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Abstract. We show that the q-difference systems satisfied by Jackson integrals of

Jordan-Pochhammer type give a class of the quantum Knizhnik-Zamolodchikov equation

for $U_{q}(\hat{\epsilon}\mathfrak{l}_{2})$ in the sense of Frenkel and Reshetikhin.

\S 1. Introduction

One of the most interesting features of the Knizhnik-Zamolodchikov equation originated in

conformal field theory is the relation between its connection matrix and the trigonometric

solutions of the quantum Yang-Baxter equation $[TK],[K],[D]$ . It is related to the fact that

certain hypergeometric type integrals give solutions to the Knizhnik-Zamolodchikov equa-

tion [DJMM], [Ma], [Ch], [SV] etc. This fact is also looked at from the viewpoint of the

free field realization, e.g. [Ku], [ATY]. Besides them, the structure of the hypergeometric

type integrals had been studied, e.g. [AI],[A2]. Recently it attracts attention to construct

a q-analogue of these theories.

The Jackson integrals of Jordan-Pochhammer type are the simplest multivariable gen-

eralizations of Heine’s basic hypergeometric function which is a q-analogue of Gauss’ hy-

pergeometric function. They satisfy a system of first order q-difference equations, whose

connection problem was solved by Mimachi [Mi]. Recently Aomoto and others [AKM]

showed that the connection matrix determined by Mimachi is related to the ABF-solution

of the quantum Yang-Baxter equation. On the other hand, Frenkel and Reshetikhin [FR]

studied a q-analogue of the chiral vertex operators of the WZNW model, along the line

of Tsuchiya and Kanie [TK]. In particular, they introduced a q-difference system called
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the quantum Knizhnik-Zamolodchikov equation, and discussed the relation of the connec-

tion matrix with elliptic solutions of the quantum Yang-Baxter equation. Then it seems

possible to understand the result of [AKM] in the framework of Frenkel and Reshetikhin.

In this article, we shall explicitly give solutions to a certain class of the quantum

Knizhnik-Zamolodchikov equation for $U_{q}(\hat{\epsilon}\mathfrak{l}_{2})$ by Jackson integrals of Jordan-Pochhammer

type. More precisely, we show that the q-difference system for the Jackson integrals of

Jordan-Pochhammer type is written in terms of trigonometric quantum R-matrix, and

that this equation gives a class of the quantum Knizhnik-Zamolodchikov equation. When

$q$ goes to 1, our expression of the solutions go to the integral solutions of the Knizhnik-

Zamolodchikov equation given by [Ch] in the trigonometric form.

The paper is organized as follows. In sec.2, we write the q-difference equation for

Jackson integrals of Jordan-Pochhammer type, whose proof will be given in sec.4. In sec.3,

we identify the equation with the quantum Knizhnik-Zamolodchikov equation. In sec.5,

we give some comments on the connection problem according to current literatures.

\S 2. q-difference system for Jackson integrals

Let $p$ be a fixed complex number such as $0<|p|<1$ . Let us denote

(2.1) $(a)_{\infty}= \prod_{n=0}^{\infty}(1-\dot{a}p^{n})$

as usual. For a value $s\in C^{*}$ and for a function $\phi(t)$ , we define

(2.2) $\int_{0}^{s\infty}\phi(t)d_{p}t=s(1-p)\sum_{n=-\infty}^{\infty}\phi(sp^{n})p^{n}$

whenever it is convergent. This is called the Jackson integral along a q-interval $[0, s\infty]$ ,

which is a q-analogue of the ordinary integration. The q-difference operator $T_{k}$ is defined
by

(2.3) $(T_{k}F)(x_{1}, \cdots, x_{n})=F(x_{1}, \cdots,px_{k}, \cdots, x_{n})$

for a function $F(x_{1}, \cdots , x_{n})$ .

Now consider the Jackson integral of Jordan-Pochhammer type:

(2.4) $F_{0}(x)= \int_{0}^{s\infty}t^{\beta-1}\prod_{1\leq j\leq n}\frac{(t/x_{j})_{\infty}}{(p^{\beta_{j}}t/x_{j})_{\infty}}d_{p}t$
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where $\beta_{j}$ are complex parameters and $x=(x_{1}, \cdots, x_{n})$ is a variable in $(C^{x})^{n}$ . We are inter-
ested in the q-difference system associat$ed$ with $F_{0}$ . Take the set of functions $(F_{1}, \cdots, F_{n})$

defined by

(2.5) $F_{i}(x)= \int_{0}^{\ell\infty}\Phi_{i}d_{p}t$

where

(2.6) $\Phi;=t^{\beta-1}\frac{\prod_{j=1}^{i}(pt/x_{j})_{\infty}\prod_{j=:+1}^{n}(t/x_{j})_{\infty}}{\prod_{j=1}^{:-1}(p^{\beta_{j}+1}t/x_{j})_{\infty}\prod_{j=i}^{n}(p^{\beta_{j}}t/x_{j})_{\infty}}$.

Let us calculate the q-difference system satisfied by $F\cdot$ . We set

(2.7) $x_{ij}=\{\begin{array}{l}x.\cdot/x_{j}ifi<j1ifi=jpx_{i}/x_{j}ifi>j\end{array}$

Then the result is summarized as the following proposition.

Proposition 1. We define the $nxn$ matrix $A_{k}$ with entries $a_{ij}^{k}$ as follows.
(2.8) If $i=j\neq k$ then

$a_{ij}^{k}= \frac{x_{k:}-1}{x_{ki}-p^{\beta_{k}}}$ .

(2.9) If $i<j\leq k$ or $k\leq i<j$ then

$a^{k_{j}}:= \frac{(1-p^{\beta}:)x_{ki}}{x_{ki}-p^{\beta_{k}}}\frac{1-p^{\beta_{k}}}{x_{kj}-p^{\beta_{k}}}\prod_{l=:+1}^{j-1}\frac{p^{\beta_{l}}x_{kl}-p^{\beta_{k}}}{x_{kl}-p^{\beta_{k}}}$

(2.10) If $j\leq k\leq i$ then

$a^{k_{j}}:=p^{\beta} \frac{1-p^{\beta_{k}}}{x_{kj}-p^{\beta_{k}}}\frac{(1-p^{\beta_{j}})x_{k:}}{x_{ki}-p^{\beta_{k}}}\prod_{l=1}^{j-1}\frac{p^{\beta_{l}}x_{kl}-p^{\beta_{k}}}{x_{kl}-p^{\beta_{k}}}\prod_{l=:+1}^{n}\frac{p^{\beta_{l}}x_{kl}-p^{\beta_{k}}}{x_{kl}-p^{\beta_{k}}}$ .

(2.11) Otherwise $a_{ij}^{k}=0$ .

Then we have

(2.12) $(T_{k}F_{1}, \cdots , T_{k}F_{n})=(F_{1}, \cdots, F_{n})A_{k}$ .
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Remark. For each $i,j(i\neq j)$ , let $S;.$; denote the $nx$ n-matrix defined by

(2.13)
$\{\begin{array}{lllllllllll}1 \ddots \frac{p^{\rho_{j}}x.\cdot.\cdot-p^{\beta}}{x_{j}-p^{\rho_{i}}} 1 \frac{l.-p^{\beta}}{x_{j}-p^{\rho_{i}}} 1 \ddots 1 \frac{(l-p^{\beta_{j}})x_{ij}}{x_{ij}-p^{\beta}} \frac{x_{jj}-l}{x_{j}-p^{\beta}} 1 \ddots 1\end{array}\}j- thi- th$

i-th j-th

We also consider the $n\cross$ n-matrix $P_{k}$ defined by

(2.14) $(^{1}$

1
$p^{\beta}$

1 ... $1]$ k-th

Then, by an explicit calculation, we see

(2.15) $A_{i}=S_{k,k+1}\cdots S_{k},{}_{n}P_{k}S_{k,1}\cdots S_{k,k-1}$ .

Matrices $S_{i,j}$ form a se$t$ of unitary quantum R-matrices. Namely we have

(2.16) $S_{i,j}(T_{i}S_{j,i})=id$ , and $S_{1,2}S_{2,3}S_{1,3}=S_{1,3}S_{2,3}S_{1,2}$ .

Finally, let us discuss the relation among $F_{0},$ $\cdots,$
$F_{n}$ .

Proposition 2. We put $\beta_{0}=-\beta-(\beta_{1}+\cdots+\beta_{n})$ . Then the following relation holds:

(2.17) $\sum_{:=0}^{n}p^{\beta_{i+1}+}‘+\rho_{n}(1-p^{\beta_{i}})F_{i}=0$.

Therefore $F_{0}$ is recovered from $F_{1},$
$\cdots,$

$F_{n}$ if $p^{\mathcal{B}0}\neq 1$ .

Remark. The identity (2.17) is a q-analogue of Aomoto’s linear relation in the sense of

[A2] and [DJMM].
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\S 3. Comparison with the quantum Knizhnik-Zamolodchikov equations.

Let us briefly review the quantum enveloping algebra and the trigonometric R-matrix in
the case of $\hat{\epsilon}\mathfrak{l}_{2}$ . The quantum enveloping algebra $\hat{U}_{q}=U_{q}(\hat{\epsilon}\mathfrak{l}_{2})$ is defined as an algebra

with the generators:

(3.1) $X_{0}^{\pm},$ $X_{1}^{\pm},$ $K_{0}^{\pm 1},$ $K_{1}^{\pm 1}$

and the relations:

$K_{0}K_{1}=K_{1}K_{0},$ $K_{0}K_{0}^{-1}=K_{1}K_{1}^{-1}=1$ ,

$K_{i}X_{i}^{\pm}K_{i}^{-1}=q^{\pm 2}X_{i}^{\pm},$ $K_{i}X_{i}^{\pm}K_{j}^{-1}=q^{\mp 2}X_{j}^{\pm}(i\neq j)$ ,

(3.2) $[X_{i}^{+}, X_{j^{-}}]= \delta_{ij}\frac{K_{:}-K_{:}^{-1}}{q-q^{-1}}$ ,

$(X_{1}^{\pm})^{3}X_{j}^{\pm}-(q^{2}+1+q^{-2})(X_{i}^{\pm})^{2}X_{j}^{\pm}X_{i}^{\pm}$

$+(q^{2}+1+q^{-2})x_{:}^{\pm}X_{j}^{\pm}(X_{1}^{\pm})^{2}-X_{j}^{\pm}(X_{i}^{\pm})^{3}=0(i\neq j)$.

Here, $q$ denotes a general complex parameter. The comultiplication $\Delta$ : $\hat{U}_{q}arrow\hat{U}_{q}\otimes\hat{U}_{q}$

is defined by

$\Delta(X_{*}^{+})=X_{:^{+}}\otimes 1+K_{i}^{-1}\otimes X_{:}^{+}$ ,
(3.3)

A $(x_{:^{-}})=x_{:^{-}}\otimes K;+1\otimes X_{i^{-}},$ $\Delta(K_{i})=K;\otimes K;$ .

We put $\Delta’=\sigma 0\Delta$ where $\sigma(a\otimes b)=b\otimes a$ in $\hat{U}_{q}\otimes\hat{U}_{q}$ . Next we consider the subalgebra
$U_{q}=U_{q}(\epsilon \mathfrak{l}_{2})$ generated by $X^{\pm}=X_{1}^{\pm},$ $K^{\pm}=K_{1}^{\pm}$ . For each $x\in C$ , we define the algebra
homomorphism $\varphi_{x}$ : $\hat{U}_{q}arrow U_{q}$ by

$\varphi_{x}(X_{0}^{\pm})=x^{\pm 1}X^{\mp},$ $\varphi_{x}(X_{1}^{\pm})=X^{\pm}$ ,
(3.4)

$\varphi_{x}(K_{0})=K^{-1},$ $\varphi_{x}(K_{1})=K$.

Let $(V_{i}, \pi_{i})$ be representations of $U_{q}$ with the highest weights $\lambda;$ . Then $(V_{i}(x),\hat{\pi}_{i})=$

(V, $\pi_{i}0\varphi_{x}$ ) gives a representation of $\hat{U}_{q}$ for each $x\in C$ . The operator

(3.5) $R_{V:V_{j}}(x)$ : $V_{i}(x)\otimes V_{j}(1)arrow V_{i}(x)\otimes V_{j}(1)$

such that
$\Delta’(a)R_{V_{i}V_{j}}(x)=R_{V_{i}V_{j}}(x)\Delta(a),$ $a\in\hat{U}_{q}$ .
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gives a trigonometric R-matrix. Let $v$; be the highest weight vector in $V_{j}$ . We fix a choice

of normalization such that

(3.6) $Rv.v_{j}(x)v_{i}\otimes v_{j}=v:\otimes v_{j}$ .

Then $R_{V_{i}V_{j}}(x)$ acts as

$R_{V_{*}V_{j}}(x)X^{-}v_{i} \otimes v_{j}=\frac{xq^{m_{j}}-q^{m:}}{x-q^{m_{i}+m_{j}}}X^{-}v;\otimes v_{j}+\frac{1-q^{2m_{j}}}{x-q^{m.+m_{j}}}v_{i}\otimes X^{-}v_{j}$ ,
(3.7)

$R_{V:^{\gamma_{j}}}(x)v_{i} \otimes X^{-}v_{j}=\frac{x(1-q^{2m_{i}})}{x-q^{m_{i}+m_{j}}}X^{-}v;\otimes v_{j}+\frac{xq^{m_{j}}-q^{m_{j}}}{x-q^{m:+m_{j}}}v_{i}\otimes X^{-}v_{j}$ .

Here $m_{i}=(\lambda;, \alpha),$ $\alpha$ is the simple root.

Let $\lambda_{1},$

$\cdots,$
$\lambda_{n},$

$\lambda$ be a set of weights. Let $V_{i}$ be the irreducible representation of $U_{q}$

with the highest weight $\lambda_{:}$ and the highest weight vector $v;$ . Let $\nu$ be a complex parameter

and put $p^{\nu}=q$ . We set $\rho=\alpha/2$ , the half sum of the positive roots. For a weight $\mu$ , we
denote $(q^{\mu})_{k}$ the action of $q^{\mu}$ on the k-th component of the tensor product $V_{1}\otimes\cdots\otimes V_{n}$ .

For instance,

(3.8) $q^{\mu}(v_{k})=q^{(\mu,\lambda_{k})}v_{k}$ , $q^{\mu}(X^{-}v_{k})=q^{(\mu,\lambda_{k}-\alpha)}X^{-}v_{k}$ .

The quantum Knizhnik-Zamolodchikov equation introduced by Frenkel and

Reshetikhin [FR] is written as the following system of q-difference equations:

$T_{k}\mathcal{F}=R_{V_{k}V_{k-1}}(px_{k}/x_{k-1})\cdots R_{V_{k}V_{1}}(px_{k}/x_{1})(q^{\lambda+2\rho})_{k}$

(3.9) $q^{-(\lambda,\lambda_{k})}R_{V_{k+1}V_{k}}(x_{k+1}/x_{k})^{-1}\cdots R_{V_{\mathfrak{n}}V_{k}}(x_{n}/x_{k})^{-1}\mathcal{F}$,

$k=1,$ $\cdots,n$ ,

where $\mathcal{F}=\mathcal{F}(x_{1}, \cdots, x_{n})$ is a function valued in $V_{1}\otimes\cdots\otimes V_{n}$ .

Let us compar$e$ the equations (2.12) and (3.9). Take the weights $\lambda_{0},$ $\lambda_{\infty}$ such that

$\lambda_{0}+\cdots+\lambda_{n}-\lambda_{\infty}=\alpha$ ,
(3.10)

$\lambda_{0}+\lambda_{\infty}=\lambda$ ,

and put the parameters as:

$\beta=-2(\lambda_{\infty}+\alpha, \alpha)\nu$ ,
(3.11)

$\beta_{i}=2(\lambda_{i}, \alpha)\nu$.
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We set

(3.12) $\varphi_{i}(x_{1}, \cdots , x_{n})=p^{(\beta_{i+1}+}‘+\beta_{n}$
) $/2_{X_{1}^{\beta_{1}}\cdots x_{n}^{\rho}}$ “ $F_{:}(p^{\beta_{1}/2}x_{1}, \cdots , p^{\beta_{n}/2}x_{n})$ ,

for each $i=1,$ $\cdots,$ $n$ , and define the $V_{1}\otimes\cdots\otimes V_{n}$ -valued function $\mathcal{F}$ by

(3.13) $\mathcal{F}=\sum_{:=1}^{n}\varphi;(x_{1}, \cdots , x_{n})v_{1}\otimes\cdots\otimes X^{-}v;\otimes\cdots\otimes v_{n}$ .

Then, by rewriting the equation (2.12) in terms of $\mathcal{F}$ , we have

Theorem 3. The system (2.12) is equivalent to the restriction of the system (3.9) to the

weight subspace with the weight $\lambda_{1}+\cdots+\lambda_{n}-\alpha$ , and the function $\mathcal{F}$ defined by (3.13) is

a solution of (3.9).

Remark. When $q$ goes to 1, $\mathcal{F}$ defin$ed$ by (3.13) goes to a special case of the integral solu-

tions to the Knizhnik-Zamolodchikov equation obtained by Cherednik [Ch] in the trigono-

metric form.

We shall give another description of the equation. Let $\lambda_{0},$
$\cdots,$

$\lambda_{n},$ $\lambda_{\infty}$ be a set of

weights such that

(3.14) $\lambda_{0}+\cdots+\lambda_{n}-\lambda_{\infty}=\alpha$ .

Let $V_{i}$ be the irreducible representation of $U_{q}$ with the highest weight $\lambda_{i}$ and the highest

weight vector $v;$ . The quantum Knizhnik-Zamolodchikov equation for a $Hom_{U_{q}}(V_{\infty},$ $V_{0}\otimes$

. $..\otimes V_{n}$ )-valued function $\mathcal{F}$ is written as:

$-$. $T_{k}\mathcal{F}=R_{V_{k}V_{k-1}}(px_{k}/x_{k-1})\cdots R_{V_{k}V_{1}}(px_{k}/x_{1})R_{V_{k}V_{O}}(0)(q^{2\rho})_{k}$

(3.15)
$R_{V_{\infty}V_{k}}(0)^{-1}R_{V_{k+1}V_{k}}(x_{k+1}/x_{k})^{-1}\cdots R_{V_{n}V_{k}}(x_{n}/x_{k})^{-1}\mathcal{F}$.

Here we understand $\mathcal{F}$ as an element of $V_{0}\otimes\cdots\otimes V_{n}\otimes V_{\infty}^{*}$ . Next we consider the set
$?t(V_{0}\otimes\cdots\otimes V_{n} ; \lambda_{\infty})$ of highest weight vectors in $V_{0}\otimes\cdots\otimes V_{n}$ with the weight $\lambda_{\infty}$ . We

have an injection

(3.16) $Hom_{U_{q}}(V_{\infty}, V_{0}\otimes\cdots\otimes V_{n})arrow \mathcal{H}(V_{0}\otimes\cdots\otimes V_{n} ; \lambda_{\infty})$
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by evaluating the highest weight vector $v_{\infty}$ . Then the equation (3.15) is regarded as a

restriction of the following system:

$T_{k}\mathcal{F}=R_{V_{k}V_{k-1}}(px_{k}/x_{k-1})\cdots R_{V_{k}V_{1}}(px_{k}/x_{1})R_{V_{k}V_{O}}(0)(q^{\lambda_{\infty}+2\rho})_{k}$

(3.17)
$q^{-(\lambda_{\infty},\lambda_{k})}R_{V_{k+1}V_{k}}(x_{k+1}/x_{k})^{-1}\cdots R_{V_{n}V_{k}}(x_{n}/x_{k})^{-1}\mathcal{F}$,

where $\mathcal{F}$ is a $7i(V_{0}\otimes\cdots\otimes V_{n} ; \lambda_{\infty})$-valued function.

Remarks. (1) If all $V_{:}$ are the Verma modules or are the finite dimensional modules, then

the linear map (3.16) is surjective, and the syst$em(3.15)$ is same as (3.17).

(2) If $q^{2(\lambda_{O\prime}\alpha)}\neq 1$ , then the system (3.17) is same as the restriction of the system (3.9)

to the weight subspace with the weight $\lambda_{1}+\cdots+\lambda_{n}-\alpha$ , hence is equivalent to the system

(2.12).

We define the $V_{0}\otimes\cdots\otimes V_{n}$ -valued function $\mathcal{F}$ by

(3.18) $\mathcal{F}=\sum_{i=0}^{n}\varphi_{i}(x_{1}, \cdots, x_{n})v_{0}\otimes\cdots\otimes X^{-}v;\otimes\cdots\otimes v_{n}$,

where $\varphi$; is defined by (3.12) for each $j=0,$ $\cdots,$ $n$ . Then, by interpreting the identity

(2.17), we have

(3.19) $X^{+}\mathcal{F}=0$ .

Therefore $\mathcal{F}$ is one of the highest weight vectors in $V_{0}\otimes\cdots\otimes V_{n}$ with the weight $\lambda_{\infty}$ . Thus

we finally obtain:

Theorem 4. The $?t_{\lambda_{\infty}}(V_{0}\otimes\cdots\otimes V_{n})$ -valued function $\mathcal{F}$ defined by (3.18) is a solution of
the quantum Knizhnik-Zamolodchikov equation (3.17).

Notes. (1) In the situation of [FR], $V_{0}$ and $V_{\infty}$ are integrable $\hat{U}_{q}$-modules and $V_{1},$
$\cdots,$

$V_{n}$ ar$e$

finite dimensional $\hat{U}_{q}$-modules, and $\nu$ corresponds to $\frac{1}{2(k+g)}$ where $k$ is the fixed level and

$g$ is the dual coxeter number. Moreover the quantum Knizhnik-Zamolodchikov equation

for the correlation function is written in terms of the image of the universal R-matrix,

which differs from our $R_{V:V_{j}}$ by a certain scalar factor.
(2) For $n=2$ , our expressions of solutions to (3.9) coincide with those given in [FR,

sec.7].
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\S 4. Proof of Propositions.

We write $\phi_{1}(t)\sim\phi_{2}(t)$ if

(4.1) $\int_{0}^{\iota\infty}\phi_{1}(t)d_{p}t=\int_{0}^{\iota\infty}\phi_{2}(t)d_{p^{\{}}$

holds for any $s\in C^{*}$ . For example, we have

(4.2) $\Phi_{i}(t)\sim p^{\beta}\Phi_{i}(pt)$ .

Proof of Proposition 1. The following is obvious from the definition:

(4.3) $T_{k}F_{i}= \int_{0}^{s\infty}T_{k}\Phi_{i}(t)d_{p}t$ .

Therefore the q-difference system (2.12) is equivalent to

(4.4) $T_{k} \Phi_{j}(t)\sim\sum_{i=1}^{n}a_{ij}^{k}\Phi_{i}(t)$.

Now, because of (4.2), the following lemma is enough to prove the proposition.

Lemma 5.

(a) For $j<k$ , we have

$p^{\beta}T_{k} \Phi_{j}(pt)=p^{\beta}\sum_{i=1}^{j}a_{ij}^{k}\Phi_{i}(pt)+\sum_{:=k}^{n}a_{i}^{k_{j}}\Phi_{i}(t)$ .

(b) For $j=k$ , we have

$p^{\beta}T_{k} \Phi_{j}(pt)=p^{\beta}\sum_{i=1}^{j-1}a_{*}^{k_{j}}\Phi_{i}(pt)+\sum_{i=j}^{n}a_{ij}^{k}\Phi_{i}(t)$.

(c) For $k<j$ , we have

$T_{k} \Phi_{j}(t)=\sum_{i=k}^{j}a_{ij}^{k}\Phi_{i}(t)$ .
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Proof. Since all the cases are treated in a similar way, we will exhibit detailed calcula-

tions only for the most difficult case (b). We put $a_{ij}=a_{ij}^{k}$ for simplicity. Multiplied by

appropriate factors, (b) is equivalent to

$p^{\beta}x_{j} \prod_{l=1}^{j-1}(p^{\beta_{l}}pt-x_{l})\prod_{l=j+1}^{n}(p^{\beta_{l}}t-x_{l})$

(4.5) $=p^{\beta} \sum_{:=1}^{j-1}a_{ij}x;\prod_{l=1}^{:-1}(p^{\beta}{}^{t}pt-x_{l})\prod_{l=i+1}^{j-1}(pt-x_{l})\prod_{l=j}^{n}(p^{\beta_{1}}t-x_{l})$

$+ \sum_{:=j}^{n}a;;x;\prod_{l=1}^{j-1}(pt-x_{l})\prod_{l=j}^{i-1}(p^{\beta_{l}}t-x_{l})\prod_{l=i+1}^{n}(t-x_{l})$ .

Since both sides are polynomials of degree $n-1$ with respect to $t$ , it suffices to check the

equality at $n$ different values of $t$ . Putting $t=x_{m}/p,$ $m\leq j-1$ , in (4.5), we have

(4.6) $px_{j} \prod_{l=m}^{j-1}(p^{\beta_{l}}x_{m}-x_{l})-\sum_{i=m}^{j-1}a_{ij}x_{i}(p^{\beta_{j}}x_{m}-px_{j})\prod_{l=m}^{i-1}(p^{\beta_{l}}x_{m}-x_{l})\prod_{1=i+1}^{j-1}(x_{m}-x_{l})=0$ .

We put $t=x_{j}/p^{\beta_{j}}$ , then we have

$p^{\beta} \prod_{l=1}^{j-1}(p^{\beta}{}^{t}px_{j}-p^{\beta_{j}}x_{l})\prod_{l=j+1}^{n}(p^{\beta_{l}}x_{i^{-\oint j}}x_{l})$

(4.7)

$=a_{jj} \prod_{l=1}^{j-1}(px_{j}-p^{\beta_{j}}x_{l})\prod_{l=j+1}^{n}(x_{j}-p^{\beta_{j}}x_{l})$ .

We finally put $t=x_{m}/p^{\beta_{m}},$ $j+1\leq m$ , then we have

(4.8) $\sum_{1=j}^{m}a:jx;\prod_{l=j}^{:-1}(p^{\beta_{1}}x_{m}-p^{\beta_{m}}x_{l})\prod_{l=i+1}^{n}(x_{m}-p^{\beta_{m}}x_{l})=0$.

Now let us consider the explicit values of $a_{ij}$ defined by $(2.8)-(2.10)$ . Substitute the values

of $a_{ij}$ in the left of (4.6) inductively as $i=j-1,$ $j-2,$ $\cdots,$
$N$ . Then we have

$px_{j} \prod_{l=N}^{j-1}\frac{p^{\beta_{l}}px_{j}-p^{\beta_{j}}x_{l}}{px_{j}-p^{\beta_{j}}x_{l}}\prod_{l=m}^{N-1}(p^{\beta_{1}}x_{m}-x_{f})\prod_{l=N}^{j-1}(x_{m}-x_{l})$

$- \sum_{i=m}^{N}ax(p^{\beta_{j}}x_{m}-px_{j})\prod_{l=m}^{i-1}(p^{\beta_{l}}x_{m}-x_{l})\prod_{l=i+1}^{j-1}(x_{m}-x_{l})$ .
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When $N=m$ , this is zero and (4.6) is verified. (4.7) follows easily from (2.10). To verify

(4.8), it suffices to substitute the values of $a_{ij},$ $i=j,j+1,$ $\cdots,$
$N$ inductively. Hence (4.5)

is shown and the proof of (b) is completed. Q.E. $D$ .

Proof of Proposition 2. By the relation (4.2), it suffices to show the following lemma.

Lemma 6. We have the following relation:

(4.9) $p^{\beta_{1}+\cdots+\beta_{n}} \Phi(t)-\Phi(pt)=\sum_{i=1}^{n}p^{\beta_{i+1}+\cdots+\beta_{\mathfrak{n}}}(p^{\beta;}-1)\Phi;$.

Proof. Multiplied by an appropriate factor, (4.9) is equivalent to

$p^{\beta_{1}+\cdots+\beta_{n}} \prod_{j=1}^{n}(1-t/x_{j})-\coprod_{j=1}^{n}(1-p^{\beta_{j}}t/x_{j})$

(4.10)

$= \sum_{:=1}^{n}p^{\beta:+1}+\cdots+\beta_{n}(p^{\beta_{i}}-1)\prod_{j=1}^{i-1}(1-p^{\beta_{j}}t/x_{j})\prod_{j=i+1}^{n}(1-t/x_{j})$.

The right becomes

$\sum_{:=1}^{\mathfrak{n}}p^{\beta:+\cdots+\beta_{n}}\prod_{j=1}^{:-1}(1-p^{\beta_{j}}t/x_{j})\prod_{j=i+1}^{n}(1-t/x_{j})$

$\sum_{2=1}^{n}p^{\beta_{i+1}+\cdots+\beta_{n}}\prod_{j=1}^{i-1}(1-p^{\beta_{j}}t/x_{j})\prod_{j=i+1}^{n}(1-t/x_{j})$

$= \sum_{i=1}^{n}p^{\beta_{i}+\cdots+\beta_{n}}\prod_{j=1}^{i-1}(1-p^{\beta_{j}}t/x_{j})\prod_{j=i}^{n}(1-t/x_{j})$

$\sum_{:=1}^{n}p^{\beta_{t+1}+\cdots+\beta_{n}}\prod_{j=1}^{:}(1-p^{\beta_{j}}t/x_{j})\prod_{j=:+1}^{n}(1-t/x_{j})$ ,

which yields the left of(4.10). Q.E.D.
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\S 5. Discussions.

In this paper, we have constructed a Jackson integral representations of solutions to the

quantum Knizhnik-Zamolodchikov equation in the simplest case for $U_{q}(\hat{\epsilon}1_{2})$ . Let us briefly

review the results of [AKM] and [FR], and discuss the relation of our result and the

connection problem of q-difference equations.

Let $F_{:}’=F_{:}’(x_{1}, \cdots, x_{n})$ be the function defined by

$F_{i}’= \int_{0}^{\iota\infty}\frac{t^{\beta-1}}{1-t/x;}\frac{\prod_{j}^{n_{--1}}(t/x_{j})_{\infty}}{\prod_{j=1}^{n}(p^{\beta_{j}}t/x_{j})_{\infty}}d_{q}t$ .

Consider the system satisfied by $F_{1}’$ :

(5.1) $(T_{k}F_{1}’, \cdots,T_{k}F_{n}’)=(F_{1’}’F_{n}’)A_{k}’$ .

The asymptotic behavior in

$\{(x_{1}, \cdots, x_{n});|x_{\sigma(1)}|\gg\cdots\gg|x_{\sigma(n)}|\gg 1\}$

characterizes the fundamental solution $\Xi_{\sigma}=\Xi_{\sigma}(x_{1}, \cdots, x_{n})$ for a permutation $\sigma\in 6_{n}$ .
Let $e$ be the identity in $6_{n}$ . In the sense of [M], the elementary connection matrix $P_{:}$ is

defined by $\Xi_{\sigma_{i}}=P_{:}\Xi_{e}$ for a transposition $\sigma_{i}=(i, i+1)\in 6_{n}$ . Then it is shown in [AKM],

for $\beta_{1}=\cdots=\beta_{n}$ , that $P_{:}$ depends only on the ratio $X_{\}/X:+1$ and satisfies the Yang-Baxter

equation:
$P_{i}(u)P_{1+1}(uv)P:(v)=P_{i+1}(v)P_{i}(uv)P_{1+1}(u)$ .

This is equivalent to the Boltzman weights of the eight vertex SOS model, i.e., the ABF-

solution of the star-triangle relation (cf. [ABF],[JMO]).

On the other hand, Frenkel and $Re$shetikhin [FR] studied a q-deformed chiral vert$ex$

operator along the line of [TK], for a quantum affine algebra $U_{q}(\hat{g})$ . They show$ed$ that

the correlation function satisfies the quantum Knizhnik-Zamolodchikov $e$quation, which is
written in terms of the universal R-matrix, and considered the connection matrix as a q-

analogue of the braiding matrix in conformal field theory. In some situations, they proved

that the connection matrix of the quantum Knizhnik-Zamolodchikov equation for a simple
transposition depends only on the ratio of two arguments and it satisfies the quantum

Yang-Baxter equation. The most remarkable point of their theory is the factorization
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property, from which it is possible to determine the connection matrix by computing it
for $n=2$ , namely by considering the 4-point function as in the discussion of [TK]. Using
this argument and considering Jackson integral solutions for $n=2$ , they calculat$ed$ the
connection matrix in the simplest case for $U_{q}(\hat{\epsilon}1_{2})$ which includes the ABF-solution [FR,

sec.7]. Therefore the connection matrix of the quantum Knizhnik-Zamolodchikov equation

for a special case coincides with that of [AKM].

Now our equation (2.12) for the function $F$; defined by (2.5) is obviously equivalent

to the equation (5.1). In fact, $F$; and $F_{:}’$ are related to each other by a triangular matrix:

$F_{:}= \sum_{j=1}^{:}b_{ij}F_{j}’$ .

The explicit form is given by

$b_{ij}= \prod_{k=1}^{:}b_{ij}^{k}$ , $b_{\dot{\iota}j}^{k}=\{\frac{p^{\beta_{j}}x_{j}-x_{k}}{\frac{(p^{x_{\beta^{j}}.-x_{k}}-1).x_{i}}{x_{j}-x}}(ifk<i)(ifk=i)$

Since theorem 3 says that the equation (2.12) is equivalent to the quantum Knizhnik-

Zamolodchikov equation (3.9), we have seen the coincidence above explicitly at the level

of the q-difference equation before going to the connection matrix. Finally, combined with

the discussions in [FR], the results in the present paper enable us to observe the surprising
phenomenon revealed by [AKM], that a very rich structure is contained in such a simple

expresslon:

$\int_{0}^{*\infty}t^{\beta-1}\prod_{1\leq j\leq n}\frac{(t/x_{j})_{\infty}}{(p^{\beta_{j}}t/x_{j})_{\infty}}d_{q}t$ ,

from the viewpoint of the representation theory of quantum enveloping algebra $U_{q}(\epsilon^{\wedge}\mathfrak{l}_{2})$ .
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