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ABSTRACT

We define a physical Hilbert space for the three-dimensional lattice gravity of

Ponzano and Regge and establish its isomorphism to the one in the $ISO(3)$ Chern-

Simons theory. It is shown that, for a handlebody of any genus, a Hartle-Hawking-

type wave-function of the lattice gravity transforms into the corresponding state

in the Chern-Simons theory under this isomorphism. Using the Heegaard splitting

of a three-dimensional manifold, a partition functions of each of these theories

is expressed as an inner product of such wave-functions. Since the isomorphism

preserves the inner products, the partition functions of the two theories are the

same for any closed orientable manifold. We also discuss on a class of topology-

changing amplitudes in the lattice gravity and their relation to the ones in the

Chern-Simons theory.
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1 INTRODUCTION

In 1968, Ponzano and Regge derived the following asymptotic form of the

Racah-Wigner $6j$ -symbol for large angular momenta $j_{i}’ s$ [1].

$(-1)^{\Sigma_{1=1}^{6}j:} \{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}\sim\frac{1}{\sqrt{12\pi V}}\cos(S_{Regge}+\pi/4)$

(1)

$(j_{i}\in Z_{\geq 0})$ .

To explain the notations in the right hand side, it is useful to imagine a tetrahedron

and associate $j_{i}’ s$ to its edges as in Fig. 1. In the following, we call this as coloring

of the tetrahedron. Since the $6j$ -symbol has the tetrahedral symmetry, we can

uniquely associate it to the colored tetrahedron. Now we regard $(j_{i}+ \frac{1}{2})$ as a

length of the i-th edge of the tetrahedron. The factor $V$ in the right hand side of

(1) is defined as a volume of such a tetrahedron, and $S_{Regge}$ is given by

$S_{Regge}= \sum^{6}\theta_{i}(j_{i}+\frac{1}{2})$ , (2)
$i=1$

where $\theta_{i}$ is the angle between the outward normals of the two faces separated by

the i-th edge.

What is remarkable about this formula is that $S_{Regge}$ is nothing but the Regge

action [2] for the single tetrahedron. Suppose there is a three-dimensional manifold
$M$ which is decomposed into a collection of tetrahedra. If we assume that each

tetrahedron is filled in with flat space and the curvature of $M$ is concentrated
on the edges of the tetrahedron, a metric $g_{\mu\nu}$ on $M$ is specified once the length
$(j+ \frac{1}{2})$ of each edge is fixed. The Einstein-Hilbert action $\int d^{3}x\sqrt{g}R$ is then a

function of $j’ s$ on the edges and it is given by summing the Regge action (2)

over all the tetrahedra in $M$ . Thus, as a model for the three-dimensioal Einstein

gravity, Ponzano and Regge considered a lattice statistical model whose dynamical

variables are the angular momenta $j’ s$ on the edges and whose weight is given by a

product of the $6j$ -symbols over all the tetrahedra in $M$ (including the sign-factor
$(-1)^{\Sigma_{i}j_{*}}$ in the left hand side of (1)).
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In the lattice gravity, we sum over geometries of $M$ based on its simplicial

decomposition. In one approach, size and shape of each simplex are fixed, and the

quantum flctuation of the geometry is evaluated by summing over all the possi-

ble ways of gluing the simplices together. The recent studies on two-dimensional

gravity are mostly based on this approach [3]. In the other approach, one fixes

the lattice structure and sums over the lattice lengths [2]. The lattice model of

Ponzano and Regge belongs to the latter approach.

In both of these approaches, it is important to know if the lattice model has a

nice continuum limit. In this respect, it has already been pointed out by Ponzano

and Regge that their lattice model can be made scale-invariant with appropriate

modification of the statistical weight. Let us take the tetrahedron in Fig. 1,

and decompose it into four small tetrahedra as in Fig. 2. There are four edges

inside of the original tetrahedron, and we put angular momenta $l_{1},$
$\ldots,$

$l_{4}$ on them.

Corresponding to the four tetrahedra, we consider the following product of the
$6j$-symbols.

$(-1)^{\Sigma_{:}l_{i}}\{\begin{array}{lll}j_{1} j_{2} j_{3}l_{1} l_{2} l_{3}\end{array}\}\{\begin{array}{lll}j_{4} j_{6} j_{2}l_{3} l_{1} l_{4}\end{array}\}\{\begin{array}{lll}j_{3} j_{4} j_{5}l_{4} l_{2} l_{1}\end{array}\}\{\begin{array}{lll}j_{1} j_{5} j_{6}l_{4} l_{3} l_{2}\end{array}\}$ (3)

Now we are going to sum this weight over the coloring $l_{i}$ on the internal edges.

The summation can be performed analytically if we multiply an additional factor
$\prod_{i=1}^{4}(2l_{i}+1)$ to the summand (3). By using the identity due to Biedenharn and

Elliot, the summation over $l_{1}$ can be done as

$\sum_{l_{1}}(2l_{1}+1)(-1)^{\Sigma_{i}l_{i}}\{\begin{array}{lll}j_{4} j_{6} j_{2}l_{3} l_{1} l_{4}\end{array}\} \{\begin{array}{lll}j_{3} j_{4} j_{5}l_{4} l_{2} l_{1}\end{array}\}\{\begin{array}{lll}j_{1} j_{5} j_{6}l_{4} l_{3} l_{2}\end{array}\}$

$=(-1)^{\Sigma_{i}j_{i}}\{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}\{\begin{array}{lll}j_{1} j_{5} j_{6}l_{4} l_{3} l_{2}\end{array}\}$ .

We can then sum over $l_{4}$ using the orthonormality of the $6j$ -symbol

$\sum_{l_{4}}(2l_{4}+1)\{\begin{array}{lll}j_{1} j_{5} j_{6}l_{4} l_{3} l_{2}\end{array}\}= \frac{1}{2j_{1}+1}$ .



4

Thus we are left with the sum over $l_{2}$ and $l_{3}$ as

$\sum_{l_{1},\ldots,l_{4}}(-1)^{\Sigma_{i}l_{i}}(2l_{1}+1)(2l_{2}+1)(2l_{3}+1)(2l_{4}+1)$

$\cross\{\begin{array}{lll}j_{1} j_{2} j_{3}l_{1} l_{2} l_{3}\end{array}\}\{\begin{array}{lll}j_{4} j_{6} j_{2}l_{3} l_{1} l_{4}\end{array}\}\{\begin{array}{lll}j_{3} j_{4} j_{5}l_{4} l_{2} l_{l}\end{array}\}\{\begin{array}{lll}j_{1} j_{5} j_{6}l_{4} l_{3} l_{2}\end{array}\}$ (4)

$=(-1)^{\Sigma_{t}j_{i}}\{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}$

$\frac{1}{2j_{1}+1}\sum_{|l_{2}-l_{3}|\leq j_{1}\leq l_{2}+l_{3}}(2l_{2}+1)(2l_{3}+1)$ .

However, the sum over $l_{2}$ and $l_{3}$ in the right hand side is divergent. In order to

regularize it, we cut off the summation by $l_{i}\leq L$ and rescale the summand of (4)

by multiplying a factor $\Lambda(L)^{-1}$ , where

$\Lambda(L)=\frac{1}{2j_{1}+1}$
$\sum_{\iota_{2},\iota_{3}\leq L}$

$(2l_{2}+1)(2l_{3}+1)$ . (5)

$|\iota_{2}-l_{3}|\leq j_{1}\leq\iota_{2+l_{3}}$

For a sufficiently large value of $L,$ $\Lambda(L)$ becomes independ on $l_{1}$ and behaves as
$\Lambda(L)\sim 4L^{3}/3$ for $Larrow\infty$ . After multiplying this factor, we can take $L$ to $\infty$ and

the divergence is removed. Thus, with the additional factor $\Lambda(L)^{-1}\prod_{i}(2l_{i}+1)$ ,

the sum of (3) over the coloring $l_{i}$ on the internal edges in Fig. 2 reproduces the

weight

$(-1)^{\Sigma_{1}j:}\{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}$

for the original tetrahedron in Fig. 1.

Based on this observation, Ponzano and Regge defined a partition function $Z_{M}$

for the manifold $M$ by

$Z_{M}= \lim_{Larrow\infty}\sum_{\{j:j\leq L\}}\prod_{vertices}\Lambda(L)^{-1}\prod_{edges}(2j+1)\prod_{tetrahedra}(-1)^{\Sigma_{i}j_{i}}\{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}$ .

(6)

Due to the identity (4), $Z_{M}$ is invariant under the refinement of any tetrahedron
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in $M$ into four smaller tetrahedra. Namely this lattice model is at a fixed point

the renormalization group $transformation^{\star}$

Because of this property, one may suspect that the lattice gravity of Ponzano

and Regge can be related to some quantum field theory in the continuum. Al-

though there have been some works on physical interpretation of this model [4],

little progress had been made on the continuum limit of this model until recently.

Last year, Turaev and Viro studied the q-analogue of the Ponzano-Regge model,

and found that its partition function is invariant under a class of transformations

larger than the renormalization group in the above. Moreover they have shown

that any two tetrahedral decompositions of $M$ can be related by a sequence of

such transformations. Therefore the partition is independent of the tetrahedral

decomposition and depends only on the topology of $M$ . Although they have stud-

ied the q-analogue, their argument is directly applicable to the original model of

Ponzano and Regge. Thus it is natural to expect that the model of Ponzano and

Regge and its q-analogue by Turaev and Viro are equivalent to some topological

field theories. Indeed, in the paper [5], Turaev and Viro have conjectured that

the partition function of their q-analogue model is equal to the absolute value

square of the partition function of the $SU(2)$ Chern-Simons theory [6] of level $k$

$(q=e^{2\pi i/(k+2)})$ when the manifold $M$ is orientable.

In the previous paper [7], the author and Sasakura have examined physical

states in the lattice gravity of Ponzano and Regge and suggested that they are

related to physical states of the $ISO(3)$ Chern-Simons theory whose action is given

by

$S_{CS}(e, \omega)=\int d^{3}xe^{a}\wedge(d\omega^{a}+\epsilon^{abc}\omega^{b}\wedge\omega^{c})$ , (7)

where $e^{a}$ and $\omega^{a}(a=1,2,3)$ are one-forms on $M$ with adjoint indices of $SO(3)$ .
If we identify them as a dreibein and a spin-connection following the observation

$\star$ Although the divergence due to the scale-invariance of the model is regularized in (6) by
multiplying the factor $\Lambda(L)^{-1}$ , it is not obvious that $Z_{M}$ defined in the above is finite. We
will examine this point in Section 3.
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by Witten, the action $S_{CS}$ may be regarded as the Einstein-Hilbert action $\int e\wedge R$

in the first order formalism.

In this paper, we extend the analysis of [7] and show that the partition function

of the lattice gravity of Ponzano and Regge agrees with the one of the $ISO(3)$

Chern-Simons theory for any orientable manifold. This result corresponds to the
$karrow\infty$ limit of the cojecture by Turaev and Viro. In Section 2, we define a physical

Hilbert space for the lattice gravity and establish its isomorphism to the physical

Hilbert space of the Chern-Simons theory. We show later in Section 4 that this

isomorphism preserves the inner products of the two Hilbert spaces. In Section

3, we compute the Hartle-Hawking-type wave-functions of the lattice gravity for a

handlebody of any genus and show that it transformes into the corresponding state

in the Chern-Simons theory under the isomorphism. By gluing Hartle-Hawking-

type wave-functions, one can compute a partition function for any closed orientable

manifold. We check in Section 4 that this gluing procedure is compatible with the

isomorphism. Therefore the partition functions of these two theories are the same,

as far as they are finite. We also study some class of topology-changing amplitudes

in the lattice gravity and their relation to the ones in the Chern-Simons theory. In

the last section, we discuss on interpretations of these results and their extensions.

In the course of this work, the author was informed of a paper by Turaev

[9] where he announces to have proven the equivalence of the q-analogue lattice

model and the Chern-Simons theory for finite $k$ . Details of his derivation not

being available, it is not clear to the author how his approach is related to the one

presented here.

2 $WAVE-FUNCTIONS$

In the lattice gravity of Ponzano and Regge, one can define a discretized verion

of the Wheeler-DeWitt equation which characterizes physical states in the theory.

On the other hand, in the $ISO(3)$ Chern-Simons theory, a physical state is given by

a gauge-invariant half-density $\Phi(\omega)$ on the moduli space of a flat $SO(3)$ connection



7

$\omega$ on a two-dimensional surface $\Sigma$ . In this section, we establish a correspondence

between physical states in the lattice gravity and in the continuum Chern-Simons

theory. This correspondence will be used in the later sections to compare partition

functions and topology-changing amplitudes in those two theories.

First we should clarify what we mean by physical states in the lattice grav-

ity. To motivate our definition of physical states, let us consider a closed three-

dimensional manifold $M$ and decompose it into three parts, $M_{1},$ $M_{2}$ and $N$ , as

in Fig. 3, where $N$ has a topology of $\Sigma\cross[0,1]$ with $\Sigma$ being a closed orientable

two-dimensional surface, and $M_{i}(i=1,2)$ has a boundary which is isomorphic to
$\Sigma$ . The manifold $M$ is reconstructed by gluing the boundaries of $N$ with $\partial M_{1}$ and
$\partial M_{2}$ .

Corresponding to this decomposition of $M$ , the partition function $Z_{M}$ of the

manifold $M$ can be expressed as a sum of products of three components each of

which is associated to $M_{1},$ $M_{2}$ and $N$ . To find such an expression, we note that the

partition function $Z_{M}$ is independent of a choice of tetrahedral decomposition of
$M$ . Therefore we can place tetrahedra in $M$ in such a way that $M_{1},$ $M_{2}$ and $N$ do

not share a tetrahedron, namely their boundaries are triangulated by the faces of

the tetrahedra. Corresponding to this tetrahedral decomposition, we can express
$Z_{M}$ as

$Z_{M}=c_{2}^{1} \in C(\Delta_{2})\sum_{c\in C(\Delta_{1})}Z_{M_{1},\Delta_{1}}(c_{1})\Lambda^{-n(\triangle_{1})}P_{\triangle_{1},\triangle_{2}}(c_{1}, c_{2})\Lambda^{-n(\triangle_{2})}Z_{M_{2)}\triangle_{2}}(c_{2})$

, (8)

Here $\triangle_{i}(i=1,2)$ denotes the triangulations of the boundary $\partial M_{i},$ $C(\triangle_{i})$ is a set

of all the possible colorings on $\triangle_{i}$ , and $n(\triangle_{i})$ is a number of vertices on $\triangle_{i}\star$ The

factor $Z_{M.,\triangle_{i}}(c_{i})$ is given by the sum over all the possible coloring on the edges

$\star$ For conciseness of equations, here and in the following, we do not write the cut-off parameter
$L$ explicitly.
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interior of $M_{i}$

$Z_{M_{i},\triangle}(c_{i})= \prod_{edgeson\triangle;}(-1)^{2j}\sqrt{2j+1}$

$\cross\sum_{coloring}vertice\epsilon\prod_{\dot{\iota}ntertorof}M_{i}\Lambda^{-1}interiorof\prod_{edge\epsilon}M_{1}(2j+1)$

$\cross$ $\prod$ $(-1)^{\sum_{i}j_{i}}\{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}$ ,
tetrahedra in $M_{i}$

where we keep fixed the coloring $c_{i}$ on the edges on $\partial M_{i}$ (Fig. 4). Similarly
$P_{\triangle_{1},\Delta_{2}}(c_{1}, c_{2})$ is given by a sum over all the possible colorings on the interior edges

of $N$ with fixed colorings $c_{1}$ and $c_{2}$ on $\partial N\simeq\Sigma+\Sigma$ .

Since $P_{\triangle_{1},\triangle_{2}}$ is independent of the tetrahedral decomposition of the interior of
$N$ , it satisfies the following remarkable property,

$\sum$ $P_{\triangle_{1},\triangle_{2}}(c_{1}, c_{2})\Lambda^{-n(\triangle_{2})}P_{\triangle_{2},\triangle_{3}}(c_{2}, c_{3})=P_{\Delta_{1},\triangle_{3}}(c_{1}, c_{3})$. (9)
$c_{2}\in C(\triangle_{2})$

Therefore we can define an operator $\mathcal{P}$

$\mathcal{P}[\phi_{\triangle}](c)=\sum_{c’\in C(\triangle)}P_{\Delta,\triangle}(c, c’)\Lambda^{-n(\triangle)}\phi_{\triangle}(c’)$
,

which acts as a projection operator $(\mathcal{P}\cdot \mathcal{P}=\mathcal{P})$ on a space of functions on $C(\triangle)$ .
By using (9), we can rewrite (8) as

$Z_{M}= \sum_{c_{1},c_{2}}\mathcal{P}[Z_{M_{1},\Delta_{1}}](c_{1}’)\Lambda^{-n(\Delta_{1})}P_{\Delta_{1},\triangle_{2}}(c_{1}, c_{2})\Lambda^{-n(\triangle_{2})}\mathcal{P}[Z_{M_{2},\triangle_{2}}](c_{2}’)$
.

One sees that “states” propagating from $M_{1}$ to $M_{2}$ through $N$ are projected out by
$\mathcal{P}$ . Thus it is natural to define a physical Hilbert space $H(\triangle)$ for the triangulated

surface $\Sigma$ as a subspace projected out by $\mathcal{P}$ , i.e.

$\phi_{\Delta}(c)\in H(\triangle)$ $\Leftrightarrow$ $\phi_{\triangle}=\mathcal{P}[\phi_{\Delta}]$ (10)

Since $P_{\triangle,\triangle}$ is associated to the topology $\Sigma\cross[0,1]$ , we may regard it as a time

evolution operator in the lattice gravity. Therefore it should be appropriate to call
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the physical state condition (10) as a discretized version of the Wheeler-DeWitt

equation. We define an inner product in $H(\triangle)$ by

$(\phi_{\Delta}, \phi_{\Delta}’)=$ $\sum$ $\phi_{\triangle}(c)\Lambda^{-n(\triangle)}P_{\triangle,\triangle}(c, c’)\Lambda^{-n(\triangle)}\phi_{\triangle}’(c’)$ . (11)
$c,c’\in C(\triangle)$

It is easy to see that $Z_{M_{1},\Delta}(c)$ and $Z_{M_{2},\Delta}(c)$ are real solutions to the Wheeler-

DeWitt equation (10) and the partition function $Z_{M}$ is given by their inner product

$Z_{M}=(Z_{M_{1},\triangle}, Z_{M_{2},\triangle})$ . (12)

Although this definition of $H(\triangle)$ depends of the triangulation $\triangle$ of $\Sigma$ , there is

a natural isomorphism given by the map $P_{\triangle_{1},\triangle_{2}}$ between $H(\triangle_{1})$ and $H(\triangle_{2})$ for any

two triangulations $\triangle_{1},$ $\triangle_{2}$ . Due to the equation (9), the map $P_{\triangle_{1},\triangle_{2}}$ preserves the

inner product defined by (11). It also follows from (9) that the map $P_{\triangle_{1},\triangle_{2}}$ has an

inverse and it is given by $P_{\triangle_{2},\triangle_{1}}$ . Thus we may choose an arbitrary triangulation

in defining the physical Hilbert space for $\Sigma$ .

On the other hand, the physical Hilbert space $H_{CS}$ of the $ISO(3)$ Chern-

Simons theory consists of half-densities on the moduli space of a flat $SO(3)$ con-

nection on $\Sigma$ . To see this, we consider the topology $N=\Sigma\cross[0,1]$ again, and

decompose the dreibein $e^{a}$ and the spin-connection $\omega^{a}(a=1,2,3)$ as

$e^{a}= \sum_{i=1,2}e_{i}^{a}dx^{i}+e_{0}^{a}dt$
,

$\omega^{a}=\sum_{i=1,2}\omega_{i}^{a}dx^{i}+\omega_{0}^{a}dt$

$(x^{1}, x^{2})\in\Sigma,$ $t\in[0,1]$ .

Corresponding to this decomposition, the Chern-Simons action (7) takes the form,

$S_{CS}(e, \omega)=\int dtd^{2}x\epsilon^{ij}(e_{j}^{a}\partial_{t}\omega_{i}^{a}+e_{0}^{a}F_{ij}^{a}-\omega_{0}^{a}D_{i}e_{j}^{a})$ ,

where $D_{i}$ is a covariant derivative given by $\omega_{i}^{a}$ and $F_{ij}^{a}$ is its curvature. From

this expression, one sees that $(\omega_{i}, \epsilon^{ij}e_{j})$ are cannonically cojugate to each other,
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while $e_{0}$ and $\omega_{0}$ are Lagrange multipliers and impose constraints, $F_{ij}=0$ and

$D_{i}e_{j}-D_{j}e_{i}=0$ . Thus a wave-function of the theory can be represented by a

function $\Phi(\omega)$ of $\omega_{i}$ , a $SO(3)$ connection on $\Sigma$ . The constraint $F_{ij}=0$ implies that
$\Phi(\omega)$ should vanish unless $\omega$ is flat, and $\epsilon^{ij}D_{i}e_{j}\Phi(\omega)=iD_{i}\frac{\delta}{\delta\omega_{i}}\Phi(\omega)=0$ means

that $\Phi(\omega)$ is invariant under the gauge-transformation $\omega_{i}arrow\omega_{i}+D_{i}\lambda$ . The inner

product in $H_{CS}$ is given by the integral

$( \Phi_{1}, \Phi_{2})_{CS}=\int[d\omega]\delta(F_{ij})\Phi_{1}^{*}(\omega)\Phi_{2}(\omega)$ . (13)

Thusa physical wave-function isahalf-density on the moduli space ofaflat SO(3)

connection.

Now we would like to show that there is a natural isomorphism between
$H(\triangle)$ and $H_{CS}$ . To interpolate between the two Hilbert spaces, we introduce

the following (over-complete) basis for $H_{CS}$ constructed from Wilson-lines $U_{j}(x, y)$

$(x, y\in\Sigma,j=0,1,2, \ldots)$ ,

$U_{j}(x,y)=P \exp(\int_{x}^{y}\omega^{a}t_{j}^{a})$ ,

where $P\exp$ denotes the path-ordered exponential and $t_{j}^{a}(a=1,2,3)$ is the spin-j

generator of $SO(3)$ . Under a gauge transformation $\omegaarrow\Omega^{-1}\omega\Omega+\Omega^{-1}d\Omega$ , the

Wilson-line behaves as $U(x, y)arrow\Omega(x)^{-1}U(x, y)\Omega(y)$ . Now consider their tensor

product $\otimes_{i}U_{j;}(x_{i}, y_{i})$ . To make this gauge-invariant, we need to contract group
indices of $U_{j}’ s$ so that the gauge factor $\Omega$ cancels out. In the case of the group
$SO(3)$ , invariant tensors we can use to contract group indices are the Clebsch-

Gordan coefficient ($j_{1}j_{2}m_{1}m_{2}|j_{3}m_{3}$ } and the metric

$g_{mm^{J}}^{j}=(-1)^{j-m} \frac{1}{\sqrt{2j+1}}\delta_{m+m^{J},0}$

$g_{j}^{mm’}=(-1)^{j+m}\sqrt{2j+1}\delta_{m+m’,0}$ .
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Actually it is more convenient to use the cyclic-symmetric $3j$ -symbol given by

$(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})=\frac{(-1)^{j_{1}-j_{2}-m_{3}}}{\sqrt{2j_{3}+1}}\{j_{1}j_{2}m_{1}m_{2}|j_{3}-m_{3}\rangle$,

rather than the Clebsch-Gordan coefficient. We regard $m_{i}’ s$ in the $3j$ -symbol as

lower indices which can be raised by the metric $g_{j_{i}}^{m_{i}m_{\acute{i}}}$ . When three Wilson-lines

meet together at the same point on $\Sigma$ , we can use the $3j$ -symbol and the metric
$g_{mm}^{j}$ , to contract their group indices. We can also connect two Wilson-lines by the

metric if they carry the same spin. The gauge-invariant function constructed this

way corresponds to a colored trivalent graph $Y$ on $\Sigma$ , where a contour from $x$ to $y$

in $Y$ with color $j$ corresponds to a Wilson-line $U_{j}(x, y)$ , and a three-point vertex

in $Y$ represents the $3j- symbo1^{\star}$ Due to the cyclic symmetry of the $3j$ -symbol, to

each graph $Y$ on the orientable surface $\Sigma$ , we can associate such a gauge-invariant

function uniquely.

A physical wave-function of the Chern-Simons theory is obtained from such a

network of Wilson-lines by restricting the support of the function on flat SO(3)

connections. This restriction however gives rise to linear dependence among the

Wilson-line networks. Specifically, if two graphes $Y$ and $Y$‘ are homotopic, the

corresponding gauge-invariant functions have the same value on a flat connection.

Since there is one to one correspondence between a homotopy class of colored

trivalent graphes on $\Sigma$ and a triangulation of $\Sigma$ with coloring on their sides, we

may parametrize the gauge-invariant function by a colored triangulation defined

by a pair $(\triangle, c)(c\in C(\triangle))$ rather than a trivalent graph $Y$ . In this way, to

$\star$ There may be a pair of Wilson-lines intersecting with each other, which cannot be described
as a part of a trivalent graph as it is. In such a case, we may cut the Wilson-lines at the
intersecting point and use the orthonormality of the 3j-symbols,

$\delta_{m_{1},m_{1}’}\delta_{m_{2},m_{2}’}=\sum_{j_{3},m_{3}}(2j_{3}+1)(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array}) (\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})$

to replace the intersection by two vertices and an infinitesimal Wilson-line connecting the
vertices.
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each colored triangulation, we can associate a physical wave-function $\Psi_{\triangle,c}$ of the

Chern-Simons theory. An arbitrary wave-function $\Phi(\omega)$ is expanded in terms of

them as

$\Phi(\omega)=\sum_{\triangle}\sum_{c\in\triangle}\varphi_{\triangle}(c)\Lambda^{-n(\triangle)}\Psi_{\triangle,c}(\omega)$
. (14)

Now we are in a position to establish a correspondence between a solution to the

discretized Wheeler-DeWitt equation (10) and a physical state in the Chern-Simons

theory. To understand the correspondence, the following fact is most important.

When evaluated on a flat connection $\omega,$ $\Psi_{\Delta,c}(\omega)$ are not yet linearly independent,

but they obey the following relations,

$\Psi_{\triangle,c}(\omega)=$

$\sum_{\prime,c^{J}\in C(\triangle)}P_{\Delta,\triangle^{J}}(c, c’)\Lambda^{-n(\triangle^{J})}\Psi_{\Delta’,c’}(\omega)$
. (15)

Furthermore they are the only linear relations on $\Psi_{\Delta,c}$ .

Before proving (15), let us examine its consequences. By substituting (15) into

(14), we obtain

$\Phi(\omega)=\sum_{c\in C(\triangle)}\phi_{\triangle}(c)\Lambda^{-n(\triangle)}\Psi_{\triangle,c}(\omega)$
, (16)

where $\phi_{\triangle}(c)$ is defined by

$\phi_{\Delta}(c)=\sum$ $\sum$ $P_{\triangle,\Delta’}(C, C^{/})\Lambda^{-n(\triangle)_{\varphi_{\triangle}\prime}}(c^{/})$

’

$\Delta’$ c’EC(A’)

for an arbitrary fixed triangulation $\triangle$ of $\Sigma$ . It follows from (9) that $\phi_{\triangle}(c)$ solves

the Wheeler-DeWitt equation (10) of the lattice gravity.

$\phi_{\triangle}=\mathcal{P}[\phi_{\Delta}]$ .

Thus, to each solution $\phi_{\triangle}(c)$ of the Wheeler-DeWitt equation, there is a physical

state $\Phi(\omega)$ of the Chern-Simons theory given by (16). Since (15) are the only rela-

tions among $\Psi_{\triangle,c}’ s$ , this correspondence between $\phi_{\triangle}$ and $\Phi$ is one to one. In Section
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4, we will show that the inner product of Wilson-line networks $(\Psi_{\triangle_{1},c_{1}}, \Psi_{\triangle_{2},c_{2}})_{CS}$

in the Chern-Simons theory is equal to $P_{\triangle_{1},\triangle_{2}}(c_{1}, c_{2})$ for the lattice gravity, upto a

constant factor. Therefore the map from $H(\triangle)$ to $H_{CS}$ defined by (16) preserves

their inner products. Thus (16) gives the isomorphism between the physical Hilbert

spaces of the lattice gravity and the Chern-Simons theory.

$Now$ we would like to prove that the relations (15) indeed hold, and that they

are the only relations among $\Psi_{\triangle,c}’ s$ . We will show this by mathematical induction

with respect to the number of tetrahedra in $N=\Sigma\cross[0,1]$ . When the number is

zero, the triangulations $\triangle$ and $\triangle’$ must be identical and they are attached to each

other. In this case, (15) is an obvious identity. Now we are going to pile tetrahedra

one on another and increase the number of tetrahedra in $N$ . Since one tetrahedra

has four faces, there are three ways to attach one on another.

(i) Choose one of the faces of the tetrahedron and attach it to one of the triangles

on the surface $\Sigma$ of $N$ (Fig. 5).

(ii) Attach two faces of the tetrahedron to two neighbouring triangles on $\Sigma$ (Fig.

6).

(iii) Attach three faces of the tetrahedron to three neighbouring triangles on $\Sigma$

(figure obtained by inverting the arrows in Fig. 5).

Let us first check that the induction holds in the second move in the above list.

Consider a part of the Wilson-line network of $\Psi_{\triangle,c}$ which looks like the diagram in

the right hand side of Fig. 6. Because of the flatness of $\omega$ , we can take the Wilson-

line colored by $k$ and make its length to be arbitrary small without changing the

value of $\Psi_{\triangle,c}(\omega)$ . When its end-points meet with each other, the Wilson-line can

be replace by an identity. Since the group indices of the Wilson-line $U_{k}(x, y)$ at the

end-points $x$ and $y$ are contracted with the $3j$ -symbols, in the limit $xarrow y$ when

$U_{j}(x, y)$ becomes an identity, the function $\Psi_{\triangle,c}$ should contain a sum of product

of these $3j$ -symbols. Now there is a formula which relate two different ways of
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summing $3j$ -symbols,

$\sum_{mm’}g_{k}^{mm’}(\begin{array}{lll}j_{2} j_{3} km_{2} m_{3} m\end{array}) (\begin{array}{lll}j_{4} j_{1} km_{4} m_{l} m\end{array})$

$= \sum_{l}(-1)^{j_{1}+j_{2}+j_{3}+j_{4}}\sqrt{(2k+1)(2l+1)}\{\begin{array}{lll}j_{l} j_{2} lj_{3} j_{4} k\end{array}\}$ (17)

$\cross\sum_{nn’}g_{l}^{nn’}(\begin{array}{lll}j_{1} j_{2} lm_{l} m_{2} n\end{array}) (\begin{array}{lll}j_{3} j_{4} lm_{3} m_{4} n\end{array})$

The left hand side of this equation corresponds to the diagram in the left hand

side of Fig. 6. These four external Wilson-lines are recombined in the right hand

side; the Wilson-lines of $j_{1}$ and $j_{2}$ make a pair and they are connected to $j_{3}$ and
$j_{4}$ by an infinitesimal Wilson-line with color-l. This is exactly the right hand side

of Fig. 6. Therefore we obtain

$\Psi_{\triangle,c_{k}}=\sum_{l}(-1)^{j_{1}+j_{2}+j_{3}+j_{4}}\sqrt{(2k+1)(2l+1)}\{\begin{array}{lll}j_{1} j_{2} lj_{3} j_{4} k\end{array}\} \Psi_{\triangle,c\iota}\sim\sim$ , (18)

where the triangulation $(\triangle, c_{k})$ contains two triangles colored as in the left hand

side of Fig. 6, and it is replaced by the ones in the dual position in $(\triangle,c)-\sim_{l}$ .

To prove (15) inductively, suppose that we have used n-tetrahedra in construct-

ing the projection operator $P$ for the topology $N=\Sigma\cross[0,1]$ . When we add one

more tetrahedron to $N$ , as is prescribed in (ii), the corresponding projection op-

erator $P’$ is obtained from $P$ by multiplying to it an appropriate factor involving

the $6j$ -symbol, and by summing over coloring on the common side of two neigh-

bouring triangles to which the new tetrahedron is attached. This operator $P’$ is

obtained exactly by substituting (18) into the right hand side of (15). Therefore

the inductive proof of (15) holds when we add one tetradedron in the second move

in the list.

We can also add a tetrahedron as in (i) or (iii) in the list. If the network contains

a contractable loop with several external Wilson-lines attached, by repeatedly using
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the identity (17), the loop can be recombined into a tree-like diagram with a one-

loop tadpole. The tadpole can be made arbitrarily small, and the infinitesimal

tadpole can be removed by using

$\sum_{mm’}g_{j}^{mm’}(\begin{array}{lll}j j Jm m M\end{array})= \delta_{J,0}\delta_{M,0}$ .

For example, if the network defined by $(\triangle, c)$ contains a loop with three external

lines $j_{1},$ $j_{2}$ and $j_{3}$ as in the right hand side of Fig. 5, we man shrink the loop to

obtain another network $(\triangle’, c^{/})$ where the three lines meet at one point. By using

the formula,

$\sum_{n_{ij}}g_{l_{12}}^{n_{12}n_{12}’}g_{l_{23}}^{n_{23}n_{23}’}g_{l_{31}}^{n_{31}n_{31}’}(\begin{array}{lll}l_{l2} j_{2} l_{23}n_{l2} m_{2} n_{23}\end{array}) (\begin{array}{lll}l_{23} j_{3} l_{31}n_{23} m_{3} n_{31}\end{array})(\begin{array}{lll}l_{31} j_{1} l_{12}n_{31} m_{1} n_{12}\end{array})$

$=(-1)^{j_{1}+j_{2}+j_{3}}\sqrt{(2l_{12}+1)(2l_{23}+1)(2l_{31}+1)}$

$\cross\{\begin{array}{lll}j_{1} j_{2} j_{3}l_{23} l_{3l} l_{12}\end{array}\}(\begin{array}{lll}j_{1} j_{2} j_{3}m_{l} m_{2} m_{3}\end{array})$ ,

we can relate the corresponding functions $\Psi_{\triangle,c}$ and $\Psi_{\triangle^{J},c’}$ as

$\Psi_{\triangle,c}=(-1)^{j_{1}+j_{2}+j_{3}}\sqrt{(2l_{12}+1)(2l_{23}+1)(2l_{31}+1)}\{\begin{array}{lll}j_{1} j_{2} j_{3}l_{23} l_{31} l_{12}\end{array}\}\Psi_{\Delta^{J},c’},$ (19)

where $l_{ij}$ is the color of the segment of the loop in $(\triangle, c)$ connecting $j_{i}$ and $j_{j}$ . This

corresponds to (iii) in the list, and the inductive proof holds in this move. The

induction for the move (i) is also guaranteed by the same equation (19).

In this way, we have proved that the identities (15) holds fom arbitrary pair of
$\triangle$ and $\triangle’$ . Using a variation of the analysis in Appendix $D$ of [11], one can show

that all other relations among $\Psi_{\triangle,c}$ on a flat connection $\omega$ are generated from (18)

and (19). Therefore (15) are the only relations among $\Psi_{\triangle,c}’ s$ .
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3 THE $HARTLE- HAWKING$-TYPE $WAVE- FUNCTION$

In the previous section, we defined the isomorphism between the physical

Hilbert spaces of the lattice gravity and the Chern-Simons theory. In this sec-

tion, we will show that this isomorphism indeed identifies wave-functions associ-

ated to the same geometry of the three-dimensional manifold. The geometry we

consider here is a handlebody $M$ . To describe $M$ , we embed a closed orientable

two-dimensional surface $\Sigma$ into $R^{3}$ . The handlebody $M$ is taken as the interior of
$\Sigma$ . Associated to such a geometry, we can construct physical states in both the

lattice gravity and the Chern-Simons theory.

In the Chern-Simons theory, the physical wave-function $\Phi_{M}$ for $M$ is defined

as

$\Phi_{M}(\omega_{|\Sigma})\delta(F_{ij|\Sigma})$
$= \int_{\omega_{|\Sigma}:fixed}$

[de, $d\omega$] $\exp(i\int_{M}e\wedge(d\omega+\omega\wedge\omega))$ , (20)

where we perform the functional integral over $e$ and $\omega$ in the interior of $M$ with

a fixed boundary condition of $\omega$ on $\partial M=\Sigma$ . The integration over $e_{|\Sigma}$ gives rise

to $\delta(F_{ij|\Sigma})$ which is explicitly written in the left hand side of (20). This ensures

that the functional integral in the right hand side gives a physical state of the

Chern-Simons theory. Such a wave-function may be regarded as a generalization

of the Hartle-Hawking wave-function (The original wave-function of Hartle and

Hawking [12] corresponds to the case when $\Sigma$ is $S^{2}$ and the handlebody $M$ is a

three-dimensional ball.). The wave-function for the lattice gravity is defined in a

similar fashion by fixing a triangulation $\triangle$ and its coloring $c$ of $\Sigma$ , and by summing

over all possible coloring in the interior of $M$ . This is nothing but $Z_{M,\triangle}(c)$ we have

introduced in Section 2.

In the previous section, we have found that, to each physical state $\phi_{\triangle}(c)$ of the

lattice gravity, there is a corresponding state in the Chern-Simons theory defined

by (16). Therefore it is natural to expect that the wave-functions $\Phi_{M}(\omega_{|\Sigma})$ and
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$Z_{\Delta,M}(c)$ associated to the same handlebody $M$ are related as

$\Phi_{M}(\omega_{|\Sigma})=A_{g}\sum_{c\in C(\Delta)}Z_{M,\triangle}(c)\Lambda^{-n(\triangle)}\Psi_{\triangle,c}(\omega_{|\Sigma})$
, (21)

when $\omega_{|\Sigma}$ is a flat connection. Here $A_{g}$ is a constant depending only on the genus

of the handlebody $M$ . This indeed is the case as we shall see below.

As was shown by Witten in the case of the Lorentzian Einstein gravity [13],

there is a fairly explicity expression for the Hartle-Hawking-type wave-function
$\Phi_{M}(\omega_{|\Sigma})$ . As well as the constraint $F_{ij|\Sigma}=0$ written explicitly in (20), the in-

tegration over $e$ in (20) imposes that $\Phi_{M}$ should vanish unless $\omega_{|\Sigma}$ have a flat

extension $\omega$ interior of the handlebody $M$ . This condition can be rephrased as

follows. If the boundary $\Sigma$ of $M$ is of genus $g$ , it has $2g$ homology cycles. Among

these, there are $g$ cycles which are contractable in $M$ while other $g$ cycles are not.

The necessary and sufficient condition for $\omega_{|\Sigma}$ to have a flat extension in $M$ is

that its holonomies $U_{(a)}(a=1, \ldots,g)$ around these contractable cycles are trivial.

Therefore

$\Phi_{M}(\omega_{|\Sigma})=A_{g}’\prod_{a=1}^{g}\delta(U_{(a)}-1)$ , (22)

where $A_{g}^{/}$ is a constant independent of $\omega_{|\Sigma}$ , and $\delta(U-1)$ is a $\delta$-function with respect

to the Haar measure of $SO(3)$ . Thus in order to prove the identity (21), we need to

show that the sum over coloring in the right hand side of the equation imposes the

constraint $U_{(a)}=1$ on $\omega_{|\Sigma}$ . In the following we will show that, by recombining the

Wilson-lines, the sum in the right hand side of (21) reduces to sums over colorings

of the contractable cycles as

$\sum_{c\in C(\triangle)}Z_{M,\triangle}(c)\Lambda^{-n(\triangle)}\Psi_{\triangle,c}(\omega_{|\Sigma})=\prod_{a=1}^{g}[\sum_{j=0}^{\infty}(2j+1)Tr(U_{(a)}j)]$ (23)

The orthonormality and the completeness of the irreducible $SO(3)$ characters [14]

imply that the right hand side of this equation gives the product of the $\delta$-functions

as in (22).
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Now we would like to prove the equation (23). Suppose we have used n-

tetrahedra in computing the wave-function $Z_{\triangle,M}(c)$ for the handlebody $M$ . The

tetrahedra must have been placed in such a way that the boundary $\Sigma$ of $M$ is tri-

angulated as $(\triangle, c)$ . Let us choose one of the tetrahedra attached on the boundary

surface. Since $\omega_{|\Sigma}$ is flat, we can use (15) to remove this tetrahedron, i.e.

$\sum_{c\in C(\triangle)}Z_{M,\triangle}(c)\Lambda^{-n(\triangle)}\Psi_{\Delta,c}(\omega_{|\Sigma})=$ $\sum_{\prime,c’\in C(\triangle)}Z_{M,\triangle^{J}}(c)\Lambda^{-n(\Delta’)_{\Psi_{\triangle c’}(\omega_{|\Sigma})}}’,$
,

where $\triangle$ is the original triangulation of $\Sigma$ in (23), and $\triangle’$ is the one which is

obtained by removing the tetrahedron attached on $\Sigma$ . In computing $Z_{M,\triangle}’(c)$ ,

the number of tetrahedra we use is $(n-1)$ . By repeating this procedure, we can

eliminate all the tetrahedra in $M$ .

To visualize this process, it is useful to imagine the handlebody $M$ as a balloon

whose surface is of genus $g$ . $For\prime example$ , when $\Sigma$ is a torus, we consider a tube

of a tire. Removing the tetrahedra is then like reducing the air from the balloon.

After gradually decreasing its volume, the balloon will eventually be flattened. To

describe the flattened balloon, we note that the surface $\Sigma$ can be constructed from

two discs with $g$ holes, $S_{g}^{+}$ and $S_{g^{-}}$ , by gluing their boundaries together as shown in

Fig. 7. We call $S_{g}^{+}$ and $S_{g}^{-}$ as upper and lower parts of $\Sigma$ . The boundaries of the

$g$ holes in $S_{g}^{\pm}$ correspond to the homology cycles on $\Sigma$ which are not contractable

in $M$ . In the limit when the balloon is flattened, the upper and the lower parts of
$\Sigma$ overlap one on another. Reflecting the original tetrahedral decomposition of $M$ ,
$S_{g}^{\pm}$ are covered by triangles. It is not difficult to see that the triangulations of $S_{g}^{+}$

and $S_{g}^{-}$ must be identical and that they must have the same coloring. Namely the

Wilson-line network in the upper part of $\Sigma$ is the mirror image of the one in the

lower part as shown in Fig. 8.

Let us perform the sum over colorings of the Wilson-lines across the boundaries
of $S_{g}^{+}$ and $S_{g}^{-}$ (for example the Wilson-line $j_{3}$ in Fig. 8). As we did in the previous

section, we may take the lengths of these Wilson-lines arbitrarily small and replace
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them by 1. Because of the reflection symmetry of the Wilson-lines, we may use

the orthonormality of the $3j$ -symbols

$\sum_{j_{3},m_{3},m_{3}’}(-1)^{j_{3}}\sqrt{2j_{3}+1}g_{j_{3}}^{m_{3}m_{3}’}(\begin{array}{lll}j_{1} j_{2} j_{3}m_{l} m_{2} m_{3}\end{array}) (\begin{array}{lll}j_{3} j_{2} j_{1}m_{3} m_{2} m_{1}\end{array})$

(24)

$=(-1)^{j_{1}+j_{2}}\sqrt{(2j_{1}+1)(2j_{2}+1)}g_{m_{1}m_{1}’}^{j_{1}}g_{m_{2}m_{2}’}^{j_{2}}$

to emilinate the trivalent vertices at the end-points of the Wilson-lines (as shown

in Fig. 9). Repeating this procedure, we can remove the vertices on $\Sigma$ one by one.

To understand how the resulting Wilson-line network looks like, let us examine

the case when $\Sigma$ is a torus, in detail. In this case, its upper and lower parts are

topologically the same as annuli, and each of them can be decomposed into two

triangles as shown in Fig. 10. Corresponding to this triangulations, there are

six Wilson-lines on $\Sigma$ which are connected by four vertices (Fig. lla). We can

choose one of the Wilson-lines, say $j_{2}$ in Fig. lla, and remove a pair of vertices

at its end-points by using (24). As the result, we obtain a diagram as shown in

Fig. llb. Because of the flatness of $\omega_{|\Sigma}$ , we can move around the Wilson-line $j_{1}$

homotopically, and the network in Fig. llb can be brought into the one in Fig.

llc. Now the Wilson-loop consisting of $j_{1}$ and $js$ is contractable on $\Sigma$ , and we

end up in Fig. lld. In this way, the Wilson-line network on the torus is deformed

into a single Wilson-loop around its homology cycle contractable in $M$ , as shown

in Fig. lle. Taking into account the weight $Z_{M,\Delta}(c)$ , we have checked that the

resulting summation over $j_{4}$ reproduces the right hand side of (23) for $g=1$ .

For $g\geq 2$ , we can, for example, choose a triangulation of $S_{g}^{\pm}$ as in Fig. $12a$ .
The corresponding Wilson-line network is shown in Fig. $12b$ . As in the case of the

torus described in the above, one can follow the deformation of the network and

show that $\sum_{c}Z_{M,\triangle}(c)\Psi_{\triangle,c}$ for this triangulation $\triangle$ reduces to the right hand side

of (23). This proves the identity (21), and we found the factor $A_{g}$ is equal to $A_{g}^{/}$

which is related to the normalization of the path integral (20).
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4 PARTITION FUNCTIONS AND TOPOLOGY-CHANGING AMPLITUDES

We have found that the Hartle-Hawking-type wave-functions in the lattice

gravity and the Chern-Simons theory are related by the isomorphism (14) between

the physical Hilbert spaces of the two theories. In this section, we will exploit this

result to show that, for any closed orientable manifold $M$ , the partition functions of

the two theories agree with each other. The idea is to use the Heegard splitting of

$M[15]$ . Consider two handlebodies $M_{1}$ and $M_{2}$ whose boundaries are of the same

topology $\Sigma$ . Since $M_{1}$ and $M_{2}$ differ only by the markings of the homology cycles

on their boundaries, we can glue the boundaries together by their diffeomorphism

and obtain a closed three-dimensional manifold. Moreover it is known that any

closed manifold can be realized in this way. In this construction, the topology of
$M$ is encoded into the topology of $\partial M_{1}$ and $\partial M_{2}$ and how they are glued together.

Corresponding to this splitting of $M$ , the partition function of the Chern-

Simons theory is expressed as an inner product of the Hartle-Hawking-type wave

functions $\Phi_{M_{1}}$ and $\Phi_{M_{2}}$ ,

$Z_{M}^{(CS)}=(\Phi_{M_{1}}, \Phi_{M_{2}})_{CS}$ , (25)

as far as $M$ is orientable. This formula is derived from the functional integral

expression for $Z_{M}^{(CS)}$ ; the functional integrals over $M_{1}$ and $M_{2}$ result in the Hartle-

Hawking-type wave-functions $\Phi_{M_{1}}$ and $\Phi_{M_{2}}$ , and the functional integral on the

boundary $\partial M_{1}\simeq\partial M_{2}$ corresponds to taking their inner product. On the other

hand, the partition function for the lattice gravity has also the expression

$Z_{M}=(Z_{M_{1)}\triangle}, Z_{M_{2},\Delta})$ , (26)

as we saw in Section 2. Since the Hartle-Hawking-type wave-functions in the

Chern-Simons the$0$ry and the lattice gravity are related by (21), $Z_{M}^{(CS)}$ and $Z_{M}$

are the same provided the isomorphism (14) preserves the inner products in the

two Hilbert spaces, $H_{CS}$ and $H(\triangle)$ . Thus, in order to establish the equivalence
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$Z_{M}^{(CS)}=Z_{M}$ , we want to show

$(\Psi_{\triangle_{1},c_{1}}, \Psi_{\triangle_{2},c_{2}})_{CS}=A_{g}^{2}\cdot P_{\triangle_{1},\Delta_{2}}(c_{1}, c_{2})$ (27)

or equivalently

$c_{2}^{1}\in C(\Delta_{2})\sum_{c\in C(\Delta_{1})}\Psi_{\triangle_{1},c_{1}}(\omega_{1})\Lambda^{-n(\triangle_{1})}P_{\triangle_{1},\triangle_{2}}(c_{1}, c_{2})A^{-n(\triangle_{2})}\Psi_{\triangle_{2},c_{2}}(\omega_{2})$

(28)
$=A_{g}^{-2}\cdot K(\omega_{1},\omega_{2})$ ,

where $K(\omega_{1}, \omega_{2})$ is a kernel for the inner product

$( \Phi, \Phi’)_{CS}=\int[d\omega_{1}\}\delta(F_{1,ij})\int[d\omega_{2}]\delta(F_{2,ij})\Phi(\omega_{1})K(\omega_{1},\omega_{2})\Phi(\omega_{2})$,

and it is given in term of the functional integral

$K( \omega_{1},\omega_{2})\delta(F_{1,ij})\delta(F_{2,ij})=\int_{\omega(t_{=}0)=\omega}$
[de, $d\omega$ ] $\exp(iS_{CS}(e,\omega))$ (29)

for the topology $N=\Sigma\cross[0,1]$ .

Now we are going to show that the left hand side of (28) is proportional to the

right hand side. The factor $A_{g}^{-2}$ will be fixed later. Since $\Psi_{\triangle:,c_{i}}$ is evaluated on a

flat connection $\omega_{i}$ , we may use (15) to rewrite the left hand side of (28) as

$\sum$ $A^{-n(\Delta)}\Psi_{\triangle,c}(\omega_{1})\Psi_{\Delta,c}(\omega_{2})$ . (30)
$c\in C(\Delta)$

On the other hand, it follows from the functional integral expression (29) that

the kernel $K(\omega_{1},\omega_{2})$ vanishes unless $\omega_{1}$ and $\omega_{2}$ has a flat extension in $N$ . For
$N=\Sigma\cross[0,1]$ , the flat extension exists if and only if $\omega_{1}$ and $\omega_{2}$ are gauge-equivalent.

Thus we need to show that the sum over coloring in (30) imposes the the constraint,
$\omega_{1}\simeq\omega_{2}$
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Let us study the case when $\Sigma$ is a torus, in detail. In this case, the surface $\Sigma$

can be decomposed into two triangles as shown in Fig. $13a$ . The corresponding

network of Wilson-lines is shown in Fig. $13b$ . A flat connection $\omega$ on the torus can

be specified by holonomies $U$ and $V$ around the two homology cycles on $\Sigma$ . The

wave-function $\Psi_{\triangle,c}$ for the network can then be regarded as a function of $U$ and $V$ .

In the network in Fig. $13b$ , the Wilson-line $j_{3}$ can be made arbitrarily short using

the flatness of $\omega$ and be replaced by an identity. In this case, the wave-function
$\Psi_{\Delta,c}$ is expressed as a function of $U$ and $V$ as

$\Psi_{\triangle;c}(U, V)=\sum_{m_{i},m_{\dot{t}}’,m^{\prime.\prime}}U_{j_{1}m_{1}^{1,}}^{m}V_{j_{2}m_{2}^{2,}}^{m}$

$\cross g_{j_{1}}^{m_{1}’m_{1}’’}g_{j_{2}}^{m_{2}’m_{2}’’}g_{j_{3}}^{m_{3}m_{3}’’}(\begin{array}{lll}j_{1} j_{2} j_{3}m_{l} m_{2} m_{3}\end{array})(\begin{array}{lll}j_{l} j_{2} j_{3}m_{1^{/}} m_{2^{/}} m_{3^{/}}\end{array})$ .
(31)

Here we marked the homology cycles on $\Sigma$ in such a way that the Wilson-lines
$j_{1}$ and $j_{2}$ wind around cycles corresponding to the holonomies $U$ and $V$ . The

holonomies $U$ and $V$ commute with each other, so they can be diagonalized si-

multaneously. Since the wave-function $\Psi_{\triangle,c}$ is invariant under the simultaneous

conjugation, $Uarrow\Omega^{-1}U\Omega,$ $Varrow\Omega^{-1}V\Omega$ , we can substitute diagonal matrices
$U_{jm}^{m},$ $=e^{im\theta}\delta_{m}^{m}$ , and $V_{jm}^{m},$

$=e^{im\varphi}\delta_{m}^{m},$ . into $U$ and $V$ in (31).

Now we would like to perform the summation,

$\sum_{j_{1},j_{2},j_{3}}\Lambda^{-1}\Psi_{\Delta,c}(\theta_{1}, \varphi_{1})\Psi_{\triangle,c}(\theta_{2}, \varphi_{2})$
, (32)

where $(\theta_{1}, \varphi_{1})$ and $(\theta_{2}, \varphi_{2})$ are phases of the holonomies $(U_{1}, V_{1})$ and $(U_{2}, V_{2})$ for
$\omega_{1}$ and $\omega_{2}$ . Although it is possible to do the summation for generic values of the

phases, it is more instructive to study the cases when two among the four phases

vanish. Actually it is enough to study these cases as we shall see below.

Let us consider the case when $V_{1}=V_{2}=1$ . In this case, the wave-function
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$\Psi_{\triangle,c}(U_{i}, V_{i})$ is simplified as

$\Psi_{\triangle,c}(U_{i}, V_{i}=1)=\sqrt{\frac{(2j_{1}+1)(2j_{2}+1)(2j_{3}+1)}{2j_{1}+1}}Tr(U_{ij_{1}})$ .

The summation (32) is then performed as

$\sum_{j_{1},j_{2},j_{3}}\Psi_{\triangle,c}(U_{1}, V_{1}=1)\Psi_{\triangle,c}(U_{2}, V_{2}=1)$

$= \sum_{j_{1}}Tr(U_{1j_{1}})Tr(U_{2j_{1}})\cdot\Lambda^{-1}\cdot\frac{1}{2j_{1}+1}\sum_{|j_{2}-j_{3}|\leq j_{1}\leq j_{2}+j_{3}}(2j_{2}+1)(2j_{3}+1)$

$= \sum_{j_{1}}Tx(U_{1j_{1}})Tx(U_{2j_{1}})=\delta(U_{1}-U_{2})$
.

Here we have used the definition (5) of $\Lambda$ and the orthonormality of the irreducible

characters $Tr(U_{j_{1}})$ . Thus the sum over the coloring in the left hand side of (28)

indeed imposes the constraint $U_{1}=U_{2}$ when $V_{1}=V_{2}$ . It is straightforward to do

the computations in other cases when $U_{2}=V_{2}=1$ or $V_{1}=U_{2}=1$ , and we have

found that the sum in (32) imposes $U_{1}=U_{2}$ and $V_{1}=V_{2}$ in both of these cases.

We have seen that the left hand side of (28) is proportional to $K(\omega_{1},\omega_{2})$ as

far as two among the four phases are equal to zero. Let us relax this condition

and suppose that they are not necessarily zero, but their rati$os\theta_{i}/\varphi t(i=1,2)$ are

rational numbers. Since (32) is invariant under the modular transformation of $\Sigma$ ,

we can change the basis of the homology cycles in such a way that two among the

four phases around the cycles become equal to zero. The summation in (32) then

reduces to the computation in the above and we see that the constraints $\omega_{1}\simeq\omega_{2}$

arises upon the summation. In general, when the ratios are not necessarily rational,

we can find a series of rational numbers which converges to $\theta_{i}/\varphi_{i}$ . At each step in

the series, the sum over the coloring in (32) gives the constraints $\omega_{1}\simeq\omega_{2}$ . Thus it

should also be the case in the limit of the series.

This result is extended to surfaces of higher genera as follows. A genus-g

surface $\Sigma$ can be constructed from a $4g$-sided polygon by gluing its sides together
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as is indicated in Fig. 14. Correspondingly the surface is decomposed into $4g$

triangles. As in the case of the torus, we can parametrize the flat connection $\omega$ on
$\Sigma$ by its holonomies $U_{(a)},$ $V_{(a)}(a=1, \ldots,g)$ around the homology cycles $\alpha_{a}$ and $\beta_{a}$

as marked in Fig. 14. These holonomies are subject to the constraint,

$U_{(1)}V_{(1)}U_{(1)}^{-1}V_{(1)}^{-1}\cdots U_{(g\}}V_{(g)}U_{(g)}^{-1}V_{(g)}^{-1}=1$ (33)

In this case, the wave-function $\Psi_{\triangle,c}(\omega)$ is a product of $U_{(a)}’ s$ and $V_{(a)}’ s$ connected

by the $3j$ -symbols. Especially it depends on $U_{(1)}$ as

$\Psi_{\triangle,c}(\omega)=\sum_{m_{i},m_{i}’,m’’}U_{(1)j_{1}m_{1}’}^{m_{1}}W^{m_{3}m_{4}}$

$\cross g_{j_{1}}^{m_{1}’m_{1}’’}g_{j_{2}}^{m_{2}’m_{2}’’}(\begin{array}{lll}j_{1} j_{2} j_{3}m_{1} m_{2} m_{3}\end{array})(\begin{array}{lll}j_{l} j_{2} j_{4}m_{1^{/}} m_{2} m_{4}\end{array})$ ,

where $W^{m_{3}m_{4}}$ is independent of $U_{(1)}$ . The sum of $\Psi_{\Delta,c}(\omega_{1})\Psi_{\triangle,c}(\omega_{2})$ over $j_{1}$ and
$j_{2}$ then imposes the constraint $U_{(1)1}=U_{(1)2}$ as in the case of the torus. The rest

of the summation can be done inductively, and we obtain the constraint $\omega_{1}\simeq\omega_{2}$ .

We have found that the left hand side of (28) is equal to $K(\omega_{1},\omega_{2})$ upto a

constant factor $B_{g}$

$c_{2}^{1} \in C(\Delta^{1})\sum_{c\in C(\Delta_{2})}\Psi_{\Delta_{1},c_{1}}(\omega_{1})\Lambda^{-n(\triangle_{1})}P_{\triangle_{1},\Delta_{2}}(c_{1}, c_{2})\Lambda^{-n(\Delta_{2})}\Psi_{\triangle_{2},c_{2}}(\omega_{2})$

$=B_{g}\cdot K(\omega_{1},\omega_{2})$ .

Equivalently

$(\Psi_{\triangle_{1},c_{1}}, \Psi_{\Delta_{2},c_{2}})_{CS}=B_{g}^{-1}\cdot P_{\triangle_{1)}\triangle_{2}}(c_{1}, c_{2})$ .

By combining this with (21) and by using the expressions (25) and (26), we obtain

$Z_{M}^{(CS)}=A_{g}^{2}B_{g}^{-1}Z_{M}$ . (34)

Now we would like to show that $B_{g}$ is equal to $A_{g}^{2}$ . Since $A_{g}$ comes from the

normalization of the functional integral (20), we must specify it in order to relate
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$B_{g}$ to $A_{g}$ . Here we define the normalization in such a way that the Chern-Simons

partition function for $S^{3}$ is equal to 1. To show $A_{g}^{2}B_{g^{-1}}=1$ , we note that $S^{3}$ can

be constructed from two handlebodies of any genus $g$ . Let us take a closed surface
$\Sigma$ of genus $g$ and embed it into $S^{3}$ . It is easy to see that both the interior and the

exterior of $\Sigma$ are handlebodies of genus $g$ . In this setting, the left hand side of (34)

is equal to 1 due to the normalization convention of $Z_{M}^{(CS)}$ . On the other hand, it

follows from the definition of the lattice gravity that $Z_{M}$ for $M=S^{3}$ is also 1. In

this way, we have shown $A_{g}^{2}B_{g^{-1}}=1$ for any value $g$ . This proves the equality of

the partition functions of the lattice gravity and the Chern-Simons theory.

Actually, there is a cavear here. In the above, we have assumed that the integral

(25) and the sum (26) are convergent. This is not always the case. For example,

when $M$ is of the topology $\Sigma\cross S^{1}$ , the partition function $Z_{M}$ of the lattice gravity

is given by a trace over physical states

$\sum\Lambda^{-n(\triangle)}P_{\triangle,\triangle}(c, c)$,
$c\in C(\Delta)$

where $\triangle$ is a triangulation of $\Sigma$ . Namely the partition function $Z_{M}$ counts the

number of physical states for $\Sigma$ which is infinite if $g\geq 1$ . In this case, the partition

function $Z_{M}^{(CS)}$ for the Chern-Simons theory also diverges as was pointed out by

Witten [13]. There he has shown that the divergence occurs when $earrow\infty$ , namely

when the size of $M$ is large, and thus it is infrared in nature.

So far, we have considered the case of a closed three-dimensional manifold $M$ .
It is also possible to consider a manifold with boundaries and discuss transition

amplitudes between initial and final states.

We have already studied some of such processes in this paper. For example,
$P_{\triangle_{1},\triangle_{2}}(c_{1}, c_{2})$ corresponds to the geometry $N\simeq\Sigma\cross[0,1]$ for a transition of $\Sigma$

into $\Sigma$ . The Hartle-Hawking-type wave-function $Z_{\Delta,M}(c)$ can also be viewed as

describing a transition of a point into a closed surface $\Sigma$ (or a creation of $\Sigma$ from

nothing). In both of these cases, we have found that the amplitudes of the lattice
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gravity and the Chern-Simons theory are related by the isomorphis defined in

Section 2.

We can extend this analysis and study more elaborated transition processes

involving a topology-change of $\Sigma$ . In [13], Witten has examined the following

situation in the case of the Chern-Simons theory. Consider $\Sigma_{initial}$ consisting of

two components $\Sigma_{1}$ and $\Sigma_{2}$ of respective genus $g_{1}$ and $g_{2}$ . One can construct a

manifold $M$ which interpolates $\Sigma_{initial}$ to another surface $\Sigma_{f^{inal}}$ of genus $g=g_{1}+g_{2}$

consisting of a single component, as follows. We first embed $\Sigma_{final}$ into $R^{3}$ to

obtain a handlebody $M_{0}$ of genus $g$ . We then remove from $M_{0}$ handlebodies of

genus $g_{1}$ and $g_{2}$ whose boundaries are $\Sigma_{1}$ and $\Sigma_{2}$ . The remaining protion of $M_{0}$

gives the manifold $M$ whose boundaries are $\Sigma_{1},$ $\Sigma_{2}$ and $\Sigma$

final $\cdot$ A wave-function for

the initial surface $\Sigma_{initial}$ is spanned by products of functions $\Phi_{\Sigma_{1}}$ and $\Phi_{\Sigma_{2}}$ of flat

connections on $\Sigma_{1}$ and $\Sigma_{2}$ . The transition amplitude for $M$ then relates $\Phi_{\Sigma_{1}}\Phi\Sigma_{2}$

to $\Phi_{\Sigma_{final}}$ for the final surface. It is shown in [13] that the relation is as follows.

$\Phi_{\Sigma_{fna1}}:\sim\delta(A-1)\Phi_{\Sigma_{1}}\Phi_{\Sigma_{2}}$ . (35)

Here $A$ is an element of $SO(3)$ given in terms of holonomies $U_{(a)}$ and $V_{(a)}(a=$

$1,$ $..,g$ ) on $\Sigma final$ as

$A=U_{(1)}V_{(1)}U_{(1)}^{-1}V_{(1)}^{-1}\cdots U_{(g_{1})}V_{(g_{1})}U_{(g_{1})}^{-1}V_{(g_{1})}^{-1}$ ,

and the holonomies $U_{(1)},$
$\ldots,$

$U_{(g_{1})}$ and $V_{(1)},$
$\ldots,$

$V_{(g_{1})}$ correspond to the homology

cycles on $\Sigma final$ which are homotopically equivalent to the cycles on $\Sigma_{1}$ through

the manifold $M$ .

For the lattice gravity, the transition amplitude $Z_{\triangle_{1},\triangle_{2};\Delta_{final}}(c_{1}, c_{2};c_{final})$ for
$M$ is given by summing over coloring of tetrahedra interior of $M$ while keeping

fixed the colorings $c_{1},$ $c_{2}$ and $c_{final}$ on $\Sigma_{1},$ $\Sigma_{2}$ and $\Sigma_{final}$ . To see its relation to the

transition amplitude (35) in the Chern-Simons theory, we multiply the Wilson-line
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networks to $z_{\triangle_{1},\triangle_{2};\triangle_{J^{inal}}}$ and sum over the colorings as

$\sum_{c_{1}\in C(\Delta_{1}),c_{2}\in C(\Delta_{2})}Z_{\triangle_{1},\triangle_{2};\triangle_{final}}(c_{1}, c_{2}; c_{final})$

$c_{final\in C(\Delta_{final})}$

$\cross\Lambda^{-n(\triangle_{1})}\Psi_{\Delta_{1},c_{1}}\Lambda^{-n(\triangle_{2})}\Psi_{\triangle_{2},c_{2}}\Lambda^{-n(\triangle_{J^{ina}}\iota)}\Psi_{\triangle_{fianl},c_{fina1}}$ .

The computation is essentiall the same as we did in (28), and the result agrees
with (35). Thus the transition ampltudes of this type are also equivalent in the

two theories.

5 DISCUSSIONS

We have found that the partition functions and some topology-changing am-

plitudes of the lattice gravity of Ponzano and Reggeare equal to the ones of the

$ISO(3)$ Chern-Simons theory. This result supports the original conjecture by Pon-

zano and Regge that the statistical sum of the $6j$ -symbols describes the fluctuating

geometry with the weight $\prod_{x\in M}\cos(\sqrt{g}R)$ . Indeed, if we integrate over $\omega$ first in

the Chern-Simons functional integral, we are left with an integral over the dreibein
$e$ with a weight $\exp(\int e\wedge R)$ where $R$ is a curvature two-form constructed from $e$ .

Although we seem to have gotten $\exp$ rather than $cos$ , we should note that $\int e\wedge R$

changes its sign if we flip the orientation of $e$ . Since we integrate over $e$ as a part

of the $ISO(3)$ gauge field, at each point in $M$ , both orientations of $e$ contribute to

the functional integral. If one tries to integrate over $e$ of a fixed orientation, one

would need to replace the exponential by the cosine to compensate for the restric-

tion. Therefore it appears that the lattice gravity of Ponzano and Regge gives a

functional integral of $\prod_{x\in M}\cos(\sqrt{g}R)$ with the correct measure for the fluctuating

metric on $M$ .

To regard this system as the Euclidean Einstein gravity, the factor $i$ in front

of the action is disturbing. One cannot eliminate it by rotating the contour of the

e-integral since the resulting functional integral would be divergent. To address

this issue, it would be more fruitful to study a Lorentzian version of the lattice
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model based on the infinite dimensional representations of $SO(2,1)$ . Since the

representation theory of $SO(2,1)$ is far richer than that of $SO(3)$ , we must have

good criteria in choosing a class of representations we put of the edges of the

tetrahedron. One of the criteria would be that a sum of characters over such

representations should give the invariant $\delta$-function $\delta(U-1)$ , in order for the

lattice model to have the same partition function as in the Lorentzian Chern-

Simons gravity. Such study will be useful in understanding the structure of physical

observables in the Lorentzian gravity.

Recently Mizoguchi and Tada [16] have studied the q-analogue of the $6j$-symbol

and found the asymptotic formula for $q=e^{2\pi i/(k+2)}$

$(-1)^{\Sigma.j_{i}} \{\begin{array}{lll}j_{1} j_{2} j_{3}j_{4} j_{5} j_{6}\end{array}\}\sim\frac{c}{\sqrt{V}}\cos(S_{Regge}-\frac{\lambda_{k}}{2}V+\pi./4)$ ,

where $c$ is some constant and $\lambda_{k}=(4\pi/k)^{2}$ . Thus it is natural to expect that

the q-analogue of the Ponzano and Regge model introduced by Turaev and Viro

would be related to the gravity with the cosmological constant $\lambda_{k}$ or the $SO(3)\cross$

$SO(3)$ Chern-Simons theory. The recent paper by Turaev [9] supports the latter
possibility.

Durhuus, Jakobsen and Ryszard [17] have constructed a large class of topologi-
cal lattice $mo$dels extending the model of Turaev and Viro. The method developed

in this paper could also be applicable to study those models.
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FIGURE CAPTIONS

1. A tetrahedron colored by angular momenta $j_{i}’ s$ .

2. One tetrahedron can be decomposed into four small tetradedra.

3. A manifold M is decomposed into three parts, $M_{1},$ $M_{2}$ and N.

4. $Z_{M_{i},\triangle_{i}}(c_{i})$ is defined by the sunlmation over colorings on edges interior of $M_{i}$

with the fixed coloring $c_{i}$ on the boundary.

5. Attaching a tetrahedron to a triangle on a surface, as seen from the above, and

the corresponding Wilson-line networks.

6. Attaching a tetrahedron to two neighbouring triangles on a surface, as seen

from the above, and the corresponding Wilson-line networks.

7. A genus-g surface can be constructed from two discs with g-holes by gluing their

boundaries together. The case of g $=3$ is shown in the figure.

8. Part of Wilson-lines on $S_{g}^{+}$ and $S_{g^{-}}$ .

9. The Wilson-line $j_{3}$ in Fig. 8 can be removed using the orthogonality of the
$3j$ -symbols.

10. Triangulation of $S_{g=1}^{\pm}$ in the case of a torus.

lla. Wilson-line network corresponding to the triangulation in Fig. 10.

llb. The Wilson-line $j_{2}$ is removed using the orthogonality of the $3j$ -symbols.

llc. The Wilson-line $j_{1}$ can be moved around using the flatness of $\omega_{|\Sigma}$ .

lld. The homotopically trivial loop is removed.

lle. The network is transformed into a single Wilson-loop around the homology

cycle contractable in M. The sum over $j_{4}$ restricts the holonomy around this cycle

to be trivial.

12a. Triangulation of $S_{g}^{\pm}$ .

12b. The corresponding Wilson-line network on $S_{g}^{\pm}$ .
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$13a$ . Torus can be decomposed into two triangles.

$13b$ . The corresponding Wilson-line network.

14. A genus-g surface can be constructed from a $4g$-sided polygon. Correspond-

ingly, the surface is decomposed into $4g$ triangles.
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