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FP(AUG/382) :
Rank two reflexive sheaves which are constructed

from the prime field FD

Nobuo Sasakura Yoichi Enta and Masatake Kagesawa

(Tokyo Metropolytan University)

The purpose of this manuscript is to construct rank two
reflexive sheaves on the projective spaces from the prime field Fp
(p = 1(mod.4)). The central part is some combinatorics which are
related to a certain graph, which is obtained from the theory of
quadratic residue. This manuscript may be regarded alsggég

S
introduction to our theory of ’construction of reflexive sheaves
from divisor configrations, cf.([Sa-1,2,3]

The present note requires s@Pme refinements for the final

publication. Also references are far from adequate.

1. Let p be a prime number of the form p = 4q + 1 with a
positive integer q(p = 5,13,17,29,37,...), and let Fp = Z/pZ be
the prime field of characteristic p. Moreover, let F; = Fp - {0}

denote the multiplicative group of Fp and let p be a generator

(primitive root) of F;. For an element i € Fp we set:
S;(resp.S;) = (J € Fy - (1):j ~ ilresp.i ~/ 1)),

where j ~ 1 means that (i-j) = DQa with an element a € Z/(p-1>Z,

i.e.,(i-j) is a quadratic residue). Note that .’ is not, in

general, an equivalence relation.

Let Pp_1 = Pp—l(C) be the (p-l)-dimensional projective space
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with homogeneous coordinates z i€ Fp. Writing X = Pp-l we set
xl=2¢z), 1 € F_, and X' = U, X!. We write ® for the line bundle
i i p 1€Fp iy

0[X1] ~ Q(p), where 0 denote the structure sheaf of X and O(p) is the
p-times twist of O by the hyperplane bundle Q1.
Now to each hyperplane X%, i€ FD, we attach a two term vector €

F(Di(2q))$2, Di being the structure sheeaf of Xi, as follows:

_ ot
gi = ( J.zj , kzk),
~

Writing 5 for Qi(2q+l), the multiplication by 8, defines an

where j(resp.k) satisfies j ~/i(resp.k ~ i),

Di—morphism:

a2
s, : 6, ®g; 877, with 8, = the restriction of £ to xi

. 2 82 .

Let &§ = &, 5.:2e - Cl(ﬂ Yi= @, £, be the coboundary morphism,
i€F_"i i€F_"1i
p 1%

with 5i = the restriction morphism:2 - 21' Moreover, we set g =
eigi:61:= @iGi - Cl(ﬁ®2)=618?2, with 1 € Fp. Now define an

O-submodule of 892 as follows:

-1

€= & tegeh.

Clearly G!X-Xl = BT%_XI. Moreover, we have:

Lemma 1. € i{s reflezive(i.e.,t = G**). Horeover € is locally -

free on (X - X2),cf.ESa-lJ.
Here we set:
2

2 2 . 2
X" = v, _.X7. with X7. = X
1] 1] 1}

1

baxl.
1 J

The main task of the remainder of the present paper is to examine the
structure of € on XZ. Concerning this we remark the following:

®2
p ’
element oi € Gi o satisfying

An element & € R P € X, is in Gp, if and only if there is an

(1) §]. = gieoi for each i € F

i p’

1f p €/ Xi, then the both sides = 0. Note that, by restricting (1) tc



5
X;j we have the coboundary relation:

(2 (g.®0 . ). . = ®0 ), .
8i%95 7 ; (QJ it

Conversely, if a collection {Oi)i’ o. € 6i P satisfies (2),

1

then
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D2 . . . .
there is an element ¢ € 2 satisfying (1). Thus the determination of

Qp-module Gp is reduced to that of a collection (oi)i satisfying (2).

2. Multiplier. Take elements i # j € Fp. We set:

s;;(resp.s;;> = (k € F, - (i,0):k ~ i and k ~ j(resp.k ~/i,

kK ~/in

Thus subsets S:; and S;; of Fp is defined similarly to the abave.

9
Now we restrict the vectors g.1 and gj on X;j . Clearly we have:
Proposition 2.1. #S;;, #S;;, #S;; and S;; are indepedent of
Actually
2577 = 25?7 = nd (#ST.,#ST ) = (q-1,Q) (a,q-1)
wij-wij—q,a ﬂij,- i = q » Q or 9,9 ’

according to whether i ~ j or i ~/ j

Proof. This follows from an elementary consideration. Note that if
. . . . 2a of

k # 1l € Fp satisfies: (i-k) = (j-=1) + p~", a € Z/(p-1)Z, then #S.lj
= S?i, where o,8 = + or -. From this it suffices to consider the

" pair (i,j) = (0,1), (0,p)
Now define Dij-invertible sheaves as follows:

mi’j = Dij(q), mj,i = Dij(q) and Gij = Dij(q)

These three sheaves voincide. But the role of them differ,cf.[Sa-17].

9
Define ellemtns gij € F(Gij)e“ and wi j € r<mi j), wj i € F(WHj

’ ’

as follows:

ij

where according to whether i ~ j or i ~/ j, k,l and m run through

those elements satisfying

-+ + - ++ + = -+
k € S Ll € S,. and m € Sij or K € S,.., L € Sij and m € Sij'

ij’ 1] 1}

_otoy = ) o
g, . = (ﬂkzk,O), wi,j —ﬂ%zl.and Vg —ﬂmzm, if i+,

’

)
i
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5
Now we restrict gi and gj to X;j Then, according to whether i1 «~ ]
or i ~/ i, the second or first component of gij = 0. From the

definition of gij anq wi,j’¢j,i’ Wwe have:

Lemma 2.2. The vectors 3, and gj are decomposed as follows:

.. = 8. .® . . and T '
$ilij gllwl,.] $ili; $i5ivi, i1

9 . .
Next, take a point x € X;j, and take elements Oa € Ga %’ ¢ = i,1],

satisfying the coboundary relation (2), § 1. Then, from Lemma 2.2

Y

o.,..®, . =0, .. .
l|ll¢lyl Jhii i
Thus we obviously have:

Lemma 2.3. The elements g, and oj are decomposed as follows:

g.,.. =0, 8. _and o.,.. = o, @&k  with a unique clemeni
i1 ij 7,1 ilig i T, ]

g.. € 6., , where we set: 6.. = 0. .[g+1]
i} ij,p i] i]

Next we introduce the following
Definition 2.2. (i) We say the ’'matriz’ ¥ := ($i,j)i,j€F

p
is the multiplier of €.
Hefe we understand that'y[ri,i = ¢(empty set), i € Fp.
The multiplier ¥ is regarded as a boundary value of € at x>, In
our general frame work,cf.[Sa 1, the notion of the multiplier plays
a central role. Theoretically the multiplier ¥ should be takn as the
starting point, and the vectors gi,i € F_ should be regarded as its

p
invariant.cf.[Sa-3]. Next we set wi = wj T and form a matix

0 = (o

Yj
i,j)i,jeF with wi,i = 0.
P
The matrix ¢ is essentially a transpose of ¥. But it is good to
regard that the role of & is independent of Y.
3. Inductive structure. The purpose here is to give a similar

decomposition law to (3) for codimension three and four. First



we discuss it at codimension three. Take a subset I = (i,j,k) of

Fp with # I = 3. We form a graph by using ~,cf.§ 2.
Type 3: Type 2: Type li Type O
i i . i.

~
~

[ ok ;oL x ;o

Clearly, the above exhausts all possible graphes(by arranging
indices). We use the above normal form. Note that Type 3 and Type O
(resp.Type 2 annd Type 1) are dual in the sense that the later is
obtained from the former by replacing '~ ' by 7 ./’. The arguments

are done dually. We will concern Type 3 and Type 2.

Now, for each type, the foloowing 3x3-matrices play important

roles:
i] ik ik
Eovy g Yk ©
¥ =0 ¥y 0 RN
K O ¥y i1 Yk, gl

The matrix (6472)I is defined similarly, by changing ¥ to ¢. The
above may be ragarded as a coboundary of ¥ and ®&,cf.[Sa- ], and the
symbol '8 ' is used. These matrices are regarded ,respectively, as

Dl—morphism:($ij|I$GiklI®6jk!I) - (@i|1$6jll$6kll)(resp.

(Gij|1®61k11®6jk|1) - (6i|1$6j11$6kll))‘ We examine the kernel of

these morphisms.

Proposition 3.1. For type 3, no element wa 8| (resp. ¢

a,BII)
0.

I

, a8 # 0. For type 2, wj,i]l’ ¢K,ill and wi,jll and @i,kll
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Proof. This is checked combinatorially. For type 3, the indices i,j,k

are treated evenly.

I | = S "(resp.le. .| = $°7) and does mot contain k.
i, ] 1] i,1] 1]

For type 2,
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_ +- .
ij’il = lwi’jl =Sy k(resp.l¢k’il- Iwi,kl =S, ), and
-+ +-
’wi,jlv— le,il = Slj k(resp.lwi’kl = Iwk,il S )
- . _ - + - .
'¢j,k‘ lwk,jl Sjk 1(resp.|¢k,j| = le,k] skj i) q.e.d.
Proposition 3.2. det(éW)I = det(éttl)I = 0.
Proof. For type 2, this is clear. For type 3, we have:
-+ =+ =4 +-= —++ -+ - -+ ++-
= = .. .. ., US, L US
b g1l TUldy (= 8, US (USL = 8y U8, U US55V 5k
-—
USTTr = 1 1ule IVl ]
Note that det(<5¢)I = -det(é?)l. g.e.d.
The following matrices are obtained from (6?)1,.., by replacing
¢i T by I¢i j]I[.(When the former = 0, we set the later is 0.)
Type 3 i} ik jk Type 2:
: -+ -+ ij ik, ik ij ik
5ij Sik i s s, i 0 0
+ - -+ . 1J 1k +- -+
j Sji Sjk j 0 0 Sjk ] Sij
+- -+ -+ -+
K Sik Skj K 0 Sjk kK ik
(BW)I (6"]’)I (6¢)I

For type 3, the corresponding fact to (Ml)I is obtained by replacing

+ and ~-. Next we consider the following set theoretical equation for

each o0 € I:

lwa,glllusaB’X(W) '*a,yll'usay,l(W)" with 8,7 € I - (o)

,I<¢> | o Iusa ,1(¢)

ey g)111YSxs

where the set SaB,I

for the precise meaning. We find (Sij I(‘P),Si

)

o,y 1 Y

(I) is a set whose element is in Fp,see below
k(?),sjk(W)) satisfying

the equation and is minimal concering the incluison relation(and

similarly for ®). For type 2, we understand that

Sik, 1P

automatically.

= « and we regard that the equation for i-row holds

Proposition 3.3. For type 3, take a pair («x,8) < 1. Then
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- ++ = i o
SGB,I(W) S&BY and SaB,I(¢) = SQBY with (v} = I-[e,B).
For type 2,
-4 . .
Sia,I(W) = Si&B’ (x,B) = (j,k) or (KkK,j) ,
——t - -+ ==+ . B .
Sia’1(¢) = zsiaBUSiaB SQB U SiaB’ with (e,B8) = (j,k) or
(k,iJ,
ek < - -
S5k, 1% = 5 Y8585k T S TSigk
Here
+4+ s
ijk(resp. sijk) = {l € Fp -{i,i,Kr:t ~ i,j,k(resp.l./1i,j,K)}.
The sets S;;;, S;;;,... are understood similarly.
Proof. For type 3, let Sa(W) = [wa.Blllniws,aIII’ and we replace
lwa BlIl by lwa BIII - Sa(W). The equation is not changed. Then we

have SaB’I(W) = (lwa,yll

case for type 2 is a modification of the above. g.e.d.

FPII(Aug.6)

I—sa(w>)u(|¢8’yllI—SB(W)>, cf. Appendix. The

Now we define DI—invertible sheves as follows:

maB,I = QI(maB,I)’ with maB,I= # SaB,I(W)

N QI(ndB)’ with nyg = #5

o, I
where (x,8) < I and {(y} = 1 -{x,B}.

a8,1(¢)

(If 1 is of type 2, we understnd that mjk [z 0.

Moreover, we sei:

6, = D (mp) = GaB)I®m;8,I for any («,8) c I,

6I =DI(nI) x 6aﬁll®m§B,I for any (o,8) < I,

(If I is of type 2, then we omit (xB8)=(jk) from the first
definition.)

That the right hand sises in independent of the choice of indices

follow from the definition of SaB I(?),...,cf.aise—ﬁppeﬂé+x. The
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explicit form of m, and n, are computed from the above equation:

I I
= q - #S ) = S . (=S . ~ S 20y = s .°
hp =9 oB, 1 =9 By~ B By By
+4 -
nI = (g+l1) - SaBY for type 3
— - - - - - bd ') - T - T ad -—
nI (g+1) #(Si Sijk) (g+1) (2q #sijk)) #Sijk (l-g).

Define sections waB,I € r(maB I) and @aB,I € F(Ra ) as follows:

B,1
_1 -
Vug 1 =l,z, and e “&fv . with a € S, o | (¥) and v €

’

»

S (®)

a8, I

(If I is of type 2, then we understand that wjk I = 0.)

From the above defintion we have:
Lemma 3.4. The morphisms

(¢, oy

3,1 ey y: 6. - (@ijl 86

2]
ik,I Tjk,I I I ik ijll)
;2] . : &
15, 1%%k, 1%k, 17 01 2 Gy %0k 1%k 1
gives isomorphism between GI and ker (6‘P)I(resp.6I and (6@)1).

(¢

Decomposition law . Note that we have the following

coboundarey relation:

e

( ¥ @ € I and (B,y} = I ~{c}

Sql1 * (gana,B)lI Sy d,Y)lI’

and we have:

<5w>1t< 0.

Sijl1°%k|1’%ik|1’
Lemma 3.5. The vectors Sy GTE decomposed as follows:
QaBlI = 9I®¢a8,1 for any (x,B) c 1, where g; is a (unique)
element of F(&?Z).

Note that, in the case of type 2, = 0. In the other cases,

$ik|1

gaB|I =z 0.

Explicitly, regardless of type 3 or type 2, we have:

I| - Sijk

Next take a point x € XI and elements aa € 6a %’ o € I,

g, = t(gI,O) where |g

satisfying the coboundary relation,cf.(2),§ 2.
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® = ® .
(ga oa)IaB (gB OB)IaB for any (a,8) € 1
By the decomposition law at codimension two, we write:

- ® . .
OaIaB %48 wa,B with a unique element o € 6

xB af,p’

t . .
Thus we see that (Oijll‘oikll’ojk|l) is in the kernel of (6¢)I,

and, for any (x,B) < I.
Lemma 3.5. The elements T8 are decomposed as follows:

OBl = 0,9 with a unique element o_ € Gl‘x

oaB, 1’ I
4.Inductive structure 2. Here we are concerned with the case

of codimension four. The situation is much subtle then the case of

codimension three. We fix a subset I = (i,j,k,Ll) of Fp with # I = 4.
As in § 3, we first consider the graph formed by . ’:
Type 6: Type 5: Type 4a: Type 4b:
o ~ B for any o ~ B8 for any L ; )
pair (x,8) ¢ 1  Pair (e,8) c 1 i e
except one pair, . .
~ ~ e ~ .k
(k, L) .
i. ~ .k
Type 3a: Type 3c:
? i A
i ~ Ca
~ ~ j ~ .K
S A

We see easily that the above graphes and their dual(obtained by
replacing ~ and ~/) exhaust all graphs with arrangements of indices.
We use the above normal forms. ( Type 3b is used for the dual of type

3a,cf.[Sa- 1.) The following matrices are central subjects in § 4:

ijk ijl ikl ikl

v ikl —wij,ijL]I 0 0
_ ik wik,ijkll 0 —wik,iklll
8%y, = i 0 ¥ 0
ir,ijll1

K ¥kl v 0 Yk, gk
il o jt,ijtll it ikl
kil 0 0 ¥

ki, iki]1 YKy, ikil1
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The matrix (&D)I is defined similarly by changing ¥ to ©.
The behaviour of such matrices are various. The discussion is
done according to the type of the graph. We make some preparations.

First we list all coefficents wa 8 which vanish on XI.(Or

’

eguivalently y € Iwa“BI with an element vy € I - {x,B) .)

Proposition 4.1. (i) For type 6, no element $a 8 vanishes on XI'

(ii) For type 5, ¢ with v € (k,l} and B € (i,j}, vanish on XI‘

o, B’
(iii) For type 4b, all wa 8 vanish, where o . B.

(iv) For type 4a, wa {0 & =j,k,l, and wB z',B = j,k, vanish.

, .
(v) For type 3c, wi,L’ wl,j’ wj,k’wk,i and Vi,j’ wl,k vanish.

(vi) For type 3a, ¥ ¢ = i,j,k, vanish.

o,Ll’
Type 5: Type 4a: Type 4b:
i i k A i i 'k l i j Kk l
i i : i k kK
j j l kK J l l
kK l l Kk l j k i i
! k k l ik I ] J
Type 3a: Type 3c:
i i k1 i i K
i ik i Kk
J T ik j l i
Kk ij k l i
¢ ) l k j

This table indicates all the cases where 'y € lwa,Bl’ ocecur. Also
in such a case, we list all elements v € I - {a,B}) satisfying the
relation. Thus, for type 3a, (B,¥Y) € lwa,L’ for any permutation
(ot,B,v) of (ji,k,l).

Proof. Take elements «,8 and + % : satisfying v ¥¢Q’B|
According to whether o« ~ B8 or not, the graph for (u«,8,y) is as

follows:



In each case check all (x,B8,yY) satisfying these graphes. ad.e.d.

Next we check the coefficients ofka\P)I and (8%), which = 0,
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Next we examine (aB,xBy)-coefficients of (5W)I and (6¢)I which vanish

on XI'

Proposition 4.2. The following lists all zero terms of the

Yob By |1

of the matriz (SW)I:

(i) No element for type 6, the elemenits in kl-row for type 5,

the elements ik- and jl-rows for itype 4b.

(ii) (ik, jkiy)-, (jt,ijly-and (kl,ikl)-part for type 4a.

(ij,ijl)-, (ik,ikl)- and (jk,jkl)-parts for type 3a.

(iii) All elements except for the ones in il and jk-rows for type 3c.

Proof. By chaking the cases.

Type 4b: Type 3c:
ijk jkl kli Lij ijk ijl ikl ikl
ij . . il . .
ik ik .
kil ij l 0
i ik 0 J
jt Kk 0
kil 0 i
Type 4a: Type 3a
Y ijke i3t ikl jkl ijk ijl ikl ikl
ij . . ij . 0
ik ik 0
il ik 0
ik 1 0 il
il 0 it
ki 0 kl . .
(For type 5, wkl,aklzo’ o« = i,j. Also, for type 4b, wik,aik’a=j’L’
and wjl,jLB =0, 8 = i,k.

Proof. Take (o,B,¥) ©¢ I. Assume that the graph of them is of type 3.

Then 8=x,B,y € 1

o.
() B. ~ v. 8.

. . . et .
is contained in l¢a8,a8yl = SaBy if and only if
(This occurs only for type 4a: with & = L,y = i

and (aB) is a permutation of (jk).

This case occurs only for Type d4a:8 ~ L, v = i and (xB) =(jk).
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If (ot,B,¥Y) is of type 2:8 - o ~ Y, then:

(ii) wgy «By 0. This happens for type 5, type 4b, type 4a and

type 3c.
Moreover, & € lwaB,aByl SaBY if and only if
.o
(iiié~ ~Y'~ s (This happens for only type 3c.)

Thirdly assume that (x,8,y) is of type 1. 8 ~ y¥. Then

(iv) ¢BY oy ° 0. (This happens for type 4a, type 3a and type 3c.)
++ - s .
Moreover, & € l¢a8,a871 = SaBY if and only if
~ D
(v) S. (This occurs for type 3c.)
~.8 LY
The proposition is shown by checking (i) ~ (v). g.e.d.

Propsittion 4.3. The rank of (6W)I < 3. The rank = 2 if and only
if 1 18 of type 3c.
Proof. The last part is clear. The first part is checked using
arguments of Appendix. Except type 4b, it suffices to check the
vanishing of the determinant of 3x3-matrix(a-matrix),cf.Apeendix.
Such a matrix is of the similar form in § 3, and the proof itself is
reduced to the one in § 3. For type 4b, it suffices to check:

- -—-+ " -——4 —-—+ +=-- " +=-= " -, + -
Sije Y Sike Y Sk Y Suiy T Sigk Y Sy Y Skes Y Siag
—‘+ - . . .
,ijkl = Sijk"" The check of this is an exicise. g.e.d.

As in § 3 we regard (BW)I as an DI—morphism:

since ‘wij

(eaBYGa8le) - (eaBGaBII)

and we analyze the kernel of this morphism. The case of type 3¢ is
dealt independetly. We first discuss the other cases. As in § 3, we

define S (Y) to be the subset(with multiplicity) of Fp, which

aBy, I

is characterized to be the smallest one among those satisfying
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Ve asyit! ¥ Sagy, 1Y = Wag apsyr! Y Sugs ¥ for any

a,8 € I, with {(y,8} = 1 - {(«,B}
(if the aBf-row = 0, then we understand that this holds automatically.
For type 4a and type 3a we understand that

Sjkl(W) = @ and Sijk(W) = <

For type 6 and type 5 we consider similar equations for the
ij- ik- and il-rows, and it is seen that the solution for such rows
is also the solution for the original (6?)1. For type 4a and trype
3a, the problem is reduced to the type treated in § 3. The case of
type 4b should be treated newly.The following is checked easily by

the procedure as above:

Proposition 4.4. (i) For type 6, type 5 and type 4b,

———

SaBy,I SaB?&
(ii) For type 4a,

¥ for any permutation (o,B,v,8) of (i,i,k,1l).

-———
S Py = SdBYﬁ

By, 1 if (xBy) # (jkl)

(iii) For type 3a,

-

= Sugys

SaBY,I if (xBy) = (ijk)

Simialarly to § 3 we define QI-invertible sheaves as follows:

m = Dl(m ) with m = ¥ CP)

o8y, 1 Squ,I
for any (aBy) c I, ezxcept the cases:(aBy) = (jkl) for type 4a

oBy, 1 oBy, I

and (xB8y) = (ijk) for type 3a.

In these two exceptional cases

maBy,I 0. Also we set:
GI = SaBy.I®m;By,I for any (xBy) c I such that maBy,I # 0.
Moreover, define an element waBy,I € r(maBy,I) by
waBY,I = L% with u € SaBy,I(w)'

(In the exceptional two cases we set ¢a8y,l
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FPIII1(Augr92):
As in the case of § 3 we have:

Lemma 4.5. The vector guBy i8 deCOMﬁfed as follous:

o

_D
® ] Uni )
8oy |1 9 ¢aBy,I with a unique element 3y € r(mI ).
(In the exceptional two cases, gaByII 0.)
The element 9y 18 explicitly
g, = (&,,0 where IgII = SijkL for type 6,5,4b,and 4a.
i _ ++++
9, = (O,gl) wkei e IgI] = SijkL
Here we set:
Sl(zsijkl) {m € Fp - I:m ~/ o for any « € 1},
st=sTt Ty = (meF. - 1: £ €1
1G58k’ F m p 'm ~ @ for any o }
Th ts Froo., F. " defined similarl
e sets iikl’ TijkLt are defined similarly.

In the case of type 3c, the kernel of (BW)I is of rank two.

It is written as ker1 ® ker, where ker

and (EijLIIQG

1 and ker, are the submodules

of &1 1%k’

sheaves as follows:

ikLII)' We define DI-lnvertlable

—-———

= DI(m ), where m

gRosz,I a8y, oBvy,l oxBvy$s
Define two QI-invertible sheaves:
* %
~ ® ~
G =6y 1% 5k, 1 Cike 15k, 1
*« *
G2y =6y 0 = O 1Mk
Also define an element € I'(M ) in a similae manner to the

oBy, 1 oBy, I

previous cases.

Lemma 4.6. Setting 91(1) = t(gI,O) and 31(2) = t(O,g ), with

I

IgI(l)! = S and IgI(Z)I = s ,...are decomposed

I [ the vectors g.lj

K
as follouws:

] =
9iikl1 = ST iy 1 Sykpyr T 8 1%y, (o and

= = 2
Sijrir T 91 i 1 Sikyr T S Pk
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Inductive structure for ¢®:The arguments for ¢ are more involvec
This seems to stem because |o

[y

aB,aByl is of more complicated form the

uB,aBYI if («By) is of type 2 or type 1.
Here we only state the results.(The present proof requires a
refinement.) First, a very few terms of (6¢)I = 0. They are:

ij-row for type 5, and ik- and jl- rows for type 4b.

il-row for type 4a.
Moreover, in the case of type 3c,

all rows except il- and jk-rows.
(In these cases, the treatments of (Btb)I are done parallely to those
of (6‘1’)I except the complication mentioned just above. For type 6,
the argument is completely dual.) In any case one can check:

The rank of (80), ¢ 3 and = 2 only for type 3c.

One can define SaB

v SuB?,I IwaB,aBél aBs, 1
where aB-row # 0.(Here (v,8) =1 - («,B8) .)

I(fb) to be the minimal solution of the identity:

le U S for any («,B8) c I,

o, 0By

We set(ezcept the case of type 3c):

j?o:By,I = 0I(naBy,I) with "oy, 1 ~ # SdBY,I(¢)
61 x> GaBaIIQWaBy,I for any (xBy) c I(and independent of the
choice of (aBv)).
Take elements o € Ga,x' @ € I and x € X,. Then, by § 2 and § 3, we
have (unique) elements oaB € GaB,x and oaBY € SaBy,x such that
‘%l = a8, e and Yo = caBY®¢aB,aBy
Thus $a8yoaBle is in the Kernel of (am)l. Thus we have:

Lemma 4.6. The elements OaBy 18 decomposed as follows:

oaBle = OIQQQBY,I with a unique element o, € 61,

[ X’
The explicit form of SaBY’I(w) is as follows:
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-

Type 6: S «Bvs

aBY,I(¢) = S

In the other cases we write only the typical terms:

—-+ + 4 -+ + - t———
: = 2 - = -
Type 5: sijk,1(¢) "Skl Sijkl , SikL,I(¢) Sij sijkL
-—— - +-++ -+ ————
Type 4b: Sijk,I(m) = SijL U Sjkl ] SijkL = SjL U Sijkl
-+ -+t + ++ +
Type 4a: Sijk,1<¢) = 2(SiL - sijkl) U (Sil - SI)
-t - -+ + -
= 2
Sii1,1% = 26 50 Y Sigk? Y Sk
s o)y = ST usitlT
ik1, 1% = Sy ikl
+ +
Type 3a: Sijk,l(m) = SL - SI
LAt -+ + 4+ -
= 2
Si51,1¢% 7 2S5 Y Sk

In the case of type 3¢, the kernel of (6¢)I is of rank two. We

form R (®) by

oBy, 1

ﬂzcsz,I = Ql(maey,l) uith maBy,I =F SaB?,I(¢)'
Here san,I(m) are the minimal solution of

Iwil,ijll USii (@ = !mil,ikll U S (®

lek,ijkl US i @) = ]mjk,jkll U S ().
We set:

Sy = GileIQm?jL,I = GikLIIQn?kl,I

S (2 =6, O 1 =651y

Lemma 4.7. The elemnts GaBY are decomposed as follouws:

Tior|1 = I Dy, ® = 30K

Opik|1 = T (BI®p o B = 1L,

with unique elements o () € GI(a)X, o = 1,2.

I

The expl;icit form of SaBy,I(m) is:
+4+ -+ -+ -+ ———
= 2
Si50® = 2555 YV Sijkit Y Sijke
+-+4+ PR -———
Sikt® = 255 Y Siik Y Sk
and : i NS e R AP NE S
thILQD» 2?&%1 u}iﬁe %fﬁ?
= 92
Sijk, 1% = 25556 Y Sikr Y Sk
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FPIV(Aug/92)>:

§ 5. Local freeness condition. Here we discuss the local
freeness of € up to codimension four. The decomposition laws in the
previous sections are foundamental for this purpose.

First we give a system of generators of GX, X € X2. First assume

2 . o
that x € Xij with i# j € I. Take elements % € Ga,p’ o= i,

"

isfyi o .o ®u S TTRN U .2, . 2.3,
sat%sfy- =« SR i “J)|1J cf. (2>, § 1. By Lemma 3, the

elements ui and uj are decomposed as follows:

(1.1) ... = . .®p. . and .. = ..®p. . with a (unique) . L€
it %9, il %951 4 B
o. . .
11,P
. . 2 2 3
This step is conveersed. Assume that x € X := X7 - X7. Then take an
bitrar 1 t R . . .. B0, .. ®@ . .
arbitrary elemen ulj 61J,X We extend Mlj w1, and ulj @J’lto
~ ) - . .
Gi,x and oj,x’ and we have elements ua € Ga,x’ 04 i,j, satisfying
(1). Now start with an element “ij € Gij % such that
(1.2) the value of “ij at x # 0.
We have elements “a’ @ = i,j, by the above procedure. We then have

an element g(ij) € @X satisfying g(ij)ia = g _®u o = i,j,cf.(1),8 1.

o o’

Moreover, take a frame | of D(l)X and elements Xa € DX, o = 1,2,

ool &2 82
such that Z(Xa) = Xa‘ Moreover, we extend ga’XE Ga,x(‘ Da(2q)X ) to
®
D(Zq)xz, and write the extension also as ga %" Setting g(x) =
®(q+1)

9a®l we see that

xBQ(a) € &X, with (x,8) = (i,j) or (j,i).

2
Furthermore, let el and e~ denote t( sz,O) and t(O, vzv) with

y € Fp. These elements are in (E).

Lemma 5.1. The Qx—module @p is generated by

(1.3) el, 62, Xig(j), ng(i), g(ij)
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Proof. Take an element § € Gx‘ Then we have elements u& € o=

Su, x’
i,] 1. € 6. .
1,3, ‘ul,] ij,x

B¢

satisfying the decomposition law:;la = 84 X@p& and

T . writ o= ocC. . wi lement c. ., €
u&llj “1] One can write u1J 13“ ith an e ij

o,B8” ij
3. . and extend c,. to O_. Using ’c..’ to the extension, we set §’ =
1},P 1] X i]
¢ - cijg(ij)). Then giij = 0. Letting “a be the 'decomposing
1" " 2 i _ »
element for ¢', we see that My = O(Xij,x) .Thus gia = CySy with

an element Cy €90

' , . . - 1
o, %’ and ¢ (Cig(l) + ng(J)) = O(XX) . g.e.d.

Next take a subset J = (i,]j,k) C Fp with # J = 3 and assume that

3 .
i 2 : ®
X € XJ. Take elements Ty € Ga,x’ @ € J, satisfying (_),1.(gu ra)IaB

= (ge®tB)IaB for any (x,8) ¢ J. By Lemma 2.3 we have (unigue)

. .2 i €
elements Tob € GaB,x By Lemma 3 we have a (unique) element ¢

J

GJ %" The following series of decomposition holds:

(2.1) talaB = ra8®wa,8 and taBlJ = tJQQaB’J for any (o,8) c J.

Assume that x € X? = X? - X4‘ The step (2.1) is reversed. Take an

element rJ € GJ’p arbitrarily. By extending rJewaB,y oB,J

have elements taB satisfying the second relstion in (2.1). Next, for

to © we

each o € J,

@ 9T

2 . =
(2.2) (ta8®wa,B)IJ (taYQQ oy, d ]

® =
(wa,B waB,J)QtJ (¢a,y®

and this is extended to an element Ty € Ga %" Now assume that

a,v)lJ

(2.3 the value of tJ at x # 0

We form an element g(J) € GX satisfying Q(J)Ia = QG,XQta.

Moreover, for each (o,B8) <« J we apply the previous procedure and we

have an element g(xB). Also we have an element g(x), o € J. Note that

(2.4) 3yg(a8), vy €1 - {a,8}, and xBxyg(a), B,y € J - {o}, € GX
Lemma 5.2. The Ux—moduLe @x is generated by

(2.5) el e?, x,8(@B), Xx4x 8(x) and g(I)
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dere (a,B,y) runs through a permutation of (i,j,k).
The proof of this lemma is similar to Lemma 5.1.
Thirdly, take a subset I = (i,j,k,l) c Fp and assume that x € X.
. . ” )
Take elements o € Ga,p’ o € 1, satisfying (2),8§ 1'(ga®oa)|a6

(93®OB)JaB for any pair («,8) ¢ 1. By Lemma 2.3, Lemma 3.5 and Lemma

. ; fed

4.6, we have (unigue) elements GuB € GaB,x’ oaBY € OQBY,X and UI €
61 o satisfying the following series of decomposition laws:

(3.1 o

= = o2} = ®
o|aB °a8®®a,8’ T«B | o8 T8y By, 1 and TaBy |1 T 1%y, 1
(for any permutation («,8,v,8) of (i,j,kK,l).

Remark 5.3. When I is of type 3¢, the last step should be

replaced as:

2 = = = 2] =i .
(3.2) UiLa}I 01(1)®wila,l’ o =j,k, and ijBII 01(2) @jkB,I’B i,l

Assume that x € X? :=‘X? - XS. The step is conversed. Namely, taking

an element 9, € 61 X arbitrarily, we get ©

(3.2). Assume that

oaB and o_ satisfying

xBy’ o

(3.3) the value of OI at x # 0.

Then we form an element g(I) € GX satisfying g(I)Ix = ga,xoa for any

¢ € 1. As before we form elements g(xBy), g(xB) and g{ux).

Lemma 5.4. [f 1 is of not type 3c, then GX 8 generated by

1 2 :
(3.4) e ,e”, ngag(a)' xyég(aﬁ), xég(aBy) and g(1)

where {(o,B8,v,8} is a permutation of (i,j,k,l) and we write XaBy =
anBXy and XY6 = nyé
The proof is similar to the previous ones.

Remark 5.5. For type 3¢, we have two vectors g(l:1) and g(I:2)

at codiumension four level.

Local freeness condition. Take a point x € Xl.
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C @92
Proposition 5.5. (i) Take two elements §l and &, € GX(CQX )

Then

det(f,AL,) = v.u, where y and u are elements of QO and vy

1

satisfies:Z(y) = Xx

(ii) Gx is Dx-free if and only if there are elements ¢, and %, of
GX such that

(1/y)det (5 AL)) is a unit € Q
Proof. First note that at each point of Xi - Xg, two elemwnts
(el,g(i)) or (ez,g(i)) forms a frame of €. Obviously,

det(elAg(i)) and det(ezAg(i)) satisfy the condition in (ii)
Since §1 and §2 are linear combination of (el,g(i)), det(§lA§2)

= O(X%’X—Xi). Thus we have (i). Concerning (ii), we remark
2

€ = 2) with the inclusion i:(X-X") X.

1*(GIX_X

Thus € is locally free if and only if there are elements §1,§2, which
2

spans € on (X—X“)X. This is equivalent to the condition in (ii).

qg.e.d.

Now take a point x € k?j . Then according to whether i ~ j or not,
we have:
det(g(ij)Aez) = y(the first component of g(ij)) or
det(g(ij)Ael) = y(the second component of g(ij)

On the otherhand

. t t
= L Q@ L =
g(lJ)Iij gij <wi 3 wj,i) oij and gij (gij'O) or (O’gij)’

- ++
.. Or = P e
1] 1]

Lemma 5.6. € is locally free at x, and g(ij),82 or g(ij),e1

and Igijl = S

form a frame at x.

Next take a subset J = (i,j,k) C Fp and take a point x € Xijk‘



Here we consider the case where J is of type 3 or type 2. In the
case 0f tyoe O and type 1 is treated dually(by changing + and - and
also changing the first row and the second row of the vectors in
question.) First note that

Lemma 5.7. € is lecally Ffree at x. According to whether 1 is of
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2
type 3 or type 2, (g(J),e )(regsp.(g(J),a(i)) form a frame of © at x.

-1 2
Proof. First, in the case of type 3, we restrict (g(J),(zij) 1e“) on
4,
XI'
-1 _ t
(%) (g(J),(zij) €)1 = (g x(Iyo, (0, vGFp—(i,j)))’ where
_t : QT (e T Ty
8y = (g;,0) with IgJi = SJ("Sijk) and
K(I) = ¢a,J®a,J for any o, where wa,J = wa,BwaB,J and
P53 T %4, 8%p,y B FXEJ
(The elements wa . wa I and k(x,I) sre well defined.) Note that
- - + + .
Wa,;' = S,- S; and |“’a,1' = S, - S; -{j,k), and
. . + -
[kcd)| = Fo o= (i, 3,K) (s U sp

Thus the determinant of (%) # 0. Next we restrict (g(J),a(i)) on Xj

SO e T 9 kYk, 5Tk 8 gk T eV g
Thus
det(g(J)‘jkAg<1)) = _(gjk,ZgJ)(wi,jwj,iwi,I)'
. _ ++
where gJ.k’2 is the second component of gjk and lgjk,zl = sjk i
Thus the above deterimant is of the form xix(unit). g.e.d.

By the above lemma we have:
€ is locally free over (X - X4).

Now we consider the case of codimension four. Take a subset I =

(i,i,k,l) of Fp with # I = 4 and a point x € X? i = XI - X

Theorm 5.8. Exzcept the case of type 4b, € is locally free at x.

k:
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he following two vectors form a frame at x € X.
(g(1),e,) for type 6, (g(I),kag(il)) for type 5,
(g(I),xjkg(iL)> for type 4a, (g(I),xijkg(i)) for type 3a,
(g(I:1),g8(1:2)) for type 3c.
>roof. The case of type 6 and type 3a are treated similarly to Lemma

4 and (g(1),3(1)) on x?i

35.7. We restrict g(I) on X

1 Kk
g(I)]I = QIK(I)OI, where k(1) = ¢a,1¢a,l for any o« € I, with
¥a,1 = ¢a,B¢aB,an¢aBY,I and @y 1 = Py 848, 08vPuBy, I

(These elements are well defined.) As before

- - ———— + + +
lwa,ll = Sy = S{(=S 1) l@a’ll = S, - S[(=57,7) - (B.v.8),
ave k(1) = F_ - (i,j,k,l} - (ST U ST}
P I 1
(g(I),g(l))’ijk = (giij(inDOijk, 91¢i,1)
_ t R _ .
Note that g, = "(g;;,.,0) with Igijkl L and g; = (0,g) with Igll
+ P - - . < === +++
= S;. Moreover, Ik (ijky| = Fp {({i,j,k} v Sijk U Sijk) L, and
l¥. ] = S. - 8S... 1, and we have the assertion for the above two
i,!1 i ijk

cases. Thirdly consider the case 0of type 5, and we restrict

. 2 .
(g(I),g(ij)) to XkL‘

(9(1),9(ij))|kL (gklwk,L¢L,kckL’gij¢ ¥ u..) , where

1,375,171

8py = €0, &) with lg | = s;7 i,j, and 85 = t<gij,0) with
lgijl = S;; k,l. Moreover, o,, = @, (1,0, 0, and

loy | = (s; U s;) - (S;;Z v 33;2) i,i,

Also wi,jwj,i does not vanish on XRL'

Thus the determinant of the above two vector = x, ,x(unit)

kl



183

9
FPV(Aug/82) For type 4a, we restrict (g¢(l),g(il)) to X}k:

(8(1),a (il |y = (e, ¥ 10, (au) |y . TSI
where g, = (g, 1.8, o) with ]gjk,ll = S;; ! and
g, 5l = s;; i.Moroever, g, = (g,,0) with lg| = s

and g1, = tko,gl> with lg,| = sz i

Also (wj,kwk,jojk) and Hy do not vanish.

Using these we check that the the determinant of the above
two vector # 0.
Finally we consider the case of type 3c. In this case, the situation
is subtle and seems to be a new factor which arises at codimension

four:First note
the first and second components of gi(resp.gl) contain

sz and zj(resp.zij and zk),and those of gj<resp.gk) contains

ZL and ij(resp. zi and sz

‘Moroevr, oa = 0 (XI). Thus the degree of g(I:1) and g(I:2) 2 2.
@)

)

Thus, lettting (g(l:1>Ag(l:2)) denote the term

(XI)nl(g(Izl)Ag(Izz)),

we have:

the term = I, B (1 Ag Y (i), with (v&) =1 -(aB),

(aB)(

where g 1:1) denotes ((82/8xax8)g(1:1)}|I

First we have:
(%) The summand = 0, unless (xB8) = (il) or (jk).

Actually assume that (x8) = (ij) or (ik)(and so (¥8) = (kl) or (jl)).

(xB) .. _ 2 . _ (aB)
Then g (I:1) = (9 /axaxB)(g(I'l)lyé)II = (gy6¢y’5¢ g (1))

8,7y v
(vd)

and similarly for g If (¢B8) = (ij) then
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8, = Y(x,0) and g, = Y(x,0), i.e., the second term = 0.
Thus 8 %2 (1:15A6 Y37 (1:2) obviously vanishes. 1f (xB) = (ik), then
the vectors gik and gjL appear, and the first term of them = 0.
Thus the terms should be considered are as follows:
g(il)(ltl)Ag(jk)(I:E) + g(jk)(I:I)Ag(iL)(I:Z)
=68 5k¥ 5 kW, Jk(l))(iZ)A(gilwi,lwl,iciL(Z))(jk>
(8, 7%, sz'joil<1i)(jk)A(gjkwj,kwk’J (2y) 1V
Also note that ¢ k= O(XZ) and wk,j = O(Xi) and similar fact.
Thus the above quantity is written as:

(g, kAgJL>(wjliwéljw(k%wéfi)<ojk(1>oiL<2) MCETASRLITAC)
Nopte that Sk ~ (gjk'O) with lgjk] = S;; and g, = (O'gil) with
lgill= S;z> Thus (gjkAgiL)'does not vanish, On the otherhand,

T (1) = @y (o (1), 112 =@y 191(2), while
ojk(Z) = 0 and cil(l) = 0. Thus we have:

where w.k 1= @ and similarly for ¢

il,I°
)01(1)01(2).

ik, iki®iki, 1 T %k, ikt®iki, 1’
(a(I:1)Ag(I:2)§1? = (8, s )(¢§L;w§’;¢f§iw(3))<wjk,IoiZ’I
and we finish the proof.

(In order to check that, for Type 4b, € is not locally free, we
should check all 2-vectors. We omit here. The chief objection for the

locally freeness is that, for pairs (¢ L'wl L), (Y ),

k,1¥e,x
Z(wi,L)nZ(wL,i) = 0(X;),..... )
Remark:7/f p = 5, then I Fo with # 1 = 4 is of the form
I = (i,i+1,i+2,1+3) and is always of type 3c. Thus € is locally
free and is actually the Horrocks-Mumford bundle. Our hope was to
construct reflexive sheaves € which are locally free over (X-XS).

Bur if p > 5, then type 4b or its dual always appears. However,

the content of this baper is limitted to the quadratic residue.
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Is it possible to construct reflexive sheaves from some arithmetic
(e.g.higher residue) of Fp ?
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