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The Teichmuller space from a view point of group representations

Kyoji Saito

RIMS, Kyoto University

Abstract: The Teichmuller space 7g is the branched universal
covering of the moduli ﬂg of compact Riemann surfaces of genus g. The
present note gives an exposition on a short cut construction of the
Teichmuller space together with its complex structure and Kahler

structure from the view point of representation of Fuchsian group.
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80. Introduction

The study of moduli of Riemann surface of genus g has long history.
Already Riemann stated that Mg depends on 3g-3 complex parameteré (for
g£>1) through an analysis of branched coverings. In the study of automor
phic functions and Fuchsian groups by F. Klein and H. Poincare (1880's)
we sece a starting of the study of moduli, which later on was developped

by R.Fricke, W.Fenchel and J.Nielsen. Teichmuller (1940'~) described 7g
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in terms of quasiconformal maps,recognizing the importance of quadratic
differentials. The theory of Teichmuller was rigolously based by L.V.
Ahlforse and L. Bers by a heavy analysis on Beltrami equations (50's).
Owing to a series of works of A.YWeil[2-3], one is able to give a
rigolous foundation of Teichmuller space from the view point of Fricke
[Fl: to understand the moduli of Riemann surfaces as that of Fuchsian
group ' Since then, there are increasing number of works in the direc-
tion [Mc][Mc—S][Ha][He][C—S][Wo][L—M][Mo—S][G][Br][Se—So]’and others.
The present paper is one trial in the same direction following [Sal-47].
This has a motivation to give a foundation for the defining domain of
certain infinite series wr introduced in [Sa2]. Some readers may be
suggested to skip the 8§81 to §2, from where we start the study of
representations of a finitely generated group ' into SLZ’
| As is originaly due to Helling [Hel, we regard 7g as a component of
a real affine algebraic variety. We give an explicit system of infinite
number of defining polynomial equations in terms of infinite number of
variables associated to the group Fg (§2-3). Thanks to that expression,
one is able to describe the tangent space of Tg explicitly and obtains
its comparison with the cohomology of Fg;n §4 (this is one of what Weil
intended [W2-31). So far is the real algebraic descriptions of 7g' To
add the complex and Kahler structure on it, we use Eichler integral of
~quadratic differentials. Namely their periods are cocycles of the group
Fg (§85) so that they give arise of a Hodge decomposition of the tangent
space of jg' In this way, one recovers the well known almost complex
sfructure and a Kahler metric on Tg in §6. The integrability was shown
readily in [Sal, §91. On the Kahler metric, one is refered to [Wol-71.

The author express his gratitude to Prof. Maruyama for discussions

on geometric invariant theory as he was preparing the present note.
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§1. Moduli and Teichmiller space for compact Riemann surfaces

We give a quick review on the modﬁli and Teichmuller spaces, which
are more or less standard. Nevertheless, we take special care on the

orientations of the surfaces (see the Remark 1. at the end of this §).

By a Riemann surface X, we mean an l-dimensional complex manifold.
We denote by |X]| the underlying real 2-dimensional manifold. As is well
known, |X| is orientable and the complex structure on X automatically
induces an orientation. So if X is compact, there is a cannonical iso-
morphism: HZ(X,Z)zZ. In the case,its diffeomorphism class is determined
by the first Betti number 2g, where g is called the genus of [|X].

Let S be a compact oriented real 2-dimensional surface of genus g.
We ask a question: how much Riemann surface structures on S such that
the induced orientation agree with the fixed one on S does there exist?

Precisely, we construct the following spaces and ask for their study.
(1.1) Kg:=the set of all complex structures on a surface of genus g /~,
where X~Y, if and only if there is a biholomophic¢c map from X to Y.

(1.2) Tg(S):=the set of all complex structures on a surface S, whose

induced orientations agree with the fixed one on S /~,

where X~Y,if and only if there is a biholomorphic map from X to Y which
is isotopic to the identity map of S. In fact, 7g(S) depends only on g

~ but not on the chosen surface S, since a diffeomorphism S =~ S' induces

a bijection 5g(S) ~ ?g(S'). Therefore, we shall denote 7g(S) by 5g.

Let Diff+(S) be the group of all orientation preserving diffeomorphisms

of S and lel DiffS(S) be its subgroup consisting of all diffeomorphisms
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which are isotopic to the identity. The quotient group Diff+(S)/Diff5(S)
is called the mapping class group. It is known to be finitely presented
and residualy finite([Bil[B-L1). By definition, the mapping class group
acts naturally on the space Tg so that its quotient space is identified
with ﬁg (use that there is an orientation reversing diffeomorphism of a
surface of genus g to itself). In another word, forgetting the isotopy

condition on the elements of 78, one obtains a natural quotient map:

(1.3) »H : 7g B ﬁg

by the mapping class group action on ?g. The ﬁg and Tg are called the
moduli space or the Teichmuller space of compact Riemann surfaces genus
g respectively. We shall see that 7g and ﬂg are complex manifolds and
the map nmm is the quotient map by a properly discontinous holomorphic
~action of the mapping class group on 7g' More strongly, it is known
that Mg has a structure of an algebraip variety defined over Z [ACGH].
To describe the mapping class group algebraically, we recall some
basic facts on compact surface topology. Let S be a compact orientable
surface of genus g with a base point * and a fixedvorientation. There
is a system of simple closeded pathes a, bi (i=1,...,8) on S such that

i)they mutually intersect only at ({x} with the’multiplicity <ai,bj>=<3.l

J
<ai’aj>=<bi’bj>=0 for 1<i,i<g (note that the sign of the intersection

depends on the orientation of the surface), and ii) S\({*}ﬂaiubi) is a
4g-gon. The system is called a canonical dissection of S with the base
point % and the orientation. Denote by ai'and bi the homotopy class in

Kl(S,*) represented by the same pathes. Then we obtain an expression:

(1.4) Fg x> HI(S,*)

for the abstract group:
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(a.b.a b7l > .
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(1.5) r :=<a g1 g

g 1°°°

n =0

i
An automorphism aEAut(Fg) is called orientation preserving (resp.
reversing), if its induced action on H2(Fg,Z)zZ is an identity (resp.
minus identity). This is equivalent to the following: Let J be the sym-
plectic form on Fg/[Fg,Fg] (2H1(Fg,Z) given by <ai,bj>=5ij and <ai,aj>=
<bi,bj>;0. An o€ Aut(Fg) is orientation preserving (rep. reversing), if
the induced element &EGL(Fg/[Fg,Fg]) acts on J as a(J)=J (resp. a(J)=-J)
Let Aut+(rg) and Out+(Fg):=Aut+(Fg)/Inn(F) be the subgroups consisting

of all orientation preserving (outer) automorphisms.

Theorém (Nielsen [N1) The natural map induces an isomorphism:

(1.6) | Diff’(S)/Diffy(S) = Out’ (I'p)

Let us return to the study of the moduli and the Teichmuller spaces.
As explained in the introduction, we aproach them from a view point of
deformation of discrete subgroups of*SLz(R), where the following

theorem on the uniformization of a Riemann surface is fundamental.

Theorem (Poincare [Pol, Koebe [Kol) Any simply connected Riemann

surface is biholomorphic to either the Riemann sphere C, the whole

complexr plane C or the complex upper half plane H.

Apply the theorem to the universal cover X of a compact Riemann surface
X of genus g=2. We see that X is biholomorphic to H. Since the group of
biholomorphic automorphisms of H is isomorphic to PSLZ(R) (through its
fractional linear action on H), the covering transformation group of the

cover X —X is embedded into a discrete subgroup of PSL,(R). This means
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that the moduli of Riemann surfaces of genus g22 may be described in
terms of the moduli of discrete subgroups of PSLz(R). To achieve this
idea precisely, we attach to X the following three aditional structures
and study the moduli of such "structured Riemann surfaces" X.
i) a point * in X and % in X over x,
ii) a biholomorhism ¢:X — H which brings * to the unit i€H,
iii) a canonical dissection of |X| with the base point * and with

the orientation induced from the complex structure on X.

Let a surface X with i)-iii) be given. Owing fo the datum i), the
fundamental group nl(X,*) acts left on X as the covering transformation
group. Using ii),the action of an element yenlcx,*) is represented by an
element ¢°Y°@—1 of Aut(H)~PSL(2,R). Combining this with the isomorphism

(1.4) induced from the iii), we obtain a homomorphims (representation):
(1.7) p : Fg — PSLZ(R)

Clear from the construction, the map X — H induces an expression:
X =~ D(Fg)\H

of the Riemann surface X. So p needs to pe injective with discrete and
co-compact image p(Fg) in PSLZ(R). |

Conversely, let an injective representation p (1.7) with discrete and
cocompact image be given. Then, by putting X:=pfrg)\H and *:=i€H, one
recovers a Riemann surface with the data i) and ii), but not yet iii).
The obstruction to get iii) lies in the féct‘that the pathes in p(rg)\H
corresponding to the homotopy classes ai and bj in ngnl(x,*) may not
give desired sign of the intersection numbers. Let us call p (1.7) to
be positive (resp. negative), if the intersection number of a; and bj
ih p(Fg)\H is equal to 6ij (resp. —Bij). According to this definition,

a representation p (1.7) induced from a surface with iii) is positive.
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According to [W2], for a Lie group G and an abstract group I', put

(1.8) R(I', G):= the set of all group homomorphisms from I' to G,
and
(1.9) R,(F,G):= {PER(T,G) : p is injective, discrete and cocompact).

Since G caries a structure of a real analytic variety with the classical
topology, R(I',G) is a real analytic variety by the weak toplogy. It is
a basic theorem by Weil [W2,I] that RO(F,G) is an open subset of R([,G).

In case G=PSL2(R) or SLZ(R) and F=Fg, we define further for € € (%}
(1.10) Rgcrg,c>:= (PER\ (I, ,G): p is positive (negative) for g=+ ()},

where, by definition, one has the disjoint union decomposition:
+ -
RO(Fg,G) = RO(Fg,G) I RO(Fg,G)
By the use of these notations, one has established a bijection:

(1.11) {Riemann surfaces of genus g with i)-iii)}/~ =~ RB(Fg,PSLZ(R)),

where ~ is the natural equivalence (biholomorphic map preserving the
structures i)-iii)). On the right hand of (1.11), the groups Aut(rg)
and G=PGL2(R)act; for a,gGAut(Fg)xG and peR(Fg,G) put a-pﬂAd(g)eR(Fg,G)
by a-p-Ad(g)(Y):=g—lp(a(Y))g. Note that the actions of Aut+(rg) and
of G preserve R%(Fg,G), but the action of Aut(Fg)\Aut+(rg) interchange
RB(Fg,G) and RB(Fg,G). Note also that the left action of Inn(Fg) is
"absorbed” in the right action of PSLZ(R), for Ad(y)-p=p-Ad(p(¥Y)).
Following equivalence in (1.11) are easy to check.

To forget the structure iii) is equivalent to divide by Aut+(Fg).

To forget the structure ii) is equivalent to divide by PS0(2).

To forget the point ¥ is equivalent to divide by Inn(Fg).

To forget the structure i) and ii) is equivalent to divide by PSLz(R)
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In summery, we obtain an expression:

+ +
(1.11) ﬂg ~ QOut (rg)\Ro(rg,PSLz(R))/Ad(PSLZ(R))
The Aut(PSLZ(R))=PGL2(R) (=an index 2 extension of PSLZ(R)) acts
adjointly on RO(Fg,PSLQ(R)). Since the fractional linear transformation
of an element of PGLZ(R)\PSLZ(R) interchanges the upper and the lower
half planes, we see that its action on RO(Fg,G) interchanges RS(Fg,G)

and RB(Fg,G). In view of this fact, let us consider the space:

+
(1.12) Out (Fg)\RO(Fg,PSL(2,R))/Ad(PSLz(R))
which decomposes into two parts:
+ + .
Out (Fg)\RO(Fg.PSL(Z,R))/Ad(PSLQ(R))

. _ :
I out (rg)\RO(Fg,PSL(Z,R))/Ad(PSLz(R)).

There are two mutualy commutative involutions acting on the space (1.12)
interchanging two parts: the generator of PGLZ(R)/PSLQ(R) and that of

Out(Fg)/Out+(Fg). By any of them, the space (1.12) may be regarded as a
double covering of ﬂg. As a comvention, we employ PGchR)/PSchR) as for
the covering transformation group. In fact, this choice seems to have a
naturality from a view point of invariant thecry (cf §3 and its Remark).

According to this convention, we rewrite (1.11) as:

+
(1.14) Kg ~ Out (rg)\Ro(rg,PSLz(R))/Ad(PGLz(R)),

on which Out(Fg)/Out+(Fg) acts non trivially. In view of (1.3) and the

thcorem of Nielsen, we obtain a description of the Teichmuller space:

g
I

(1.15) R+(Fg,PSL2(R))/Ad(PSLO(R))

g ‘ 0

i

RO(Fg,PSLg(R))/Ad(PGLQ(R))
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~ Inn(rg)\RO(rg,PSLZ(R))/Ad(PGLZ(R))

The expressions (1.15) is not only set theoretic but has real analytic
meaning. By solving implicit function theorem, it is easy to see that
RO(Fg,G) for G=PSL2(R) or SLZ(R) and are real analytic manifolds. The
adjoint actions of PSLZ(R) are proper anlytic and fixed point free. The
action has also local analytic sections. Therefore the quotient spaces
Rg(rg,G)/Ad(PSLz(R)) are naturally endowed with Hausdorf topology with
natural real analytic manifold structure such that quotient map is a
principal PSLZ(R)—bundle. These facts are standard. As for a proof fit

to our situation, see for instance [Sal, 84-61 and its references.

Remark. 1. Even historically notations for Teichmuller spaces
are fixed already, it would have been better to call the space (1.2) by
7;(8) and the samely defined space with reversed orientation by 5;(8).
Then one can introduce 7g as the quotient of 7; u 7; by the involution

PGLZ(R)/SLz(R) and so that one can have natural expressions:

g . g
Tg = Inn(T ONRG(T ,PSL, (R))/Ad(PSLy (R))

<«
=
W
14

Inn(rg)\R (Fg,PSLQ(R))/Ad(PSLz(R)) ,

0
7 ~ Inn(rg)\RO(Fg,PSLz(R))/Ad(PGLz(R))

The quotient of 7g by Out(Fg) is the space of all conformal structures.

2. Introduce some more spaces by putting

wm
5
]

+
Inn(rg)\RO(rg,PSLz(R)),

“
"

+
5
Inn(rg)\Ro(rg,PSLz(R))/SO(U).

It is shown in [Sall that Tg and %g carry natural integrable complex
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structures such that the natural projection {g — Tg is the universal
family of Riemann surfaces of genus g. The natural projection Sldg—» 1g
is a Sl—bundle embedded in the relative complex tangent bundle T(ig/?g)
as the unit circles with respect to the Poincare metric. (To be exact,
in the literature, we used the space RO(F,G) instead of RB(F,G), which
gives a double covering space of what wé consider in the present note).

We remark that the space Slig can be regarded as the universal family
of uniformization maps from H to Riemann surfaces of genus g: let us
consider the natural SLz(R) action SIIgXSLz(R) o Slig from the right.
Then take the quotient by SO(2) of the initial and the target spaces:

1
S‘ﬂ(gle ————»b’[g

For each point of Slig, the map gives a uniformization of a Riemann

surface of genus g and so Sl%g parametrize whole such uniformzations.

This interpretation is the starting point of the present work (cf[Sall)

§2. Representation space of a finitely generated group I' into SL2

We start with an algebraic study of representaion space of finitely
generated group I into SLZ(R)»instead into PSLz(R)=SL2(R)/i1, since
SLZ(R) is more convenient than PSLQ(R) from a view point of invariants.
To treat the spaces RO(F,SLZ(R)) and RO(F,SLQ(R))/Ad(PGLZ(R)) functor-
ially, we represent them as the subsets of real valued points of certain

‘affine algebraic schemes defined over Z (cf. [Hel, [C-S1, [Mo-S1, [L-MI)

For proof and details of some theorems on invariants in 82-4, see [Sa4dl.

Let ' be a finitely generated group. Let R be any commutative ring
with the unit 1. We denote by Hom(F,SLO(R)) the set of all homomorphisms

of I into SL,(R) (if R=R, this is the same as the R(F,SLZ(R)) in Weil's
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noctation). This set of representations can be regarded as the set of

R-valued point of certain affine algebraic scheme Spec(Az(F)) as below.

Assertion. There ezxzists a finitely generated algebra A2<r) over Z
and a representaion o:I' — SL2(A2(F)) such that the correspondence @€
Hom(Az(F),R) {(=set of ring homomorphisms) to ¢oo€Hom(F,SL2(R)) (=set of
group homomorphisms) is a bijection:

(2.1) Hom(Az(r),R) ~ Hom(r,SLz(R)).

In fact the pair (AZ(F), 0) is unique up to an isomorphism. Az(r) is
obtained explicily as a quotient of the infintely generated polynomial
ring Z[aij(Y), 1<i, j<2, v€l'l of the indeterminates aij(?) for 1<i, j<2
and for Y€l divided by the ideal generated by the entries of the matrix

relations o(e)-1I o(yd)-0(y)o(d) for y,8€l and det(o(y))-1 for vEer,

2 ’

where 0(?):=(aij(y)) The map U:F—%SLz(AQ(F)), which by definition is

ij’
a representation,will bhe refered as the universal representation fcr I.

The XEPGL2 acts on AZ(F) by sending Q(?) to X_lo(y)x, inducing the
ring homomorphism AZ(F)—ﬁAz(F)®A(PGL2), where A(PGLz):=degree 0 part of
the graded localization of the polynomial ring generated by entries of

X by det(X). Taking R-valuded points of the rings, the homomorphism

yiels the adjoint action of PGL2 on the representation space:
(2.2) Ad : Hom(F,SLz(R)) X PGLZ(R) — Hom(F,SLz(R))

The categoriacal quotient space Hom(r,SLo(R))//PGLz(R) of the action

GL2

is realized as Hom(Ao(F)P y,R):= the set of R-valued points of the

L2 ), where Az(r)PGLz :=(polynomial€A2(F)

affine scheme Spec(Az(F)PG
which is invariant by the adjoint action of XGPGLZ) (cf [Mu, The.l1.11),

and we have the universal categorical quotient map:
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: PGL2
2.3 _ Spec(Az(r)) — SpeC(Az(r) )

by the adjoint action of PGL2. The quotient map (2.3) admits some group

actions: i) o€ Aut(l') (resp. Cut(l')) acts on AZ(F) (resp. Az(r)PGLz)

equivariantly by sending the entries of o(y) to that of o(x(y)) for vyer,
ii) the spin: x€Hom(I',Z/2) acts on A,(I) and A,(MF°"2 equivariantly by
sending ,the entries of o(y) to that of x(y)o(y) for 7ve€r.

A structural study on the invariant ring and the quotient map (2.3)
will be done in a Theorem in the next 8§3. In the remaining of this §, we
devote our attention for an analysis of R-valued points of the functor
in connection with semi-algebraic geometry of the Teichmuller space.

The Weil's theorem[W2] says that RO(F,SLz(R)) is an open subset of the
real affine algebraic variety Hom(Az(F),R) (=R(F,SL2(R))). Further,owing
to several authors ([Hel,[Jol,[C-S1), it is shown to be a closed subset.
For instance, a result of Jérgensen [J$] states that a representation
p:F—*SLZ(R) is discrete and faithfull if and only if, fof every pair of
Y, & of ' which are not commutative, the following inequality holds.

ltr(Lp(y),p(8)1)-2] + ltripcy)d2-4] > 1.
Note that if Fg is discrete and faithfully represented in SLZ(R), then
it is automatically co-compact, since Fg is torsion free and p(Fg) can
not have an elliptic fixed point and hence Hz(p(rg)\H,Z)sz(Fg,Z)&Z.
Therefore, RO(Fg,SLZ(R)) is a finite union of connected component of
Hom(Az(Fg),R) with respect to the classical topology ([Hei,[C-S],[M—S]).
(For informations on the other componenté'of Hom(Fg,SLQ(R)), see [Gol).

We now compare two representation spaces by the natural projection:
RO(Fg,SLz(R)) — RO(Fg,PGLz(R))

induced from the map SLZ(R) — PSLO(R)zst(R)/{il). Let us verify that
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Assertion. The map is a 2zg-foLd covering.

Surjectivity:if Ei and ﬁiEPSLZ(R) (1£i<g) generate a discrete subgroup

- _..1_..

of PSL,(R) isomorphic to I'_ satisfying the relation TSR BATTB] =1,
then do the representative matrices A..B, ESLZ(R) of A. and Ei satisfy

i
the relation .18¢A.B.AT'BI1)=1 in SL,(R)? This question ([Sill) was

answered affirmatively by several authors (Z(SLz(IR))Icl(KX ), see [Pal).
o

Covering transformation: since PSLz(R)zSLz(R)/(Z/2Z) where Z/2Z is the
center Z(SL,(R)), a spin xGHom(Fg,Z/ZZ)z(Z/ZZ)zg acts on peRO(Fg,SLZ(R))
by letting xp(y):=x{(¥)p(Y). One has a set theoretic identification:
Hom(Fg,Z/ZZ)\RO(Fg,SLZ(R)) > RO(Fg,PSLQ(R)). On the other hand, since
[tr(p(¥))|>2 for ¥#1, the action of the spins induces a simple action
on the set of signs of tr(p(ai)) and tr(p(bi)) and therefore on the set

of connected components. Hence it is fixed point free and covering map.O

As can be reduced to the case of §1, the action of PGLZ(R) on
RO(Fg,SLQ(R)) is fixed point free and proper with local transversal
sections. So the quotient RO(Fg,SLz(R))/Ad(PGLz(R)) is naturaly a real
analytic manifold and Ro(rg’SLz(R)) is a total space of a principal
PGLz(R) bundle over the gquotient space. On the other hand; it will be
shown in a theorem in 83 that the categorical quotient and geometric

quotient of Spec(Az(F)) by the action of PGL, coincide in a domain in

2
Hom(Ao(Fg),R) containg RO(Fg,SLz(R)), which is an inverse image of an

PGL

ocpen subset of Hom(Az(Fg) 2 ,R). This implies that the quotient real

analytic variety

(2.4) fg 1= Ro(rg,SLg(R))/PGLz(R)

is embedded into the reél affine algebraic variety Hom(Az(rg)PGLZ ,R)

as an open and closed subset. In view of (1.15), we see{ihat
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. o , N7 .
(2.5) 7g Hom(["g 2/27) 7g

Here the action of the spin group‘on ?g is simple on the set of comp-
onents of ?g. That is: ?g decomposes into 22g parts, each of which is
isomorphic to Tg. We may call ?g the Teichmiiller space for spin Riemann
‘surfaces, or the Teichmiiller space for an abuse of terminology.

So far as complex or Kahler structure are concerned, fg and §g does
not make difference. We shall devote our attention on ?g here after in
the present note. It is therefore quite necessary to determine the inv-

L2, at least the place where the map (2.3) is a

ariant subring A,,(Fg)PG
geometric quotient map. This will be achieved in 8§3. For the purpose,
let us recall traces (=characters) of the universal representation o.

For any vYe€l, put

(2.6) S(y):i= tr(o(y))

Of course, the relation tr(X_lc(Y)X)=tr(o(Y)) implies that Z(y) €

A2(F)PGL2. Fricke [F-X1 has found several algebraic relations among

the 2(y) for Y€, intending to show that the ring genrated by all such
characters 2(y) is in fact finitely generated and 6g-6 are algebraical-
ly independent in case F=Fg. This was rigoloulsy proved by Helling [Hel
and Horowitz [Hol independently (cf [Mgl). Let us recall some simplest
relations among them. Surprisingly, as we shall see in the §3, these
relations are (essentially) sufficient to recover the invariant ring.

The first trivial relation is’
(2.7) 2(e) = 2

for the unit element e of I'. The next relation well known as the trace
relation ([F-K, formula (2), p.338]), which is essentially due to the

Caylay-Hamilton relation, is the following:
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1

(2.8) T(YIT(8) = T(yd) + Z(y ~8).

Proof. By a use of the fact det(o(y))=1, it is imediate to see the

fact o(Y)+o_1(Y)=tr(o(Y))'12. Multiply o(8) and take the trace. O

8§3. Invariant ring by the adjoint action of PGL,

. PGL
We "aproximate" the invariant ring AZ(F)‘ 2 by a ring RF’ whose

generators and relations can be explicitly written down. By the use of
the ring RF’ we determine the Zariski open subset of Spec(AZ(F)), where
the adoint action of PGL2 induces geometric quotient (Theorem). Then ¥

g
is regarded as an open-closed subset of the affine variety Hom(Rr,R).

As in 8§82, let I' be a finitely generated group. We introduce a ring:
(3.1) ' Rr:= Zis(y) (v€r)1/(s(e)-2, s(?)s(é)—s(y&)-s(Y_lé) (y,8€r))

generated by indeterminates: s(y) for ve€r,

which stapd for the traces 2(y), and divided by the ideal generated by:
s(e)-2 and s(¥)s(8)-s(y8)-s(¥ 18) for v,s€r

which stand for the trace relations in (2.7) and (2.8). As an abstract

algebra, one can show the finitely generatedness of the ring Rr over Z
likewise the proof for the character ring in §2. The correspondence

s(y) +— 2Z(y) induces a ring homomorphism:

PGL

(3.2) R — Ay (M) 2 ¢ A, (M)

r

PGL
We are interested in a_comparison of Rr and A2<r> 2. By definition,

the image generates the ring of characters so that RF®Z® surjects to

L

PG
Az(r) 2 ®Z® (cf [Prl1).
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On the other hand, we show below that they coicides outside of some
Zariski closed sét D (=intersection of discriminant loci defined below)

First, we introduce a discriminant for two elements o and 8 in I' by

(3.3) A, B8):= scaBo 18 y-2

2

= s()2+s(B)2+s(aB)2~s () (B)s(aB)—4.

It is defined as an element in RF’ but its image in AZ(F) will be
denoted by the same notation A(x,B8). This element first appeared in [F

] and has been studied extensively by many authors.

The following theorem, inspired by the work of Helling [Hel, is one

key result in whole of the present paper (cf [Sa4l).

Theorem Let oo and B be any fized pair of elemements of T.

Consider the localizations of Rr and-Az(F) by A:=A(x,B). Then

PGL2
1. A?_(l‘)A is faithfully flat over Az(l“)A c.
) PGL

. 2
2. The morphism Spec(Az(F)A) — Spec(Az(I‘)A

) is the geometlric
quotient map by PGLZ.

3. The homomorphism (3.2) induces an isomorphism:

PGL

(3.4) RF,A S Az(r)A

2

This implies that i)outside of the zero loci of A(x,B), the categorical
quotient map (2.3) is in fact the geoﬁetric quotient map by the action
of PGLZ, and ii) the structure ring of the quotient variety (outside of
‘zero loci of A=A(x,B)) is given by (3.1). These two facts are exibited

by the following two comutative diagrams symbolically.
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Spec AZ(F) oge Spec Az(l")A
(3.5) categorical geometric
: quotient by PGL2 quotient by PGL2

T ~.PGL ¥ PGL

Spec AZ(F) 2 ogen Spec AZ(I")A 2
u

¢ isomorphism
4 d
Spec RF oBen Spec RF,A

The union of Zariski open set ﬂ:=aUBSpec Az(r) {ACct,B)#0} in

INCR AN
Spec A2(F) covers the places of our interest. Then, the following is a

slite modification of the fact known by several authors ([Hel, [Sil,

[C-51).

Assertion. Let p be a prime ideal of Az(r). Then p belongs to

Spec(Az(F))\ﬂ, if and only if either the image op(r) is abelian or op i8

a reducible representation. Here F is the fractional field of AZ(F)/p

and op is the representation ' — SLZ(F) induced from the universal o.

In case of surface group Fg for g2, the (open) subset RO(Fg,SLz(R))

of Hom(Az(Fg),R) is contained in any Zariski open set A(x,B8)#0 for non

commutative pair o,8 of Fg, since p(aBa—l

1

B—I)ESLz(R) is a nontrivial

hyperbolic matrix so that A=trp(ofo B_l)—2¢0. Therefore applying the

theorem, the quotient variety gg:f RO(Fg,SLz(R))/Ad(PGLz(R)) is openly

embedded in the real affine algebraic variety Hom(AZ(F)PGLZ R). The

image is closed in view of the J¢rgensen's result. So ?g is a union of
some connected components of the affine variety Hom(Az(F)PGLZ ,R),

readily known ([Hel, [C-S]1, [M-S1).
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Hom(A, (), R) > Ry, SLy(R))
(3.6) //PGL,(R) l /PGL, (R)
HomA. (P2 Ry 5 % 1= R (F.SL.(R))/Ad(PGL. (R))

2 , g'= BoT,SLy 2
0
1 i%%g%%?on

Hom(Rr, R>
PGL PGL

Since RFQZR — A2(F) 2®ZR is surjective, Hom(AZ(F) Z,R) is a closed
subvariety of Hom(Rr,R). Let us regard now ?g as a subset of the affine

variety Hom(Rr, R). We show that:

?g is an open and closed subset of the real affine variety Hom(Rr,R).
The real antytic variety structure on ?g as the geometric quotient

variety coincides with thatl induced from real affine variety Hom(Rr,R).

Proof. §g is open since it is an open subset of an open subset

PGL R)

Hom(Az(F)A 2, ~ Hom(R R>) of Hom(Rr, R>. ?g is closed since it

r,A°
is a closed subset of a closed subset Hom(Az(F)PGLz ,RY of Hom(Rr,R).D

Therefore, here after we regard Rr as the structure ring for the
Teichnmiller space ?g and ?g is regarded as an open closed semialgebraic

subset of Hom(Rr,R).

Remark. As we see in 81 and also is pointed in Helling [He, 1,
the RO(Fg,PSLZ(R)) consisits of two connected components due to two
orientation classes. As stated in §1, we choose the adjoint action of
PGLZ(R)/PSLQ(R) to identify the two components (cf (1.14), (1.15)).
This enable us to develop a PGLz-invariant theory as in this §3.
In [M-S, pd451]1 and [Br, p65-661, they consider the adjoint action

of SL2 to apply the geometric invariant theory, and claim the second
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vertical map of (3.6) is a SLZ(R) principal bundle. But, since the
character variety X(I') they consider as the target space of the map,
is the quotient variety of RO(Fg,SL(Z,R)) by the PGLZ(R), it seems

necessary to correct the action from SL2 to PGL2.

84. Group cohomology of I' and the tangent space of %g

We compare the tangent space of ?g with the cohomology group of Fg
as originated in [W2-3]. The tangent space of ?g is described by the

derivations of the algebra Rr in view of the last statement in §3.

In general, let R be a commutative algebra with the unit 1. Consider

a point te Hom(Rr, R), represented as a ring homomorphism:

(4.1) t: Rr — R
(which preserves the unit). A t-derivation w of Rr is, by definition,

an additive map w: Rr——4 R satisfying the Leibniz rule:

(4.2) | w(fg)= w(f)t(g) + t(f)w(g)

for any f and gERr. The set of all t-derivations of Rr is denoted by
(4.3) Dert(Rr,R) = {t-derivations of Rr),

which is naturally a right R-module.

Particularly, if R=R and te€ %g then the tangent space Tt?g (recall
that ?g (or equivalently 5g) is a smooth real analytic variety (81)),
is mapped naturally to the space of derivations Dert(Rr,R). The map is
bijective, if and only if ?g is regular at p as the affine scheme of
RF' In fact, this is true seen by (3.6) and its following statements.

Since the generators of the algebra Rr are given by s(y) velr (2.1.1),
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a t-derivation w is uniquely determined if we know the values w(s(y))
€R for ve€l'. For a sake of simplicity, let us denote w(s(y)) by w(y)
and t(s(y)) by t(y). In view of the description (3.1) of the algebra

Rr (or recall the relations (2.7) and (2.8)), a map

w: ' — R

gives a t-derivation if and only if it satisfies:

(4.4) w(e) = 0,

(4.5) w(rs) + wiy ls) = Q(y)t(s) + L(PIW(S)
for v,8€l'. Therefore we have an identification:

(4.6) Der, (Rp, R) = (w:[—R | (4.4) and (4.5))

We compare the space of derivations with the cohomolgy group of T.
First, recall and fix notations of the cohomology with coefficient in a
right "'-module M. The module of cocycles is defined by

ZI(F,M) := {z:T—M | a map satifying the cocycle condition:
z(¥8) = z(¥)-5 + z(8) for "¥,8 €T ).
The coboundary map & is a homomorphism: M — ZI(F,M) given by
S(m)(y) = mvyY - m
for méM and YE€Elr. The cohomology group is the module defined by
Hler,my i= zlar, My /amM
If M is a left R-module, then so are Zl(F,M) and Hl(F,M) and & is a
left R-homomorphism. If a representaion p:F—ﬂSLZ(R) is given, then by
a composition with p, any SLz(R)—module M becomes a N-module. In such
case, t§ stress the p dependence, we put subscript p in the notations
of the module of cocycles, coboundary maps and cohomology groups.
Let tp:Rr——ﬂR be the ring homomorphism defined as a composition of

(3.2) with a homomorphism A2(F)—~R associated to a representation p
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(§2 Assertion). That is: tp(?)=tp(s(7)):= tr(p(y)>). In such situation,

we define a comparison R-homomorphism

1
4.7) HO(F,SIZ(R)) — Dertp(Rr,R) s

by the correspondence:

t (Rr,R)

z € Zé(F,sIZ(R)) — tr(pz) € Der
p

tr(pz)(Y) := tr(p(y)-z(y))

To show that this is well defined, we need to verify two statements:

i) For zez;(r,slz(R)), the map tr(pz):T — R satisfies the relation
(4.4-5) for the tp—derivations.
ii) The tp—derivation tr(pap(X)) associated to the coboundary 6p(X)

for any X6512(R) i8 equal to zero in Dert (RF,R).
p

Proof of i). Let zEZé(F,slz(R)) as above and put w:=tr(pz).

Clearly w(e)=tr(p(e)z(e))=tr(0)=0. For v,d €I, consider

1

w(yd) + wy ls) := tr(p(?&)z(?é) + p(y'la)z<y"la>).

By a use of the cocycle condition dn 2z, this is rewritten as:
tr(p(y)p(&)(p(a’l)z(y)p(s>+z(a))+ptv"1)p(a)(p(a'l)z(y'l)p(a)+z(5>)).

1

Using the fact z(Y_ )= -p(Y)z(Y)p(Y_l) (easily seen from the cocycle

condition), this is rewritten as

%) tr((p(?)z(?)-z(v)p(v_l))p(&)) + tr((p(?)+p(v_1))0(6)2(5)).
_fab _[p g :
Let p(y)= c d] and z(o)= rosl® Due to the facts p(Y)ESLz(R) and
2(¥)€sl,(R), one has p(y_l)=[_g _2] and s=-p. Therefore, onw obtains:
-1, _fab d -b] _
%) p(y) + py by = [C d] . [_C a] = tr(oc(¥)) E,
_ -1, _ [a b]fp a [p q] [ d —b]
ko) PP z(¥) -z (¥)py Ly = [c d][r _p] ] B B

= (ap+br+cq-dp) E = tr(o(y)z(y)) E.
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Substitute *%) and %*%%) in %), and one obtains the formula,

wirs) + wiy 18)

tr(p(yX>z(Y)Xtr(p(d)) + trpY)Itr(p(d8)z(8))

w{y) tp(&) + tp(?) w(d) . o

Proof of ii). For Xeslz(R) and ye€r,

1]

L]

tr[p(y)(ép(X)(y))) = tr(p(r)(X—DCY—l)Xp(Y))) tr(p(y)X-Xp(y))

a

We give a criterium for the map (4.7) to be isomorphic. The theorem in

§3 applied to the R[S]/(ez)-valued points implies the following.

Theorem. Suppose there exist o and Be€r such that tp(A(a,B)) i8

invertible in R. Then the map (4.7) is an isomorphism of R-modules.

1
Hp(r,slz(R)) ~ Dertp(Rr,R)

The advantage of the isomorphism lies in the fact that the right
hand side module Dert(Rr,R) (4.6) is described only in terms of the
point t (4.1) in Hom(Rr, R) and is not necessary to refer to the
equivalence class of representations p over t, whereas the left hand

side module Hé(F,slz(R)) depends on the representative p over t. But

exactly for that reason, the left hand side carries various structures.

85. Eichler integrals of the quadratic differentials

We recall a notion of an Eichler integral. Their original form are
given in [Bol,[El1]. For detailed account on Eichler-Shimura isomorphism
one is refered to Shimura [Sh1-2]. For relations with Kleinean groups,

see [K1]l. In connection with the complex structure on the Teichmuller
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space and a géneralization of abelian integrals, see [Sa3l.

LLet us fix a cocompact discrete féithfull representation p: Fg—a
SLZ(R). Let H be the complex upper half plane with the coordinate z and

consider the associated Riemann surface Xp:= p('\H. The fact that the

representation p is not into PSLZ(R) but into SLz(R) implies that the
Riemann surface Xp caries not only the structure of the uniformization
(as discussed in i),ii) and iii) in §1) but also some more: called

the spin structure as described below.

/

For any integer n€Z, let GH(Kﬁn 2) be the sheaf of OH—free module

)n/z

of rank 1 generated by a symbol Gi—

dz . In case of n<0, we denote the

ab

n/2 -n/2
symbol G—J by dz . We define a right action of A=[C q

dz
-n/2
on the module OH(KH )

/2 n/2
n/2 . d 1 az+b nfi)
(5.1) Ad (A): @(Z)(EE) g w(EE:E)(CZ+d) a7 .

] eSL, (R)

by:

We call this the adjoint action of A and denote it by ad"2(py.

n/2 Lith p, r, acts on the module OH(Kén/z) so that the

quotient is a sheaf of OX -module denoted by OX (K;n/z) over X .

p P p P
Let F(H,GM(Kﬁn/z)) be the module of global sections over H. Then

the invarant subspace F(H,OH(Kﬁnlz))p(rg)

Composing Ad

is canonically isomorphic to

the finite dimensional complex vector space N(X_,0 (K—n/2
. P Xp Xp

rank is equai to 0, 1, g or -(n+1)(g-1) according as n>0, 'n=0, n=-2 or

)), whose

n<-3 respectively, easily calculated from Riemann-Roch theorem. More in

general,one has the natural identification: H;(rg,r(H,?H)) ~ H‘(xp,7X )
: P

for a sheaf ?H on H admitting SLZ(R) action with 5x;=?H/p(Fg).

For each n20, consider a map defined by a differentiation:

/2 n/2+1

n+1, ; -n
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(n+1)

n/2
) _— (z)dzn/2+1

®((z) (a‘-z':'
(n+1)

Here ¢ denotes the n+l-th derivative of ¢ with respect to the
coordinate z. It was a remarkable obserbation due to G. Bol [Bol that
the map 8n+1 is equivariant with the SLQ(R) actions on the bothsides.

That is: one has the relation:

1
d )" ( (az+b) n) - (n+1)(az+b) -n-2
(dz) ¢ cz+d (cz+d) = ¢ cz+d (cz+d)

for any function ¢ in one variable z. This fact can be elementarily
checked by induction on n, whose verification is left to the reader.
n+l . . . n+l . . .
The map 9 is surjective. The kernel of 9 is the n+1 dimensional
vector space over € of forms with coefficients in polynomials of degree
less or equal than n in the variable z. Let us observe the Kkernel more

c d
]; Let Sym™(R%) be the n-th symmetric

closely. Let R2 be the space of 2-column vector [3], on which A=[a b]

au+bv

ESLZ(R) acts naturally by [cu+dv

tensor product of RZ, which is naturally identified with the space of

binary n-forms un, un—lv,..., vn spanned over R. Using an inhomogeneous
coordinate:’ z=u/v, the correspondence: P(u/v)vn — P(z)(%;)n/z gives

a natural isomorphims:
(5.3) syn" (R®)®pC = Kerda"'!

as SLZ(R)—module (cf (5.1)). This implies a quite important consequence
the kernel of 8n+1 obtained a real structure so that it admits an
operation of complex conjugate.

Let us denote by Symn(Rz)H the local system with constant fiber
Symn(Rz) defined over H. The SLz(R) acts naturaly on the local system

-n/2)

equivariant with its action on the sheaf OH(KH w.I'.t. the embedding

(5.3). So we obtain an SLZ(R)—equivariant short exact sequence:

/2, an*1 n/2+1

n n2 -n
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Let us return to the map (5.2).

Definition. For a o€ F(Xp, 0 (Kn/2+1)), any of its inverse image

X X
p P
n+l . -n/2 . . .
by the map 23 in F(H’GH(KM ) will be called an Eichler integral of
o and will be denoted by Iw. By definition, the Eichler integral exists
for any o and is unique up to an addition of an element of Symn(Cz).

The ambiguity of the integral will be called the integral comstant.

Let |w be an Eichler integral. For any Y€, the image by the adjoint

action ( w)’Adn/z(p(Y)) is again an Eichler integral for o, due to the
equivariance of 8n+1 and Y invariance of w. Namely
8n+1((Iw)-Adn/z(p(y)))=[8n+lfm)-Adn/z(p(y))=m-Adn/2(p(Y))=w.

n/2

So the difference (Im)'Ad (p(?))—fw is an integral constant in

Symn(R)®RC, which we shall denote by fyw and call the period of the
integral |o for YEFg. So:

(5.5) f © = (Im)'Adn/z(p(Y)) - fm
¥

By definition, the period of the integral satisfies the following

addition relation for ¥y and § erg:

(5.6) f © = (f 0)-Ad" 2 (p(s)) + f ®
Yé ¥ )

For instance, if n=0, weF(Xp,OX(Kx)) is the abelian differential
of the first kind. Then Iw is the indefinite integral of Q viewed as a
function on the universal covering H of X. The period Iym is‘nothing
but the period in the classical sense, so the (5.6) is the standard
addition relation of the periods.

n/2+1. P

n/2+1 B
)) = r(H’OIH(KIH )) s

(K
X
P (o]
the retation (5.6) is the cocycle condition for the map Y€l b jym €

In general, for a fixed w€ (X ,OX
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Symn(Rz)QRC, so the map is a cocycle Z;(F,Symn(R)®RC). The cocycle fym
is determined from o up to an ambiguity of adding a coboundary of an
integral constant from Symn(R)®R€. So we obtain a map, which associates
to a form v the cohomology class of its periods of Eichler integral.

. +1 1 n,n2 n,n2
5.7) Pn. F(Xp,Oxp(pr )) — Zp(Fg,Sym (R )®RC)/6p(Sym (R )QRC)

1 n,,2
o~ g
Hp(Fg,Sym (R"» RC
The source space is a complex vector space of rank g for n=0 and rank
(n+1)(g-1) for n>0 as well known by a use of Riemann Roch thorem. On

the other hand, one has

1 np2.. _ f 2g n=0
rankp H (Fg,Sym (R = 2(n+1) (g-1) n0"

This is calculated roughly as follows. Since Fg has 2g generators with
a single relation, Zl(Fg,Symn(Rz))={(zi)e(Symn(Rz))zgl a single cocycle
condition). Then, rank of Hl(Fg,Symn(Rz))=Zl(*)/5(Symn(R2)) for n>0 is
o ey e M2 N2 e W2 o
equal to Zg-rank(Sym (R™))-rank(3ym (R7I))-rank(Sym (R")). Here one
needs to check that the cocyle condition and the coboundary map are
non-degenrate. For n=0, the Fg action on SymO(R2)=R becomes trivial.
Then the cocycle condition and the coboundary map degenerate so that

the rank is 2g-rankR(R). a

Thus the source space of the map Pn (6.7) is half dimensional of the
target space. We shall show that the image Im(Pn) does not intersect
with the real subspace HI(F,Symn(Rz)). This can be achieved through
the following Eichler Shimura isomorphism:

Theorem ([E1, [Shl) The inclusion map Symn(Rz)H — oM(Kﬁ"/z; (5.3)

induces an isomorphism of R-vector spaces:

1 n,o2 1 -n/2
5. - 2 n
(5.8) Hp(rg,Sym (R Hp(Fg,F(H,OM(Kﬂ )))D
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~ Hl(xp,ox(x;“/2>)
p “p

The isomorphism of the first and the second line is a general fact in
a comparison theory of group cohomology and sheaf cohomology.

We draw some consequences of the theorem. The exact sequence (5.4)

viels an exact sequence: 0—+Symn(C2)X—%@X(K;n/2)—+@X(K;/2+1

by dividing by p(rg). Take the long exact sequence of the cohomology

associated to that. Applying the vanishings F(X,OX(K;n/Z))={O} and

HI(X,OX(K;/2+1))=O (n>0) to the long exact sequence, we obtain:

(5.9)

0— F(Xp,GX

— X
>—0 on o

&?2*Lyy o oplr L sym"(R%y)re, ¢ — nlcx ,0. k1
p Xp £ R pTR, X

where the first morphism is the map Pn (56.7). The isomorphism (5.8)

2)) —0

says that real subspace Hl(Fg,Symn(Rz)) of the middle module is
isomorphic to the third module. Particularly the real subspace should
not intersect with the kernel of second morphism = Im(Pn):

Y r L syn" R%)) 0 ImcP ) = (0).
This implies that the complexification Hl(rg,Symn(Rz))®R€ decomposes
into a direct sum Im(P ) ® TE?F;T of conjugate subspaces. In view of

the exact sequence (5.9), the Im(Pn) (resp. Im(Pn) ) is cannonically

- 9
isomorphic to I'(X_,0 (Kn/2+1)) (resp. Hl(X,O (K n/"))). Thus one
I'o] Xp Xp X X
obtains a decomposition:’
(5.100  H Y, sym"R¥e,C =~ Tx.,0. k%21 e nlx_,0, (k1%
g R p Xp Xp p Xp Xp

which is the goal of this paragraph. We remark that the two factor

spaces are {~dual to each other due to the Serre duality.
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§6. Complex structure on the tangent space of %g

Let tE?gc Hom(Rr,R) be a point of the Teichmiller space. By denoting
t(y):=t(s(y)) for v€lr, to give the point t is equivalent to give a map
t: Fg — R satisfying i) the algebraic relations:

1

(2.7-8) t(e)=2, t(PIL(8)=t(¥8)+t(y 1&)

for ?,Berg, and ii) the semi-algebraic conditions (ie. for t to be the
trace of a faithful and discrete representation, for instance the
Jérgensen's inequalities): |t([y,81)-2]+|t(¥)%-4]>1 for v,s€r.

The real tangent space of Hom(Rr,R) at the point t is given by the
set of t-derivations Dert(Rr,R). Recall that to give a t-derivation w
is equivalent to give a map w: Fg — R satisfying

(4.4-5) w(e)=0

and 1

WP E(8) + w(d)t(¥) = w(¥d) + w(y &)

On the other hand, recall that t-derivations can be obtained also from
cocycles of Fg with coefficients in slz(R) as follows. Namely, let p:
Fg—*SLz(R) be any representaion over t. That is: p and t are related by
t(y)=tr(p(y)) for velr. The Fg acts on slz(R) by the compositon of the
adjoint action of SLZ(R) with the map p. Then for any cocycle zGZL(Fg,
slé(R)), the map tr(pz):v€l B tr(p(y)z(y¥))€ R satisfies the derivation

condition (4.4-5) (cf(4.7)). This means that one obtains a R-linear map

1 ~
(6.1) | Hp(rg, SIZ(R)) — Dert(R Ry,

Mg

which was shown to be isomorphic (84 Theorem). By complexifying the

same procedure, one obtains a C-linear isomorphism:

: 1 N |
(6.1) Hp(rg, slz(R))®R@ o Dert(Rr R R)®RC

g
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preserving the real structure.

On the other hand, let us give a natural SL,(R) isomorphism
(6.2) sym® (R®) = s1,(R)

This is obtained as follows. The infinitesimalization of the action of
SLz(R) on H induces a Lie algebra homomorphism from slz(R) to the Lie
algebra of the global holomorphic vector fields on H. Explicitly, it

is given by the map

d

2
X € s1,(R) > 1,z)X[] e

_ -1
1 € T'(H,8) = C'(H, OH(KIH »)
Clealy by the map, slz(R) is mapped to the space of vector fields of
real polynomial coefficeints of degree less or equal than 2. This

together with (5.3) means the isomorphism (6.2).

Recall also the map (5.7)

. 2 1 2 . n2
P2 : F(Xp,Ox (KX )) — H (Fg,Sym (R ))®RC
P P
2 p(I" D
by associating to a guadratic differential o € F(H'OH(KH)) £

F(X,GX(Ki ), the period fym of its Eichler integral. Combining P2 with

the isomorphisms (6.2) and (6.1),one .obtains an injective C-linear map:

2
(6.3) P F(XD,OX (KX )) — Dert(Rr ’R)QRC

p p g

22

whose source is half (=3g-3) dimesional complex vector subspace of the

target space. As was shown in §5, P, is injective and its image does

4

not intersect with the real subspace Dert(Rr,R) in the target. We show:

The image of P, does not depend on the chosen o.

Proof. Let p'= p-Ad(A)= A lpA for an AEPSL,(R) be another
representaion over t. Then the map z—A(z) induces the isomorphism

-4 . 2 2. . . .
Xp,_Xp and hence Ad (A): OH(KH) — OH(KH) induces the isomorphism
2 2

F(Xp,@xp(KXp)) F(Xp,,OprKXp')). Let us show that the t-derivation

14
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w:=tr(p'fm) associated to the period of w€l(X _ ,0 (Ki )) coincides
P p
with the t-derivation w':=tr((p-Ad(A)-(Im-Ad_4(A))) for the period of

-4

X

o-Ad 4(A). Since f(m-Ad'4(A))=(fm)-Ad2(A) (equivariance of 8° with the

SLZ(R) action), one has a relation among the peiods:

1 2

(lor-ad? (arad?a loyray - (Im)~Ad (A)

f (o-Ad”"4ca))
.

(f ©)-AdZ (A).
¥

So the t~derivation w' associated to the period of w'Ad_4(A) is given b

w'(y) = tr(A_lp(Y)A-((fym)'Ad(A))) = tr(A—ID(Y)A-A_l'(IYm)°A)
= tr(A'lp(Y)chm)A) = tr(D(Y)fyw)
= w(y).
This implies the coincidence w=w' of the t-derivations. o

Applying the decomposition (5.10) to this situation. In summery,

Assertion. At any point te€ ?g C Hom(Rr ,RY, the complexification
g

of its real tangent space has a canonical decomposition:

2 1 -1
,R)®RC ~ r(Xp,Ox (KX )) @ H (Xp,OX (KX )

g p “p p p

(6.4) Dert(Rr
where i) the decomposition does not depend on the choice of p over t
ii) the two factor spaces are complex conjugate of each other,

iii) the two factor spaces are C-dual space of each other.

By this description, the real tangent space Dert(Rr,R) obtains a
complex structure and a Hermitian structure as follows:

i) as the complex structur for Dert(Rr,R), we employ the second factor



158

of the decomposition (6.4). That is: the almost complex structure J (an

endomorphism on Dert(Rr,R) with J2=—1) is defined by a multiplication

of /-1 (resp. -/-1) on the second (resp. the first factor) of (6.4).
More directly, the isomorphism

-1
0, (K, 1))
(5.8) R R
(6.2)

defines 'the complex structure on the tangent space thgzDer(Rr,R) at t.

(6.5) Der, (R.,R) =~ H;(F,SIZ(IR)) ~  HI(X

r (4.7)

ii) a hermitian metric on the complexified tangent space Tt?g is
given as follows. Let £, n be tangent vectors in Dert(Rr,R) at t € §g'
By the isomorphism (6.5), consider the vector & and n to belong to

Hl(Xp,OX(KX_l)). Use the complex conjugate (Assertion ii)) so that n

belongs to F(XP,OX(KXZ)). Then the duality (Assertion iii)) yiels the

hermitian form g:

(6.6) g(E,n) = <E,n>

It is rather a formal task to identify the above complex structure with
the standard complex structure on the Teichmuller space by a use of
Beltrami differentials (cf [Bel), and the above hermitian metric with
the well known Weil Petersson metric [W11[Ahl. So if we assume these
identification, the almost complex structure is integrable and the
metric is Kahlerian. But from our view point, it is desirable to show
theses facts directly in terms of representation spaceé, without use
such identifications.

The integrability of the above almost complex structure on the space
RO(Fg,SLz(R))/Ad(PSLz(R)) (and hence on %g) is réadily shown in 9.5
Theorem [Sall. In a similar contex, it may be nice to give such
description for the Kahlerity of the metric. For details of this

metric, one is refered to a series of works of S. Wolpert [Wol-71.
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