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and
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Abstract. We show that the g-difference systems satisfied by Jackson integrals of -
Jordan-Pochhammer type give a class of the quantum Knizhnik-Zamolodchikov equation

for U,(s!3) in the sense of Frenkel and Reshetikhin.

$§1. Introduction

One of the most interesting features of the Knizhnik-Zamolodchikov equation originated in
conformal field theory is the relation between its connection matrix and the trigonometric
solutions of the quantum Yang-Baxter equation [TK],[K],[D]. It is related to the fact that
certain hypergeometric type integrals give solutions to the Knizhnik-Zamolodchikov equa-
tion [DJMM], [Ma], [Ch], [SV] etc. This fact is also looked at from the viewpoint of the
free field realization, e.g. [Ku], [ATY]. Besides them, the structure of the hypergeometric
type integrals had been studied, e.g. [A1},[A2]. Recently it attracts attention to construct
a q-analogue of these theories.

The Jackson integrals of Jordan-Pochhammer type are the simplest multivariable gen-
eralizations of Heine’s basic hypergeometric function which is a g-analogue of Gauss’ hy-
pergeometric function. They satisfy a system of first order q-difference equations, whose
connection problem was solved by Mimachi [Mi]. Recently Aomoto and others [AKM]
showed that the connection matrix determined by Mimachi is related to the ABF-solution
of the quantum Yang-Baxter equation. On the other hand, Frenkel and Reshetikhin [FR]
studied a g-analogue of the chiral vertex operators of the WZNW model, along the line
of Tsuchiya and Kanie [TK]. In particular, they introduced a g-difference system called
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the quantum Knizhnik-Zamolodchikov equation, and discussed the relation of the connec-
tion matrix with elliptic solutions of the quantum Yang-Baxter equation. Then it seems
possible to understand the result of [AKM] in the framework of Frenkel and Reshetikhin.

In this article, we shall explicitly give solutions to a certain class of the quantum
Knizhnik-Zamolodchikov equation for Uq(s: [,) by Jackson integrals of Jordan-Pochhammer
type. More precisely, we show that the q-difference system for the Jackson integrals of
Jordan-Pochhammer type is written in terms of trigonometric quantum R-matrix, and
that this equation gives a class of the quantum Knizhnik-Zamolodchikov equation. When
g goes to 1, our expression of the solutions go to the integral solutions of the Knizhnik-
Zamolodchikov equation given by [Ch] in the trigonometric form.

The paper 1s organized as follows. In sec.2, we write the g-difference equation for
Jackson integrals of Jordan-Pochhammer type, whose proof will be given in sec.4. In sec.3,
we identify the equation with the quantum Knizhnik-Zamolodchikov equation. In sec.5,

we give some comments on the connection problem according to current literatures.

§2. g-difference system for Jackson integrals

Let p be a fixed complex number such as 0 < |p| < 1. Let us denote

(2.1) (@)oo = [T (1 —ap™)
n=0

as usual. For a value s € C* and for a function ¢(¢), we define

(2:2) / Syt =s(1-p) 3 d(sr™)p

n=—0oo
whenever it is convergent. This is called the Jackson integral along a g-interval [0, so0),

which is a g-analogue of the ordinary integration. The q-difference operator T} is defined
by

(23) (TkF)(ll?l,"' ,ch) = F(ml)"'apzk)' ",:l:n)

for a function F(zy, -, 2,).

Now consider the Jackson integral of Jordan-Pochhammer type:

(2.4) Fo(z)=/; =1 ] (pt/”f dyt

1<j<n ﬂJt/zJ)OO
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where f3; are complex parameters and z = (21, -, z,) is a variable in (C*)". We are inter-
ested in the q-difference system associated with Fy. Take the set of functions (F,-- -, Fy,)
defined by

@5 Ra)= [ sy
0
where |

.Hj'=1 (pt/2;)oo H?=£+1(t/-"3j Joo .
IT;21 (0% 25) o0 [T} =i (PPi1] 25) o0

Let us calculate the g-difference system satisfied by F;. We set

(2.6) ®; =tP1

zifz; i<y,
(27) Ti; — 1 ifi= j,
pz;ifz; ifi>j.

Then the result is summarized as the following proposition.
Propos1tlon 1. We define the n x n matriz A; wzth eniries a as follows.
(28) Ifi=j#k then

(29) Ifi<j<kork<i<j then

. j—1
Y :Bki—Pﬂ" Tkj —Pﬂ" '

(2.10) If j < k < i then

1— ﬁk (1 - ﬂ' 2: B B 4
p ki P Th — P TR P
I_.[ pﬁk H

a
i —F Pﬁ" Tki —Pﬁ" Tgi — Tgl — Pﬂ"

I=i+1

(2.11) Otherwise af; = 0.

ij
Then we have

(2.12) (ToFy, -, TeF) = (Fy, -+, Fy) Ag.
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Remark. For each 1,7 (i # j), let S;; denote the n x n-matrix defined by

[t )
1 pp.iz,--—p" 1—phi ‘
e e i-th
1
(2.13) 1
—pPi)zi; zij— .
G S j-th
1
\ 1)
i-th j-th
We also consider the n x n-matrix P defined by
(v )
‘ 1
(2.14) i k-th
: 1
\ 1) -
Then, by an explicit calculation, we see
(2.15) A; = Sk,k+1° 7 Sen PeSk1 -+ Sk k-1

Matrices S; ; form a set of unitary quantum R-matrices. Namely we have

(2.16) S,',j (T}Sj,;) = id, and 51,252,351,3 = 51,352,351,2.

Finally, let us discuss the relation among Fy,-- -, F,.

Proposition 2. We put fo=—=F — (f1+ -+ Bn). Then the following relation holds:

(2.17) Zpﬁs+1+-~~+ﬂn(1 — pﬂi)_F‘. =0.
i=0 :

Therefore Fy is recovered from Fy,---, F, if pPo # 1.

Remark. The identity (2.17) is a g-analogue of Aomoto’s linear relation in the sense of

[A2] and [DIMM].
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§3. Comparison with the quantum Knizhnik-Zamolodchikov equations.

Let us briefly review the quantum enveloping algebra and the trigonometric R-matrix in
the case of sl,. The quantum enveloping algebra U, = Uq(§ [2) is defined as an algebra

with the generators:
(3.1) - XE, xE KF RS

and the relations:
KoK, = K1 Ko, KoK3' = K1 K7 =1,
+r-1 _ +2yv% -1 __ F2yE (s 4
KiXPKT =¢7° X7, KiXTKT =q7 X7 (i # ),
K;— K1

g—g¢'’
(XF°XF = (@P+1+ ¢ ) (XF)XFXE

H@*+H1+ g7 XEXHXE) = XF(XT)? =0 (i £ 5).

(3.2) X X =6

Here, g denotes a general complex parameter. The comultiplication A : ﬁq — U, ® (3}, :
is defined by
AXH)=X'®1+K ' X},

(3.3)
AX7)=X7 ®K;+10 X, A(K:) = K; ® K;.

We put A’ = ¢ 0 A where 0(a ®b) = b® a in U, ® U,. Next we consider the subalgebra
U, = U,(s!3) generated by X* = X K* = K. For each 2 € C, we define the algebra
homomorphism ¢, : f]q — U,y by

S":c(Xst) = zilX:F: <P:c(X1i) = Xi)

(3.4)
pz(Ko) = K™%, ¢.(K1) = K.

Let (V;, ;) be representations of U, with the highest weights A;. Then (V;(z), #;) =
(Vi, 7; 0 ¢3) gives a representation of [}q for each ¢ € C. The operator

(3.5) Ryv,(z) : Vilz) ® V(1) — Vi(=) ® (1)

such that
A'(a)Rv,v,(2) = Rv,v;(z)A(a), a € U,.
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gives a trigonometric R-matrix. Let v; be the highest weight vector in V;. We fix a choice

of normalization such that
(3-6) RV.-V,- (w) v; @ u; = v; Q.

Then Ry,v;(z) acts as

_ zq™ — g™ — ¢*mi -
RVillj(z)X 'v,-®vj=-m—_—q-r—m+—mj-X v;®vj+mw®X vj,
ae z(1 - ¢>™) zq™ — g™
RV‘Vj(m) Y ®X_'UJ' = r_-—qm?X-Ui ®‘Uj + T — qm.'+m v; ®X_'UJ

Here m; = (\;, @), a is the simple root.

Let Ay,---,As, A be a set of weights. Let V; be the irreducible representation of U,
with the highest weight A; and the highest weight vector v;. Let v be a complex parameter
and put p” = g. We set p = /2, the half sum of the positive roots. For a weight yu, we
denote (¢*)r the action of ¢# on the k-th component of the tensor product V1 ® --- ® V;,.

For instance,
(3.8) g (vi) = ¢B My, gH(X ) = MmN X oy

The quantum Knizhnik-Zamolodchikov equ.ation introduced by Frenkel and

Reshetikhin [FR] is written as the following system of g-difference equations:

TuF = Rviviy(p2r/2k-1) - Ry,v; (p2i/21) (¢*12)s
(3.9) ¢ A Ry, i (k41 /2x) T - Ryvi (20 /20) T F,
k=1,.---|n,
where F = F(zy1,---,z,) is a function valuedin V; ® --- ®@ V..
Let us conipare the equations (2.12) and (3.9). Take the weights Ag, Ao such that

Ao+ 4 A — Ao = a,
A0+A°°=/\,

(3.10)

and put the parameters as:
B =-2( o + a, ),
ﬂ,’ = 2(/\,‘, a)u.

(3.11)
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We set
(3.12) pi(21,-+,2n) = P(ﬂ‘+’+m+ﬁ")/2zfl o mg"Fi(Pﬂl/z-’Bl, e ,Pﬁ"/zzn),
for each i = 1,--+,n, and define the V; ® - - - ® V;-valued function F by
(3.13) f=§:¢;(z1,---,zn)v1®---®X—v;®---®vn.
i=1
Then, by rewriting the equation (2.12) in terms of F, we have

Theorem 3. The system (2.12) is equivalent 1o the resiriction of the system (3.9) to the
weight subspaée with the weight A\y + -+ + A, — o, and the function F defined by (3.13) is
a solution of (3.9).

Remark. When g goes to 1, F defined by (3.13) goes to a special case of the integral solu-
tions to the Knizhnik-Zamolodchikov equation obtained by Cherednik [Ch] in the trigono-

metric form.

We shall give another description of the equation. Let Ag,:--,A,, Ao be a set of
weights such that

(3.14) Aot + An — Ao = a.

Let V; be the irreducible representation of U, with the highest weight A; and the highest
weight vector v;. The quantum Knizhnik-Zamolodchikov equation for a Homy, (Veo, Vo ®

-+ ® V,,)-valued function F is written as:

TvF = Ry, vi_, (P /78-1) - - Rviv, (P2R/21) Ry vo (0) (¢°7 )k

© (3.15)
Rvevi (0) ' Ryy v (zk41/2E) ™ -+ - Ry, v (@n/2i) 71 F.

Here we understand F as an element of Vp ® --- ® V, ® VZ. Next we consider the set
H(Vo® - ® Vu; Ax) of highest weight vectors in Vo ® -+ - ® V;, with the weight A,,. We

have an injection

(3.16) Hoqu(Voo,Vo®"'®Vn)—*H(%®"'®Vn;)\oo)
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by evalﬁating the highest weight vector ve,. Then the equation (3.15) is regarded as a

restriction of the following system:
TiF = Rviva o (pk/Tk-1) - - Rvivi (P21 /21) Rvivo (0) (¢ 2%)
q—()‘w’)"‘)RVHle (3k+1/$k)_1 -+ Ry, v, (xn/mk)'lf,

where Fisa H(Vo ® - -+ ® V5 ; Aso)-valued function.

(3.17)

Remarks. (1) If all V; are the Verma modules or are the finite dimensional modules, then
the linear map (3.16) is surjective, and the system (3.15) is same as (3.17).
(2) If ¢?*0:2) =£ 1. then the system (3.17) is same as the restriction of the system (3.9)

to the weight subspace with the weight A; +- -+ A, — a, hence is equivalent to the system
(2.12).

We define the V5 ® - - - ® V],-valued function F by
(3.18) - F= Zgo, T, ,2n) Q- QX Y ® - Q Uy,

where @; is defined by (3.12) for each i = 0,---,n. Then, by interpreting the identity
(2.17), we have

(3.19) XtF=0.

Therefore F is one of the highest weight vectorsin V5 ®---®V,, with the weight A,. Thus

we finally obtain:

Theorem 4. The Hy_ (Vo ® - ® V,,)-valued function F defined by (3.18) is a solution of
the quantum Knizhnik-Zamolodchikov equation (3.17).

Notes. (1) In the situation of [FR], V5 and V,, are integrable U,-modules and V4, - -, V,, are
finite dimensional ()'q—modules, and v corresponds to ™) +g), where k is the fixed level and
g is the dual coxeter number. Moreover the quantum Knizhnik-Zamolodchikov equation
for the correlation function is written in terms of the image of the universal R-matrix,
which differs from our Ry,y; by a certain scalar factor.

(2) For n = 2, our expressions of solutions to (3.9) coincide with those given in [FR,

sec.T].
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§4. Proof of Propositions.

We write ¢; (1) ~ ¢2(2) if

(4.1) / b1(t)d,t = A $a(t)d,t
0
holds for any s € C*. For example, we have

(4.2) ®;(t) ~ p° ®i(pt).

Proof of Proposition 1. The following is obvious from the definition:

(4.3) Ty F; = / Tk@;(t)d},i.
0

Therefore the g-difference system (2.12) is equivalent to

n

(4.4) Ty®;(t) ~ Y al; ®i(t).

i=1

Now, because of (4.2), the following lemma is enough to prove the proposition.

Lemma 5.

(a) For j < k, we have

J

PPTe®;(pt) = p° > ali®i(pt) + D ol ().
i=k

~ .

i=1

(b) For j =k, we have

j-1 n
PPTi®;(pt) = pP S aki®i(pt) + D af&: ().

i=1

(c) For k < j, we have
Jj
Tk@j (i) = Zafj@;(t).

i=k
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Proof. Since all the cases are treated in a similar way, we will exhibit detailed calcula-
tions only for the most difficult case (b). We put a;; = a for simplicity. Multlphed by

appropriate factors, (b) is equivalent to

P’z H (PP pt — 1) H (PPt — 1)
I=j+1
i—1

(4.5) =p’ Zau z; H(Pﬂ'Pi - ) H (pt — z1) H(Pﬂ’t - )
I=i+1

n

+Ea,,x, H(pt—zl H ﬁ't—zl) H (t—ap).

i=j I=j I=i41

Since both sides are polynomials of degree n — 1 with respect to ¢, it suffices to check the

equality at n different values of . Putting ¢t = z,,/p, m < j — 1, in (4.5), we have

(46) pz; []P'= —mz)—Zan ,(pfzm-pmH(pﬂ'z ey ] (em -z =0
I=m l=m l=i+1

We put ¢ = z; /pPi, then we have

j-1 n
P [1@Prpz; = pPia) J] (0is; —pPic)

=1 1=j+1
(4.7) i1 .
=aj; [[(pz; —pP2) ] (25 — PP 20).
=1 I=j+1
We finally put ¢ = z,,/pP™, j +1 < m, then we have

i—-1 n

4.8) Zau z; H Tm — PP 2)) H (2 — pPm ) = 0.
I=j I=i+1

Now let us consider the explicit values of a;; defined by (2.8)-(2.10). Substitute the values
of a;j in the left of (4.6) inductively as¢=j— 1,7 —2,---, N. Then we have

i-1 p
. P 'pT; — P B
pz; 1= _pﬁ]zl H (P2 — 1) H - z)

=N i=m

- E a,-j:c.-(pﬂizm — pz;) H(pﬂlmm - ) H (zm — 21).

I=m =141
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When N = m, this is zero and (4.6) is verified. (4.7) follows easily from (2.10). To verify
(4.8), it suffices to substitute the values of a;;,i = 7,5 +1,--, N inductively. Hence (4.5)
is shown and the proof of (b) is completed. , Q.E.D.

Proof of Proposition 2. By the relation (4.2), it suffices to show the following lemma.

Lemma 6. We have the following relation:

(4.9) pﬂ1+~3-+ﬂn¢(t) — &(pt) = Zpﬂ:+x+---+ﬁn (PP — 1)&;.
' i=1

Proof. Multiplied by an appropriate factor, (4.9) is equivalent to

PPt tie TT(1 - t/25) — [ (1 - pPit/=;)

(4.10) 7 =
=Zpﬂ;+1+-~-+ﬂ,. 1)H(1 Pﬂ’t/zJ) H (1-1t/z;).
=l j=i+l
The right becomes
Zpﬂ‘-’- “+Bn H 1 — ﬂ]t/zJ) II (1 —t/.'EJ
j=1 j=i+l
i—-1
ZP"‘“*"'”" [T -p%t/z)) H (1—1t/25)
i=1 i=1 j=it+1 ‘

i—-1

E Bit+-48n H(l pﬂ"t/iﬂ )H l_t/zJ
i=1
Zpﬂ”’” o H(l-Pﬂ’t/mj) H (1-t/z;),

ji=1 j=i+l

which yields the left of (4.10). v Q.E.D.
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§5. Discussions.
In this paper, we have constructed a Jackson integral representations of solutions to the
quantum Knizhnik-Zamolodchikov equation in the simplest case for U, (sl3). Let us briefly
review the results of [AKM] and [FR], and discuss the relation of our result and the
connection problem of g-difference equations.
Let F! = F!(z1,---,2n) be the function defined by
F' =

13

7 . d,t.
1= t/2; [[[=1 (PPt 2i)00

[ #-1 T, (t/2)e0
0

Consider the system satisfied by Fy:
(5.1) (TeFY, -, TeFp) = (B, -+, Fy) Ay
The asymptotic behavior in
{(21,- -, 20) 5 2oyl > - > |2o(m)| > 1}

characterizes the fundamental solution Z, = E,(z;,---,2,) for a permutation ¢ € G,,.
Let e be the identity in &,,. In the sense of [M], the elementary connection matrix P; is
defined by =,, = P;E, for a transposition o; = (i,i+1) € G,. Then it is shown in [AKM],
for f; = --- = B,, that P; depends only on the ratio z;/z;;, and satisfies the Yang-Baxter
equation: |

F;(u) Pi11(u) Pi(v) = Pi41(v) P (uv) Piya (u).

This is equivalent to the Boltzman weights of the eight vertex SOS model, i.e., the ABF-
solution of the star-triangle relation (c¢f. [ABF],[JMO]}).

On the other hand, Frenkel and Reshetikhin [FR] studied a g-deformed chiral vertex
operator along the line of [TK], for a quantum affine algebra U,(§). They showed that
the correlation function satisfies the quantum Knizhnik-Zamolodchikov equation, which is
written in terms of the universal R-matrix, and considered the connection matrix as a g-
analogue of the braiding matrix in conformal field theory. In some situations, they proved
that the connection matrix of the quantum Knizhnik-Zamolodchikov equation for a simple
transposition depends only on the ratio of two arguments and it satisfies the quantum

Yang-Baxter equation. The most remarkable point of their theory is the factorization
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property, from which it is possible to determine the connection matrix by computing it
for n = 2, namely by considering the 4-point function as in the discussion of [TK]. Using
this argumeht and considering Jackson integral solutions for n = 2, they calculated the
connection matrix in the simplest case for U,,(sA [2) which includes the ABF-solution [FR,
sec.7]. Therefore the connection matrix of the quantum Knizhnik-Zamolodchikov equation
for a special case coincides with that of [AKM]. | ;

Now our equation (2.12) for the function F; defined by (2.5) is obviously equivalent

to the equation (5.1). In fact, F; and F! are related to each other by a triangular matrix:
q H g

F;, = ib;ij’.
j=1

The explicit form is given by

Bigp. —
P — Tk (if k < 1)

k=1 @7 = 1)z (if k = ).
T — Ty

Since theorem 3 says that the equation (2.12) is equivalent to the quantum Knizhnik-
Zamolodchikov equation (3.9), we have seen the coincidence above explicitly at the level
of the g-difference equation before going to the connection matrix. Finally, combined with
the discussions in [FR], the results in the present paper enable us to observe the surprising
phenomenon revealed by [AKM], that a very rich structure is contained in such a simple
expression:
/wo' =1 H (;/zj)w dgt,
0 1<j<n (PPit/z;) oo

from the viewpoint of the representation theory of quantum enveloping algebra U q(s: [9).
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