\alpha,$

$\beta$ of $C_{r}$ , a morphism $u$ : $\alphaarrow\beta$ consists of
an isomorphism $u_{Z}$ : $N(\alpha)arrow N(\beta)$ such that $u_{R}(c(\alpha))$ is a face of $c(\beta)$ , where
$u_{R}$ $:=u_{Z}\otimes 1_{R}$ . For a morphism $u$ , we denote by $i(u)$ the source and by $f(u)$ the
target, respectively, of $u$ .

A subcategory $\Sigma$ of $C_{r}$ is said to be a graph of cones of dimension $r$ if the objects
and the morphisms in $\Sigma$ are finite in number. The set of morphisms in $\Sigma$ is denoted
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by mor $\Sigma$ .
Let $\rho$ be an object of a graph of cones $\Sigma$ . We define graphs of cones $\Sigma(\rho\prec)$ and

$\Sigma(\prec\rho)$ as follows: $\Sigma(\rho\prec)$ consists of the pairs $\beta’=(\beta, v)$ of $\beta\in\Sigma$ and $v\in mor\Sigma$

with $i(v)=\rho$ and $f(v)=\beta$ for which we define $N(\beta’)=N(\beta)$ and $c(\beta’)=c(\beta)$ . For
$\beta’=(\beta, v)$ and $\gamma’=(\gamma, w)$ in $\Sigma(\rho\prec)$ , a morphism $u’$ : $\beta’arrow\gamma’$ consists of $u:\betaarrow\gamma$

with $uov=w$ . Similarly, $\Sigma(\prec\rho)$ consists of pairs of $=(\alpha, v)$ with $v\in mor\Sigma$ of the
source $\alpha$ and the target $\rho$ .

For each $\beta’=(\beta, v)\in\Sigma(\rho\prec)$ , we define $\beta’[\rho]$ by $N(\beta’[\rho])$ $:=N(\beta)[v_{R}(c(\rho))]$

and $c(\beta’[\rho])$ $:=c(\beta)[v_{R}(c(\rho))]$ , and for each $u’$ : $\beta’arrow\gamma’\in$ mor $\Sigma(\rho\prec)$ , we define
$u’[\rho]_{Z}$ : $N(\beta’[\rho])arrow N(\gamma’[\rho])$ to be the isomorphism induced by $u_{Z}’$ . Then we get a
graph of cones $\Sigma[\rho]$ of dimension $r-\dim\rho$ which is equivalent to $\Sigma(\rho\prec)$ as categories.

For a finite fan $\triangle$ of $N_{R}$ , any subset $\Sigma$ of $\triangle$ is regarded as a graph of cones by
defining $N(\alpha)$ $:=N$ and $c(\alpha)$ $:=\alpha$ for each $\alpha\in\Sigma$ and defining that a morphism
$u:\alphaarrow\beta$ for $\alpha,$

$\beta\in\Sigma$ is in mor $\Sigma$ if and only if $u_{Z}=1_{N}$ .
A free cone $\alpha=(N(\alpha), c(\alpha))$ is said to be nonsingular if $c(\alpha)$ is a nonsingular

cone of $N(\alpha)_{R}$ , i.e., $c(\alpha)=R_{0}x_{1}+\cdots+R_{0}x_{d(\alpha)}$ for a basis $\{x_{1}, \cdots , x_{r(\alpha)}\}$ .
A graph of cones $\Sigma$ of dimension $r$ is called a T- complex, if it satisfies the following

conditions.
(1) $\Sigma$ is nonempty and connected.
(2) The graph of cones $\Sigma(\prec\rho)$ is isomorphic to $F(\rho)\backslash \{0\}$ for every $\rho\in\Sigma$ , where

$F(\rho)$ is the fan consisting of the faces of $\rho$ .
(3) For each $\rho\in\Sigma$ , the graph of cones $\Sigma[\rho]$ is isomorphic to a complete fan of

$N(\rho)[\rho]_{R}$ .
A T-complex $\Sigma$ is said to be nonsingular if it consists of nonsingular free cones.
We define the support $|\Sigma$ I of a T-complex $\Sigma$ as the disjoint union

$\prod_{\alpha\in\Sigma}(c(\alpha)\backslash \{0\})$

modulo the equivalence relation generated by $a\sim u_{R}(a)$ for $u:\alphaarrow\beta\in mor\Sigma$ and
$a\in c(\alpha)\backslash \{0\}$ .

A morphism $\varphi$ : $\Sigma’arrow\Sigma$ of T-complexes consists of a functor $\overline{\varphi}$ ; $\Sigma’arrow\Sigma$ and
a collection $\{\varphi^{\alpha} ; \alpha\in\Sigma\}$ of injective Z-homomorphisms $\varphi^{\alpha}$ : $N(\alpha)arrow N(\overline{\varphi}(\alpha))$

such that $\varphi_{R}^{\alpha}$ ( $rel$ . int $c(\alpha)$ ) $\subset re1$ . int $c(\overline{\varphi}(\alpha))$ and the diagram
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$u_{Z}$

$N(\alpha)-$ $N(\beta)$

$N(\overline{\varphi}^{\alpha}(\alpha))\varphi\downarrow\underline{\overline{\varphi}(u)_{Z}}N(\overline{\varphi}(\beta))\downarrow\varphi^{\beta}$

is commutative for every $u:\alphaarrow\beta\in mor\Sigma$ .
A morphism $\varphi$ : $\Sigma’arrow\Sigma$ of T-complexes induces a map $|\varphi|$ : I $\Sigma’|arrow|\Sigma|$ of the

supports. The morphism $\varphi$ is said to be a subdivision if the all $\varphi^{\alpha}’ s$ are isomorphic
and $|\varphi|$ is a bijection.

Example 1.1 Let $\tilde{\Sigma}$ be a fan of $N_{R}$ such that $C_{1}$ $:=|\tilde{\Sigma}|\backslash \{0\}$ is an open cone and
$\tilde{\Sigma}$ is locally finite at each point of $C_{1}$ . Assume that a subgroup $\Gamma_{1}\subset Aut(N)$ induces
a free action on $\tilde{\Sigma}\backslash \{0\}$ and the quotient is finite. Let $\Sigma$ be the set of representatives
of the free quotient. For each $\alpha\in\Sigma$ , we set $N(\alpha)$ $:=N$ and $c(\alpha)$ $:=\alpha$ and we define

mor $\Sigma$ $:=\{u:\alphaarrow\beta ; u_{Z}\in\Gamma_{1}\}$ .

Then $\Sigma$ is a T-complex. Let $\tilde{\Sigma}’$ be a $\Gamma_{1}$-equivariant subdivision of $\tilde{\Sigma}$ and $\Sigma’$ the
$T$-complex obtained from $\tilde{\Sigma}$‘ by the action of $\Gamma_{1}$ . Then $\Sigma’$ is a subdivision of $\Sigma$ ,
since both $|\Sigma’|$ and $|\Sigma$ I are naturally bijective to the quotient $C_{1}/\Gamma_{1}$ .

Let $(C, \Gamma)$ be the pair which defines a cusp singularity.
We $t_{\tilde{a}ke}$ a $\Gamma$-invariant nonsingular fan $-\sim--\cup\{0\}$ of $N_{R}$ with the support $C\cup$

$\{0\}$ which is locally finite at each point of $C$ . Simmilarly, we take $\Gamma^{*}$-invariant
nonsingular fan $\triangle\sim b\{0\}$ of $M_{R}$ with the support $C^{*}\cup\{0\}$ which is locally finite at
each point of $C$“.

Here we assume $0\not\in---\sim$ and $0\not\in\triangle\sim$ for the convenience of the notations.
Then these are the cases of the above example, and we get T-complexes $\Xi=---\sim/\Gamma$

and $\triangle=\triangle\sim/\Gamma$“.
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2 The invariants $Z(O)$ and $\chi_{\infty}$

For a graph of cones $\Phi$ , the set of morphisms in $\Phi$ is denoted by mor $\Phi$ . This is a
finite set by definition. For a covariant functor

$A:Carrow$ (Additive groups),

we denote by $A_{\Phi}$ the restriction of $A$ to $\Phi$ . In other words, $A_{\Phi}$ is the finite sys-
tem of the additive groups $(A(\alpha))_{\alpha\in\Phi}$ and the homomorphisms ($A(u)$ : $A(i(u))arrow$

$A(f(u)))_{u\in mor\Phi}$ . The inductive limit ind $\lim A_{\Phi}$ of the system $A_{\Phi}$ is described as the
cokernel

$p$

$\bigoplus_{u\in mor\Phi}A(i(u))arrow^{arrow}\bigoplus_{\alpha\in\Phi}A(\alpha)arrow$
ind $\lim A_{\Phi}$ ,

$q$

where $p$ consists of the identities $1_{A(i(u))}$ : $A(i(u))arrow A(i(u))\subset\oplus_{\alpha\in\Phi}A(\alpha)$ and $q$

consists of the homomorphisms $A(u)$ : $A(i(u))arrow A(f(u))\subset\oplus_{\alpha\in\Phi}A(\alpha)$ .
For a nonsingular free cones $\alpha=(N(\alpha), c(\alpha))$ , we set gen $\alpha$ $:=\{x_{1}, \cdots, x_{d(\alpha)}\}$

and $x(\alpha);=\Pi_{x\in gen\alpha}x\in S^{d(\alpha)}(N(\alpha)_{Q})$ , where $S^{d}$ means the d-th symmetric power
over the rational number field Q. We denote by $C^{n.s}$ . the subcategory of $C$ consisting
of nonsingular free cones.

A functor $D^{0}$ : $C$ “ $sarrow$ ( $Q$-vector spaces) is defined by

$D^{0}(\alpha)$ $;=\{f/x(\alpha) ; f\in S^{d(\alpha)}(N(\alpha)_{Q})\}$ .

For $u:\alphaarrow\beta,$ $D^{0}(u)$ : $D^{0}(\alpha)arrow D^{0}(\beta)$ is defined to be the natural injection induced
by the isomorphism $u_{Q}$ : $N(\alpha)_{Q}arrow N(\beta)_{Q}$ . Note that gen $\alpha$ is mapped into gen $\beta$

by $u_{Z}$ .
Let $Q^{\sim}:$ $Carrow$ ( $Q$ -vector spaces) be the constant functor defined by $Q^{\sim}(\alpha)$ $:=Q$

and $Q^{\sim}(u)$ $:=1_{Q}$ for all $\alpha\in C$ and $u\in morC$ . Since $\Xi$ is connected as a graph of
cones, we have ind $\lim Q_{-}^{\sim}--=Q$ .

Since each $D^{0}(\alpha)$ contains $Q$ , there exists a natural morphism of functors $\epsilon_{\Xi}$ :
$Q_{\overline{=}}^{\sim}arrow D_{-}^{\underline{\underline{0}}}$ . By [Il, Lem.3.1], the Q-linear map

$Q=ind\lim Q_{-}^{\sim}--arrow ind\lim D_{-}^{\underline{\underline{0}}}$

is injective. Hence we regard $Q$ as a linear subspace of ind $\lim D_{-}^{\underline{\underline{0}}}$ .
We recall some notations in [I2] with exchanging the roles of $M$ and $N$ .
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We denote by $Q(N)$ the quotient field of the group ring $Q[N]=\oplus_{n\in N}Qe(n)$ .
For a nonsingular cone $\sigma$ in $N_{R}$ , the elements $Q_{0}(\sigma)$ and $Q(\sigma)$ are defined by

$Q_{0}( \sigma)=\prod_{y\in gen\sigma}\frac{e(y)}{1-e(y)}\in Q(N)$

and
$Q( \sigma)=\prod_{y\in gen\sigma}\frac{1}{1-e(y)}\in Q(N)$ .

Let $\epsilon$ : $M\otimes Carrow M\otimes C^{*}$ be the holomorphic map defined by $\epsilon(m\otimes z)$ $:=$

$m\otimes\exp(-z)$ . For each $y\in N,$ $e(y)$ is a regular function on $M\otimes C$“, and the pull
back $\epsilon^{*}e(y)$ is equal to $\exp(-y)$ . For a nonsingular cone $\sigma$ in $N_{R}$ ,

$x( \sigma)\epsilon^{*}Q_{0}(\sigma)=\prod_{y\in gen\sigma}\frac{y\exp(-y)}{1-\exp(-y)}=\prod_{y\in gen\sigma}\frac{y}{\exp(y)-1}$ .

is an entire function on $M\otimes C$ . We denote by $[\epsilon^{*}Q_{0}(\sigma)]_{0}$ the rational function
$f_{d}/x(\sigma)$ , where $f_{d}$ is the homogeneous degree $d:=\dim\sigma$ part of the Taylor expansion
of $x(\sigma)\epsilon^{*}Q_{0}(\sigma)$ at the origin.

For each $\alpha$ of the T-complex $\Xi$ , we set

$\omega(\alpha)$ $:=[\epsilon(\alpha)^{*}Q_{0}(c(\alpha))]_{0}\in D^{0}(\alpha)$ ,

where $\epsilon(\alpha)=1_{M(\alpha)}\otimes\exp(-*)$ : $M(\alpha)\otimes Carrow M(\alpha)\otimes C^{*}$ . The class of $(\omega(\alpha))_{\alpha\in\Xi}$

in ind $\lim D\frac{0}{--}$ is denoted by $\omega(\Xi)$ .
The main result of [I1] is the following.

Theorem 2.1 The class $\omega(\Xi)\in ind\lim D_{-}^{\underline{\underline{0}}}$ is in $Q$ , and this rational number
is equal to the zeta zero value $Z(0)(C, \Gamma)$ of the cusp $V(C, \Gamma)$ .

The value $Z(0)(C, \Gamma)$ can be calculated as follows:
A morphsm of fuctors $\nu$ : $D_{-}^{\underline{\underline{0}}}arrow Q_{-}^{\sim}--$ is said to be a retraction if the composition

$\nu\cdot\epsilon_{\Xi}$ is the identity. It was shown that retractions always exist [Il, Lem.3.1]. Then
$Z(0)(C, \Gamma)$ is equal to $\Sigma_{\alpha\in\Xi}\nu(\alpha)(\omega(\alpha))$ .

Now, we consider the nonsingular fan $\triangle\sim\cup\{0\}$ of $M_{R}$ . For $\rho\in\triangle\sim$ and an integer
$n\geq 0$ , we denote by Index$(\rho, n)$ the set of maps $;f$ : gen $\rhoarrow Z_{+}$ $;=\{c\in Z ; c>0\}$

with $\Sigma_{a\in gen\rho}f(a)=n$ . We use mainly Index$(\rho, r)$ and denote it simply by Index$(\rho)$ .
An element $f$ of Index$(\rho, n)$ is said to be an index of norm $n$ on $\rho$ .
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Let $\sigma$ be a nonsingular cone of maximal dimension in $M_{R}$ . Then $\sigma^{\vee}$ is a nonsin-
gular cone of dimension $r$ in $N_{R}$ . The bijection $x(\sigma, )$ : gen $\sigmaarrow gen\sigma^{\vee}$ is defined
so that $\langle a, x(\sigma, b)\rangle$ is 1 if $a=b$ and is zero otherwise for $a,$ $b\in$ gen $\sigma$ . We set
$x^{*}(\sigma)$ $:=\Pi_{a\in gen\sigma}x(\sigma, a)=x(\sigma^{\vee})$ .

For $f\in Index(\rho, n)$ and $\sigma\in\triangle(\rho\prec)(r)\sim$ , we set

$I(\sigma, f)$ $;= \frac{\Pi_{a\in gen\rho}x(\sigma,a)^{f(a)}}{x^{*}(\sigma)}$

and we define
$I(\triangle, f):=$

$\sum_{\sim,\sigma\in\triangle(\rho\prec)(r)}I(\sigma, f)\sim$
.

Then $I(\triangle, f)\sim$ is an integer if $n=r$ (cf. [I2, Thm.3.2]).
For each integer $n\geq 0$ , we define $b_{n}$ $:=B_{n}/n!$ , where $B_{n}’ s$ are the Bernoulli

numbers defined by $1/(1-\exp(-z))=\Sigma_{n=0}^{\infty}(B_{n}/n!)z^{n-1}$ . For an index $f$ on a cone
$\rho$ , we set $b_{f}$ $:=\Pi_{a\in gen\rho}b_{f(a)}\in Q$ .

Let (V, $X$ ) be the toroidal desingularization of the cusp singularity $V(C^{*}, \Gamma")$

associated to the fan $\triangle\cup\{0\}\sim$ . Then there exists a natural one-to-one correspondence
between A(1) $/\Gamma$

“ and the set of irreducible components of $X$ . We denote $D(\gamma)$ the
prime divisor corresponding to $\gamma\in$ A(1). If we assume that the fan $\triangle\sim\cup\{0\}$ is
sufficiently fine, then these prime divisors are nonsingular and $X$ has only normal
crossings. Then by expanding the formula for $\chi_{\infty}$ in the introduction, we get an
equality

$\chi_{\infty}(C^{*}, \Gamma^{*})=$

$\sum_{\sim,\rho\in\triangle/\Gamma^{c}}\sum_{f\in Index(\rho)}b_{f}\prod_{a\in gen\rho}D(\gamma(a))^{f(a)}$

where $\gamma(a)$ $:=R_{0}a\in\triangle(1)\sim$ and the products of divisors mean the intersection
numbers.

The following theorem is a consequence of Sczech’s equality [S2]

$I( \triangle)f)=\prod_{a\in gen\rho}D(\gamma(a))^{f(a)}\sim$

which is written in our notation in [I2, Thm.3.2].

Theorem 2.2 The rational number

$\rho\in\triangle/\Gamma^{s}\sum_{\sim}\sum_{f\in Index(\rho)}b_{f}I(\triangle, f)\sim$

is equal to the arithmetic genus defect $\chi_{\infty}$ $(C$“, $\Gamma$
“

$)$ of the cusp $V(C^{*}, \Gamma^{*})$ .
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Note that we need not assume that $X$ has only simple normal crossings by [I2,
Thm.4.9].

By Theorems 2.1 and 2.2, the both invariants $Z(0)(C, \Gamma)$ and $\chi_{\infty}$ are described
by the elements of the homogeneous quotient of the polynomial ring $S^{*}(N_{Q})$ . This
fact makes it possible to compare these two invariants.

For the proof of Theorem, we need some systematic culculation on the T-
complexes. For the detail, see [I5]. For the historical meaning of this equality,
see also [SO].
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