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§1. New functors ®q Ind, ®q Res and zeta functions of Shimura varieties

Let G be a group and H be a subgroup of index n < co. Let k be a field and
V be a vector space over k of dimension d < co. Let o be a representation of H
into GL(V). Let G = U_;s;H be a coset decomposition and put @ = U]_,s; H,
where r is any integer such that 1 < r < n. Let H' be the stabilizer of  under
the natural action of G on G/H:

(1.1) H ={geG|gQ=0}.

We can construct a representation 7 of H' in the following way. For every i,
1 < i < r, we prepare a vector space s;V over k which is isomorphic to V. Take
g € H'. Then we have v S

gs;i = Sj(i)hia 1<2<r, h; € H.
Here 1 — j(7) is a permutation on r-letters. Put W = @[_; s;V and set
(1.2) T(9)(®i=18ivi) = @iz sjyo(hi)vi,  sivi € siVi.

Extending (1.2) k-linearly to whole W, wé can easily verify that 7 defines a repre-
sentation of H' on W.
The definition (1.2) is somewhat informal. We can rewrite it as follows. Let

Vi, 1 <1 < r be a vector space over k isomorphic to V. Put W) = @[, V;. For

g€ H', set
g—ls,- = sk(i)h’:a 1< <, h: € H.

Then we find ¢ — k(z) is a permutation on r-letters and that
i(k@) =1, kg = (h))7! = 57 gsiy)-

Put

(1.3) 71(9)(®f=1vi) = ®T10(si  gsk(i) ey vi € Vie

This is merely a reformulation of (1.2) identifying s;V with V;. Thus, by (1.3),
71 defines a representation of H' on W; which is equivalent to 7. We see easily
that the equivalence class of 7 does not depend on a choice of {s;}. We denote
71 by Qq Indgla or ®qInd(s; H — H'). We can perform similar construction
replacing @ by @. The representation constructed using @ instead of ® in (1.3)
shall be denoted by @glndgla or ®qlnd(o; H — H'). We have

(1.4) dim(? Indg,a) = (dimo)", dim(GQB Indgla) = r(dimo).
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Examples. (1) If @ = G, then H' = G. Clearly ®¢Ind$ o is the usual induced
representation.
(2) If @ = H, then H' = H. We have ®HIndH o EBHIndH oc™o.
(3) Assume ) = G, dimo = 1. Then 0 — ®¢Ind§o is the dual map of the
transfer map G/[G,G] — H/[H, H].

Let 7 = @q Indﬁ'a be realized by (1.3). Let x, and x, denote characters of &
and 7 respectively. We can express xr in the following way. Let {e1, ---, €5} be a
basis of V over k. Put

o(h)e; = Z oji(h)e;, he H, 1<:<d.

Then {e;, ®e;, ® - - Qe;, } make a basis of ®7_;V; when jj, - - -, j, run over [1,d]".
We have

7(9)(®f=1€5:) = ®F=10(s7 95k (3))Esngsy»

( gsk(:) Cixiy = Zal)k( )(S gsk(:))

Hence ®_,e;; contributes ,
r
-1
Hajijk(i)(si gsk(i))
i=1
to the trace. Therefore we obtain
r
(1.5) xr(9) = Z H Uj.‘jk(.‘)(si—lgsk(i))a g E,H'-
jls“' 7jfe[17d]r =1

If g € NI_ysiHs7' C H', then (1.5) simplifies to
T
(1.6) xr(9) = T xo(s7l9s), g € NiysiHsi

The above construction @q Indg’a applies also to the case where o is a A-adic
representation of a Galois group or o is a representation of a Weil group. In other
words, the continuity condition of ®q Indgla can easily be derived from that of o.

We shall consider the case of A-adic representation in more detail. Let F' and
E be algebraic number fields of finite degree. Let A be a finite place of E and let

oy : Gal(Q/F) — GL(V)

be a A-adic representation . Here V is a d < co dimensional vector space over E).

Take G = Gal(Q/Q), H = Gal(Q/F), G = U*_;s;H, Q@ = Ul_;s;H and apply the
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above consruction. Let F’ ' be the fixed field of H' and F' be the normal closure of
F. Put K = Gal(Q/F). We have H' = Gal(Q/F') D K. Then 7, = ®qInd¥ 5y
defines a A-adic representation ‘

7y : Gal(Q/F') — GL(W)

where W is a d"-dimensional vector space over F).
Let S be a finite set of prime ideals of F. We assume that o) is unramified
outside of S. If p is a prime ideal of F such that p ¢ S, we set

(1.7) fo(oa, X) = det(1 — ox(F,)X) € Ex[X],

where F, denotes a representative from the Frobenius conjugacy class of p in
Gal(Q/F).

Let p' be a prime ideal of F' and let ' be a prime divisor of p’ in F. For
1 <1 < r, let p; be the restriction of 3;1‘43’ to F. Then the set of prime ideals
{p1,p2,--+ ,pr } does not depend on the choice of P’ and {s; }. Let S’ be the set
of p' such that either one of p; ramifies in F/Q or that o ramifies at one of p;.

THEOREM 1.1. Let the notation be the same as above. Then 7\ is unramified
outside of S'. If f,(o0x,X) € E[X] whenever p ¢ S, then for any prime ideal
p' ¢ S' of F', we have f,(),X) € E[X]. Furtheremore if \' is another finite place
of E and oy is a X-representation of Gal(Q/F) unramified outside of S such that
fo(or, X) = fo(or, X) if p ¢ S, then we have f,(1y, X) = fo(7ar, X) forp' ¢ S'.

PROOF: From the realization of 7, by (1.3), we have
(1.8) Ker(7y) D NI_ys;Ker(ay)s; .

Assume p' ¢ S'. First we shall show that 7, is unramified at p'. Let P’ be a
prime divisor of p’ in Q and let I be the inertia group of . It suffices to show
7A(Ig) = {1}. By (1.8), this assertion follows if we could show

(1.9) si—ll‘g,,si CH,

(1.10) ax(sy Ipsi) = {1}

for every 1 < i1 < r. Let P be a ptime ideal of F' which lies under 9. Since
si—lI@s,- = I ;-1g, (1.9) is equivalent to I -1y, C Gal(F'/F), where I -1, is the
inertia group of s !9’ in Gal(¥/Q). This condition is equivalent to that s7lyp!
is unramified in F/Q, i.e., p; is unramified in F//Q. Hence (1.9) is verified. Since
s719' is a prime divisor of p; in Q, (1.10) follows from the assumption that oy is

unramified at p;.



Next we shall show E-rationality for p' ¢ S'. Put

K =Gal(Q/F), G=G/K, H=H/K,
0=Q/K, F,=F, mod K €G.

Let U be the cyclic subgroup of G generated by F,.. Let
(1.11) Q= u'" “WULiH, 1;€eG

be a double coset decomposmon of Q. For every j, let n; be the minimal positive
integer a such that F €t; F_ . Then

(1.12) Q=Uur, UN FLLHE
is a coset decomposition of 2. Take t; € G so that ¢; mod K = ;. Then
(1.13) Q= Um =1 U:liol siiH, 845 = F:,tj

is a coset decomposition of {}. We may realize 7) using (1.13) and (1.3) on

m n;—1
=Q & Vij, Vi; 2V.
j=1 i=0
Since ';"'ISin _ { Sn,~1,;H | if ? =‘0,
si—1;H if 1<21<n; -1,
we have

n;j—1

()71 812y vi3) = By (a1 Fy t)om,1,5 ® (8127 i1 3)).
For 1 < j < m, let A; be the linear operator on ®?i;l V;j defined by
A;j (®z 1 v,,) = a,\(t lF 't 3)Vn;—1,4 ®(®:—1 Vi-1,5)-
Then we have 7)(Fy) = ®JL; A;. Therefore it suffices to show
(1.14) det(1 — A;X) € E[X], 1<j<m.

Let P’ be a prime divisor of p' in Q and let Fg € Gal(G/F') be a Frobenius
element of P'. We may take F» = Fy,. We have t;lF;f’tj = t g Let p; (resp.

p}) be the restriction of ¢;'§' to F (resp. F'). Let f; (resp. f]) be the degree of
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pj (resp. p};) in F/Q (resp. F'/Q). Let Ft-x be a Frobenius element of ¢; 1% in
Gal(Q/Q). We may assume

(‘F‘tj_l‘il’)fj = ij, ( t tpl) " Fp; = Ft;-_l‘ﬁ'

Hence we have

-1 n; 7 . f!

G = ()™ € B
Therefore f; must divide n;f; and we obtain

t—anJtJ — F“Jf]/f]

Now the assertion (1.14) and also the last assertion of Theorem 1.1 follows from
the next Lemma.

LEMMA 1.2. Let V be a finite dimensional vector space over a field k and let
A € End(V). Let W = @*} V;, V; = V. Define Ay € End(W) by
A®Ivi) = Ava1 ® (®1 vin)-

Put fa(X) = det(1 — AX), fa,(X) = det(1 — A1X). Then fa,(X) depends only
on f4(X). Furthermore if ky is a subfield of k such that f4(X) € ko[X], then we
have fA; (X) S ko[X]

The proof is omitted since it is easy. This completes the proof of Theorem 1.1.

Let oy : Gal(Q/F) — GL(V) and Ty : Gal(Q/F') — GL(W) be as above.
If o) is of Hodge-Tate type, then we can show that 7, is also of Hodge-Tate type
and its type can be determined.

Let p be a rational prime which lies under A. Set

ppooz{zGlePn=1 forsome 1<a€Z}.

Define a homomorphism y of Gal(Q/Q) into Z; by

g(2) =29, g€ Ga(Q/Q), € pp.

Let p be a prime factor of p in F' and take a prime divisor 8 of p in Q. We identify
Q with Q‘p and consider pp~ as a subgroup of QP We regard E) as a subfield

of Qp Let C, Qp be the completion of Qp Put V¢, = C, ®g, V. Then
Gal(Qp/F, v E,\) 3 g acts on Vc, by

9(c®v)=g(c)®ar(g)v, ¢c€Cp, vEV.
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For every t: € Z, let
Vi={ve Vg, |g(v) =x(9)'v forevery g€ Gal(Qz/F,V En)}

and put V(i) = C,®F,vE, V'. Then @i,V (i) can be considered as a sub Cj-vector
space of V¢, (cf. Serre [10], III-6). We call o), is of Hodge-Tate type at p if

(1.15) Ve, = ®i,ezV (%)

PROPOSITION 1.3. Assume that o) is of Hodge-Tate type (1.15) at every prime
factor p of p in F. Let p' be any prime factor of p in F'. Define prime ideals
p1, - ,pr of F as above. Then T) is of Hodge-Tate type at p' such that

Co®u W =&, iy ez Wiy, + 20, + -+ +1p,).

PROOF: Let P be a prime factor of p’ in Q. Let F’ be the normal closure of F in
Q and P’ be the restriction of ' to F. For every 1 < i < r, take v; € V*% so that

gu; = x(g)i’iv;, g€ Gal(a.;,,/F,,'. V Ejy).
Then v1 ® --- @ v, € C, ®g, W and we can easily verify that
9(®i=1vi) = x(g)"m+H (®[ywi) if g € Gal@Qg/Fw V Ey).

In view of the injectivity result of [10], III-6 and III-31, Theorem 1, the assertion
follows immmediately.

Let o) : Gal(Q/F) — GL(V) be as before. We define L-series L(s,0))
attached to o) by

L(s,0)) = H det(1 — a,\(F,)N(p)—’)_l,
P¢S

a formal Dirichlet series with coefficients in E). We assume that F' is normal over
Q until (1.17). For 1 <: < r, put

oh(h) = or(s7 hs;),  h€ H = Gal(Q/F).
Put 7, = Rq Indgla,\. Then we have
(1.16) nlH Qi
Therefore we obtain

Indf(®i=103) ¥ & 575(m ® X)-
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Here x extends over irreducible representations of G/ H and we have assumed that
E, is sufficiently large so that every x is realized over Ey. Now the well known
property of L-series yields

(1.17) L(s,@0=108) = [ L(s,m®x)
‘ x€G/H

up to finitely many Euler factors.

We are going to consider a relation between ®gq Indg'a)\ and the Langlands L-
function used to express the zeta functions of certain Shimura varieties (cf. Lang-
lands [8]). Let F' be a totally real algebraic number field and B be a quaternion
algebra over F. Set H = Gal(Q/F). Fix an embedding of Q into C. Then JF can
be identified with Gal(Q/Q)/H. Let G = Resp/q(B>). Then the L-group LG of
G is given by

“G = GLy(C)’" x, Gal(Q/Q)

where the multiplication is defined by
(91,91)(g2,02) = (9101(g2),0102), 1,92 € GL2(C)’F, 01,0 € Gal(Q/Q).

Here we take the action of Gal(Q/Q) on GL2(C)’F by

U(g) = (ga—lr)re.fp for g= (gT)TGJm gr € GL?(C)

Put £LG® = GLy(C)/r. We shall define two representations of L@, Let V =
BreipVr, Vi = C2. Let ry be the standard representation of L3O on V,ie.,

9(Brespvr) = resp grvr, 9= (g5) € LG
For o € Gal(Q/Q), define I, € GL(V) by
Ia(@rervr) = BreJr Vo-ir.

Then we can verify

(1.18) 10’102 = 101102, 01,09 € Ga.l(_Q-/Q),
(1.19) Lrig) = ri(o(@)]sy o€ Gal(Q/Q), g€ LGP
Put

ro((9,0)) =r4(9)ls,  (9,0) € LG.

By (1.18) and (1.19), we see easily that ro defines a representation of /G on V.
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Let 6 be a subset of Jp at which B splits and B ramifies at J. F\6 We assume
that 8 is not empty. Since JF is identified with Gal(Q/ Q)/H, é can be identified
with a subset Q of Gal(Q/ Q) /H. Let

= {9 € Gal(Q/Q) | g2 = 0}
and let F' be the subfield of Q which correspbnds to H. Let W = Qres5 Vrs
Vi 2 C2. Let r} be the representation of ZG® on W defined by
g(®‘r€6v1’) = Qres grvr, 9= (gr) € Lat.
For o € Gal(Q/F"), define J, € GL(W) by

Ja(®r€6vr) = Qres Vo-1r-

Then we have
J0'10'2 = Jdl sz) Jo’rl*(g) = 'I‘;(O’(g))']a-
(0)

for 01, 02, 0 € Gal(Q/F"), g € LG®. Therefore we can define a representation r;
of GLy(C)’F x, Gal(Q/F") by

n(g,0) =ril9)ds,  9€'6, o€ Gal(Q/F).

Then we let ‘

r1 = Ind(r{”; £G? x, Gal(Q/F') — LG). |
THEOREM 1.4. Let m be an automorphic representation of G4. Let E be an
algebraic number field of finite degree and A\ be a finite place of E. Let o) :
Gal(Q/F) — GL(E)) be a A-adic representation. We assume that L(s,m,r¢) =
L(s,0)) holds up to finitely many Euler factors, when we fix an embedding of E
into C and consider two L-series as Euler products over rational primes. Then we
have

L(s,m,r) = L(s, ® Indgla,\)
Q

up to finitely many Euler factors.

PROOF: Let ¢ : Ey C C be the fixed embedding. Then ¢o0) defines a homorphism
of Gal(Q/F) into GLy(C). Put p=t00). Let G = UL s;H, Q = Ul_;s;H. For
g € Gal(Q/Q), set

(1.20) 7(0) = (pls7 " g589)).9) € “C.

Here the meaning of (p(s; lgsk(,-))) € LGY is as follows. We identify Jp with
{si|F;1 < ¢ < n}. Then the s;-component of (p(si_lgsk(,-))) is p(si_lgsk(;)) €
GLy(C). We have set

g—,l‘s,' = sk(,‘)h:, 1<i<n, hieH.
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It can be verified that p defines a homomorphism of Gal(Q/Q) into £G. By the
(0)
1

definition of ry /, we obtain

21) (V0 p)(g))(®lyvs.) = ®lmyp(s] Yoski))vrG)y, 9 € Gal(Q/F').
Comparing (1.21) with (1.3), we get

(1.22) oy 2o (pIGal(Q/ F")),

where 7y = ®q Ind¥ o5. Now let us show

(1.23) toInd§m = rio0p.

Let G = UM, t;H'. We realize Ind§,7) by the similar formula to (1.3). Thus

Ind$§, 7y is realized on @™, W;, W; = W, where W is the representation space of
H 1=1

7x. Put, for g € G,

g™t = ki, 1<i<m, hjeH.
Then we have
(IndF ma)(9) (@21 wi) = O A gty )wiy, 9 €G-
On the other hand, take a coset decomposition
LG = UZp(t)(PG° x4 H')
and realize r; on @, W!, W! = W' where W' is the representation space of r§°).
Then we have

r1(p(o) (@ wh) = O r¥ (Bt gty Jwtsy,  wiE W, g€G.

Since we may take W] = W; ®, C, (1.23) follows from (1.22). Let p be a rational
prime at which Indga,\ and Ind%,(®q Indglax) are unramified and also

(1.24) L(s,m,m0) = L(s,0))

holds at Euler p-factors. Fix a Frobenius element F, € Gal(Q/Q) of p. Let
T = ®pTp ® Moo and let (gp, Fp) € LG be the Langlands class of ,. By (1.24), we
have

(1-25) f’(Fp) = (gpa Fp)-

Therefore we obtain

det(1 — Xr1((gp, Fp)) = det(1 — X710 p(Fp))
= det(1 — X(: 0 Ind§,73)(Fp)) = e(det(1 — X (Ind§72)(F)))
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by (1.23). This completes the proof.

Let M be a motive over F with coefficients in E. For every finite place
A of E, the A-adic realization H)(M) of M determines a A-adic representation
oy : Gal(Q/F) — GL(H\(M)); {0)} makes a compatible system of A-adic repre-
sentations. Let ) be any non-empty subset of Gal(Q/Q)/Gal(Q/F) and define F’
as before. By Theorem 1.1, we have a compatible system of A-adic representations

{®q Indg:igg;g)a,\} of Gal(Q/F"). We conjecture that this system of representa-

tions is realized by a motive. .
CONJECTURE 1.5. There exists a motive M' over F' with coefficients in E such
that the M-adic representation of Gal(Q/F') obtained from M' coincides with

Ra Indg:}g;?))a)‘ for every finite place A of E.

The rank of M’ is (rank M)" where r = ||. In analogy with the case of induced
representations, we denote the above M' by ®q Resp/pM. (Of course F' is not
a subfield of F' in general.) The computation of special values of the L-function
attached to M’ based on Deligne’s conjecture shall be performed in §5 and shall
be shown to be consistent with a conjecture and certain results of Shimura.

§2. Factorization of Deligne’s period ¢*(M) of a motive M

Let E and F be algebraic number fields of finite degree. Let M be a motive

over F with coefficients in E. Let A be a finite place of E and consider the A-adic
realization Hyx(M) € V(E)) of M. For a prime ideal p of F such that (X,p) =1,
put

(2.1) Z,(M, X) = det(1 — F,X, Hy(M)™)™1,

where F, denotes a geometric Frobenius of p. It is conjectubred that Z,(M,X) €
E[X] independently of A\. We shall assume this conjecture. For o € Jg, put

(2.2) Ly,(o,M,s) =0cZ,(M,N(p)~?%),
(2.3) L(o,M,s) = [[ L,(o, M, s).

Let Resp/q(M) = Rpjq(M) denote the motive over Q with coefficients in E
obtained from M by the restriction of scalar. Then we have

(2'4) L(O‘, M,S) = L(a’ RF/Q(M)’S)

for every o € Jg. Since E ®q C & C’%, we can define a function L*(M, s) taking
values in E ®q C by arranging L(o, M, s). Deligne’s conjecture predicts

(2.5) L*(M,0)/c*(Rpjq(M)) € E
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if 0 is critical for Rp/q(M) (which is assumed to be homogeneous) with E C
E ®q C canonically. Here the period c*(Rp/q(M)) € (E ®q C)* is defined as
follows.

Let M be a motive over Q with coefficients in E. Let Hg(M) € V(FE) denote
the Betti realization of M. Then the complex conjugation F acts on Hp(M).
We have

(2.6) Hp(M) = Hi(M) @ Hg(M),

where H % (M) denotes the eigenspaces of Hp(M) with eigenvalues +1. We assume
that M is homogeneous of weight w. Then we have

Hp(M) ®E,s C = ®ptq=wH? (0, M), o € Jg.

In view of the Gamma factor of the conjectural functional equation of L*(M, s),
we find that if 0 is critical for M, then:

(2.7) Whenever HP(o,M)# {0} and p<gq, p<0,¢g>-1 must hold

If wis odd, (2.7) is sufficient for 0 to be critical. If w is even, Fi, must act on
BocigHPP(0, M), p = w/2 by scalar. Put

Foo=(=1)"* e=0 or 1 on HP?(o,M).
Then

28) { p<e if p+e€ iseven,

—e—1<p if p+e isodd,

must be satisfied; (2.7) and (2.8) are sufficient for 0 to be critical.

Remark. We see that n € Z is critical for M hence the transcendental part
of L*(M,n) is predictable by Deligne’s conjecture if and only if the following con-
ditions are satisfied. (Of course, we admit the conjectural functional equation for

L*(M,s).)

(2.9) p<n<gq if HM(o,M)#{0}, p<q
(2.10) n>p—e f pt+et+n is even,
' n<p+e+1 if p+e+n is odd,

if Foo = (=1)P*¢, e =0o0r 1 on HP?(co, M) # {0}.
Let Hpr(M) € V(E) be the de Rham realization of M. We have the canonical
isomorphism

I:Hp(M)®q C = Hpr(M)®qC
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as E ®q C-modules. We choose F£(M) € V(E) as certain subspaces of Hpr(M)
obtained from the Hodge filtration; explicitly we have
®p>gHM(0,M) if Fo=1 on HP(o,M),

I"Y(F*(M +C)=
(FH(M) @50 C) { Bp>qHM(0,M) if Fo=-1 on HP(o,M).

@p>gHP (0, M) if Fo=1 on HP(o,M),

Bp>gHP(0,M) if Fo=-1 on HPP(o,M).

Put HEp(M) = Hpr(M)/F¥(M). We have the canonical isomorphisms

I(F(M) 05, ©) = {

I*: HE(M)®q C = HEp(M) ®q C.

Let 6(M) = det(I), c*(M) = det(I*) be the determinants calculated by E-rational
basis. Then §(M), ct*(M) € (E ®q C)* are determined up to multiplications by
elements of E.

Now going back to the general case, let M be a motive over F' with coeflicients
in E. We assume that F' is totally real. For every 7 € Jp, we have the Betti
realization H; g(M) € V(E) of M and the complex conjugation F, associated
with 7 acts on H, p(M). Similarly to (2.6), we have

(2.11) Hy p(M) = Hf (M) ® H] p(M),

H;":B(M) € V(E). We assume that Rr/q(M) is homogeneous of weight w. Then
we have

HT,B(M) ®E,a C = @p-{-q:prq(T, g, M), o € JE

If w is even, we assume that ®,ej.Fo, acts on @, By HPP(1,0,M), p = w/2
by scalar. The de Rham realization Hpp(M) € V(E) has the structure of a free
E ®q F-module. We have the canonical isomorphism

I: : H, p(M) ®q C = Hpr(M) ®F,r C

as (£ ®q C)-modules. By the Hodge filtration obtained from the convergence of
the spectral sequence

EYf = HI(M, ) = HEH (M),

we can define subspaces F*(M) € V(E) of Hpr(M) as in the case F = Q; F£(M)
has the structure of a vector space over F. We have

IZY(F*(M) ®F,r C)
| ®oeip Oprg HP(1,0,M) if Feo, =1 on HPP(r,0,M),
"\ oty Bp>g HY(1,0,M) if Feo,=—1 on HPP(1,0,M).
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I7Y(F~ (M) ®F, C)
Boes Dp>g HPI(1,0,M) if Fo, =1 on HP(1,0,M),
T\ @oesp Bpzg HPU(1,0,M) if Fo,=—1 on HP(r,0,M).
Put HEp(M) = Hpp(M)/F¥(M). We have the canonical isomorphisms
IF : Hfp(M) ®q C = Hpp(M) ®F,, C

as (E ®q C)-modules. Let §,(M) = det(I;), cX(M) = det(I¥) be the determinant
calculated by E-rational basis of the left hand side and by E ®q F-basis (since
they are free E @q F-modules) of the right hand side modules. Then §-(M),
cE(M) € (E®q C)* are determined up to multiplications by elements of (E V F).
Here F' denotes the normal closure of F in Q.

PROPOSITION 2.1. Let the notation be the same as above. We have

cH(RpiqM)) = ] t(M), - ¢ (Rpjq(M)) = [] ¢ (M),
Te€JF Telp

8(Rpiq(M)) = ] é-(M),
T€JF ‘

up to multiplications by elements of EV F.

PROOF: It is known (cf. Deligne [6]) that Hp(Rp/q(M)) = @respHr (M) as
vector spaces over E and that Hpr(Rr/q(M)) can be identified with Hpg(M)
forgetting its structure as a vector space over F. We see that

HE(Rp/q(M)) = @res. HIp(M),  Hp(Rp/q(M)) = &respHy p(M),

and that HE r(Bp/q(M)) is identified with HE (M) forgetting the structure of a
vector space over F'. We have the isomorphism of (£ ®q C)-modules

It : Hy(Rpq(M)) ®q C = H} p(Rr/q(M)) ®@q C.
Since

Hp p(Rpiq(M)) ®q C = Hf p(Rr/q(M)) ®F F ®q C

(2.12) h
= @resr(Hpp(M) ®Fr C),

I" may be written as
I : ®resp (H (M) ®Q C) = @resp (Hpp(M) ®F,r C).
Restricting It to a direct factor, we obtain

IF : H (M) ®q C = Hp (M) ®r,: C.
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The isomorphism (2.12) does not preserve E-structure but preserve E V F-structure
on both sides. Hence we obtain the first assertion. The second and the last
assertions can be proved in similar way. This completes the proof.

§3. Variations of periods ¢t (M) under standard operations

(I) Let M and N be motives over F with coeflicients in E. Let d(M) and
d(N) be the ranks of M and N respectively. For example, we have d(M) =
dimg H (M) for every 7 € Jp. We assume that Rpq(M) and Rp/q(N) are

homogeneous of weights w and w' respectively. For 7 € Jr, we obviously have
g g P y

H,-’B(M®N) -,-B(M) QF Hr (N)a

oy (M ©N) = (500 @5 HEG(N) & (Hza(O) 05 Ha(N),
' Hip(MQN)=(H B(M) QF H,-B(N))@( 3(M) ®p H} g(N)),
Hpr(M ® N) = Hpr(M) ®geqr) Hpr(N).
Since

H,p(M)Q®f H: B(N)®q C = (H,; 3(M) ®q C) Qrgc (H-B(N) ®q C),
Hpr(M) ®(ggqr) HDR(N) ®F,r C
= (Hpr(M) ®F: C) ®egc (Hpr(N) ®F C),
we have

(3.2) 6-(M @ N) = 8, (M)* Mg (N)*M),

Assume d(N) = 1, w' is even and put p’ = w'/2. Assume further that
Hp(Rp/q(N)) ®q C is of Hodge type (p',p'). If Hp(Rp/q(N)) ®q C does not
have a component of Hodge type (p, p), we have

F*(M ® N) = F*(M) ®rer Hpr(N).
In view of (3.1), we immediately obtain
(3.3) E(M ® N) = cE (M)6,(N)* (M),

where Fy,, = (=1)¢" on H, g(N) and df(M) = dimg H:-*,:B(M)- If
Hp(Rp)q(M)) ®q C has a component of type (p,p), we assume that Foo acts on
both of ®y¢y, HPP(0, Rp/q(M)) and Boec s, HY? (o, Rp;q(N)) by scalar. Then we
obtain

E(M)5(N)FM if Fpo=1 on Hp(Rp/q(N)),

(34) E(M@N)= {(:¢(1‘4)‘5 (MM it Fo=-1 on Hp(Rp/q(N))-
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For n € Z, let T'(n) denote the Tate motive over F. We have

(3.5) L*(M @ T(n),s) = L*(M,s +n),
(36) §:(T(n)) = (2rV=1)",
(3.7) Foov acts on Hp(Rp/q(T(n))) by (-1)".

Hence, if Fi, acts on @gej; HPP(0, Rpjq(M)) by scalar, we obtain
E(M(n)) = { (2SI FNGE(M) if n s even,
T @2r/=I)"FMF(M) if n s odd,
5.(M(n)) = (2rv/=T)M005, (M),
where M(n) = M ® T(n).

(3.8)

(IT) Let M, N and related notations be the same as in the beginning of (I).

PROPOSITION 3.1. We assume ®,ej, HPP(0, Rpjq(M)) = {0}. We further as-
sume that if

HY(1,0,M)# {0}, p>q and HP¥(r,c,M)# {0}, p'2¢
for 7 € JF, o € Jg, then p— q > p' — ¢’ holds. Then we have
F(M @ N) = cf (M)* Mz (M) Mg, (N)# (1),
7 (M @ N) = cF(M)* Mez (M) Mé, ()& 0,

PROOF: By the assumption, we immediafely obtain

FH(M) = F~(M), F(M ® N) = F*(M) ®geor Hpr(N).

Let ‘
IM : H, p(M)®q C = Hpr(M) ®r, C
IY . H.p(N)®q C = Hpgr(N) ®F, C
be canonical isomorphisms. Let u]i, ,ul (resp. w1, --,v;n) be a basis of
HfB(M) (resp. H; p(N)) over E where n = df (M), m = d,(N). Let e],--- , e
be a basis of F~(M) as free E ® F-module. Take eff,--- e} so that ef, -+ ¢,
e;, - , e, becomes a basis of Hpr(M) as free £ ® F-module. Let dy,--- ,dm be

a basis of Hpgr(N) as free E ® F-module. Put
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with z35%, yi; € E®q C. Put
Xn=(ei"), Xp=(;;%), Xa=(gf7), Xz =(zj;7) € Ma(E®qC),
Y = (3i) € Mm(E ®q C).
Then we have
H(M) = det(Xy1), cr(M) = det(Xa1), 6-(N) = det(Y).

We may assume that vy,--- ,v; (resp. vig1,::* ,Um) is a basis of H;*,’B(N) (resp.

H_p(N)) where t = df(N). We have
(¥ @ I)uf ®v) = (2

zhtel) @ X yid)
: =1

‘ k=1
n. m
(' @ 1) (w7 ®v;) = (X =i " ef) ® (3 wid)
k=1 =1

modulo F~(M ® N). Therefore we have

X110Y, _ X10Y,
+ _ 1n®rnN _ 11 ® Y2
c,.(M)—-det(X2l®Y2), cT(M)—det(X21®Y1>,

where Y = ()Y,;) with Y1 € Mym(E ®qQ C), Y2 € Mm_tm(E ®q C). Hence we

obtain :
c;."(M) = det(X1; )t det(X21 )”‘_t(det Y)",

c;(M) = det(Xn)m—t det(le)t(dgt Y)n,

and the assertion follows.

(III) Let n > 2 and suppose that we are given motives M; over F with co-
efficients in F for 1 < 7 < n. We assume that M; is of rank 2 for every z and
let

H, B(M;) ®p,, C = H¥"D4(07) (1, 0, M;) @ HH 70404 (7, 0, M),

1<i<n, 1€ Jp. We assume that a;(1,4) > a;(,—) for every 7 € Jp and i. We
shall give a formula for ¢X(M; ® My ® --- ® M,), which is suggested by Blasius
[2]. Let A be the set of all maps from {1,2,--- ,n} to {£1}. Set

As={e A TIG) = £1},
=1

A = e Al S alnX0) > Yaitr, X))

=1
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We have |A+| = 2"~1. We assume that

n

(3.9) Y ai(T, M) # zn:a,'('r, —A(7)) for every A€ A.

1=1 =1

We note that if (3.9) is not satisfied, then the action of Fu,, on HPP(1,0, M1 ®
-+-® M,) is not a scalar. By (3.9), we have [A*| = 2"~ since A € A¥ is equivalent
to —\ ¢ At. Let n; (resp. m;) be the number of A € A* such that A(z) = 1 (resp.
A(z) = —1). We have

(3.10) ni +m; =2"1,

PROPOSITION 3.2. We assume that (3.9) holds for every T € Jp. Then we have

E(My ® My ® -+~ ® M) = [] (e (My)ey (M) =™/ 26, (M)™.

=1
Proor: Take u?: so that
Euf = Hfp(M;), 1<i<n.
Choose d; so that
(EQ® F)dy = F~(M;) = F*(M;)
and choose d;" so that
Hpr(M;) = (EQ F)df + (E® F)d;, 1<i<n.

Let
1M H, p(M;) ®q C = Hpr(Mi) ®F,; C

be the canonical isomorphism and put
Iy‘(u?:) = a:?"id;+ + x;’idi', 1<:<n
with xit’i' € E ®q C. Then we have

" z‘}'f}' (L'-—’+
E(M) =zP*,  6:(M;) = det ( i '_,_) .
z; z;

A basis of HfB(Ml ® -+ ® My) over E is given by ®?=1uf~(i) when € extends over

A+. Also we see easily that a basis of HfR(Ml ® -+ Q@ My) is given by ®?=1d?(i)
mod F~(M; ® --- ® M,,) when ) extends over A*. Since

@M@ = @ilalVat +27Vdr) = 3 ] @i )
A€EAT 1=1
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mod F- (M1 @ M2 Q-+ ® My), we have
EMOIM Q- @ My,) = det(XE),

where X% is the 2" 1 x 2" ~1.matrix whose (), €)-entry for A € A+, € € Ay is given
by I x;\(i)’e(i). We shall prove the formula for ¢} since the other case can be
shown similarly.

It suffices to show

(3.11) det(X™*) = C_H(x;‘*"'*"x?"’—)(”‘_m‘)/Z(z?’+x:’_ — ;e bT)™ c€Q,

:
1=1 .

regarding xfh’i, 1 < 7 < n as indeterminates. It is obvious that det(X™) is a
homogeneous polynomial of degree 2" 1n with Z-coefficients of 4n-variables w?:’:h.
Fix 7, 1 <1 < n. If we change variables z; E px?’i with u € C, then every
(A, €)-entry of X* with A(¢) = 1 is multiplied by u. Hence det(X™) is multiplied

by p™. Therefore we have

(3.12) det(X) = S (=P eH)Qup
a+b=n;

where @), 3 is a polynomial which does not contain the variables w;"i Suppose
A€ At A(i#) = 1. Put N(j) = A(j), 7 # ¢, N(i) = 1. Then X € A? since
ai(t,+) > ai(r,—). Thus we may set

a:;"’+A :I);-h—_B
Xt = x?’+C w;"’-D
z7tC 7D

where A, B, C and D are (n; — m;) x 2" 2, (n; — m;) x 272, m; x 2"~2 and
m; X 2"~2 matrices respectively which does not contain the variables xft’i. By
standard operations on matrices, we have

.7:;"’+A x?”_B
det(X*) = det (:1:;"’+C ™D )
0 ;" D — (a:i_’+:c;—*"_/a;;|"+)D
A » a:;*"'*'a:;"’—B
= det (C 0 )
0 (eF*a ™ — o et T)D

A m?""':z:;‘"_B
= (et — 27T )™ det | © .

1 t 1 1 0
0 D
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Hence we have

det(X*) = (] Fa 7 — 2y Tl T)™ P T2 Y Py
J

where P; is a polynomial which does not contain the variables :cfbi By (3.12),
P; =0 except for m; + 27 = n;. Therefore we have

det(Xt) = (zF ¥z - :ci—’+x;*"_)m‘(xf’+x?’_)(”‘—m‘)/2Q

where @ 1s a polynomial with Q-coefficients which does not contain the variables
x:{:i Since this expression holds for arbitrary 7, we obtain (3.11). This completes
the proof.

84. On motives attached to Hilbert modular forms and Shimura’s invariants

Let F be a totally real algebraic number field of degree n over Q. Let k& =
(k(r)) € Z7F) be a weight. By the Hilbert modular cusp form of weight k,
we understand an element of Si(c,%) in the notation of Shimura [12], p. 649.
Assume that f is a non-zero common eigenfunction of all Hecke operators. We
attach Dirichlet series D(s, f) to f by (2.25) of [12]. Now the form of the Gamma
factor and the functional equation of D(s, f) (cf. (2.47), (2.48) of [12]) suggest the
following conjecture. :

CONJECTURE 4.1. Assume k(7) mod 2 is independent of T and put
ko = maxrej, k(7). Let E be the algebraic number field of finite degree generated
by eigenvalues of Hecke operators of f (cf. [12], Prop. 2.8. ). Then there exists a
motive My over F' with coefficients in E which satisfies the following conditions.
(1) L(o,My,s) = D(s, f7) for every o € Jg.
(2) H, p(My) @y G = Hot()/2-1 kKON 1, 5, M)

Hko~k(r))/2, (k°+k(r))/2—](‘r, g, Mf), c€Jg, 7€ Jp.
(3) N* My = Arty-1(1 — ko) where Arty-1 denotes the Artin motive attached to .

Let x be a Hecke character of F of finite order. Let ¢ be the conductor of xy and
Q(x) be the field generated over Q by values of x. As in [6], §6, we can attach a
motive Art, = N, over F' with coefficients in Q(x) such that L(s, x?) = L(o, Ny, s)
for every o € Jq(y)- The rank of Ny is 1 and the Hodge type of H, p(Ny) ®q C
is (0,0) for every 7 € Jp. For the real archimedean place 0o, corresponding to
T € Jp, we have

(4.1) Xoo, (Z) = sgn(z)™", ek =RX, m;=0 or L

If mr = 0 (resp. m, = 1), then F, acts on H; p(Ny) by 1 (resp. —1). We are
going to calculate 6(Rp/q(Ny)).



For this purpose, let us recall the following facts concerning an Artin motive
M over Q. Let p be a representation of Gal(Q/Q) into GL(V) where V is a vector
space over E of finite dimension m. Then there exists an Artin motive M = Art,
over Q with coefficients in F such that (cf. [6]) ‘

(4.2) ' L(s,p°) = L(o,M,s) for every o€ Jg,

(4.3) Hp(M)=V,  Hpp(M)=(V 8q Q)**(W/Q.

Obviously §(M) = §(A™ M) and A™ M is the Artin motive attached to the rep-
resentation det p of Gal(Q/Q). For a Dirichlet character  of Q of conductor (f),
f >0, put .

f
(4.4) go(n) = >_ n(u) exp(2rv/—1u/f).

u=1 . .

Then, as is shown in [6], §6, we have

(4.5) SO\ M) = go((det p).)~"

where (det p), denotes the Dirichlet character associated to det p.

We may regard x as a character of Gal(K/F) where K is a finite Galois ex-
tension of Q. Put p = Ind(x; Gal(K/F) — Gal(K/Q)). Then Rp/q(Ny) is the
Artin motive associated with p. We have (cf. [5], Prop. 1.2)

(det p)(o) = x(¢(0))e(0), o € Gal(K/Q)

where t denotes the transfer map from Gal(K/Q)% to Gal(K/F)® and e denotes
the determinant of the left regular representation of Gal(K/Q) on
Gal(K/Q)/Gal(K/F). Let x. denote the character of ideal class group of conduc-
tor ¢ of F' associated with x and let ¢, denote the Dirichlet character associated
with e. We have

(det p)«(n) = xs(n)ex(n), n€Z, n>0.

Define a Gauss sum by

(4.6) 9(x) = > Xx(zcop) exp(2rvV/—1Trp/q(z))
z€c! a;f [opt, z>>0

where v denotes the different of F.

241
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LEMMA 4.2. Put E = Q(x). We have g(x)/go(det p) € EV F.
We omit the proof which is not difficult.

Let M = My and N = N, be as above. Define m, = 0,1 by (4.1) and let
€r = + (resp. —) if m; = 0 (resp. 1) for 7 € Jp. We assume that k(7) > 2 for
every 7. Let E denote the number field generated by the eigenvalues of f under
Hecke operators and the values of x. By (3.4), we have

FMON) = e (ME(N),  c; (M@ N) = ;¥ (M)6,(N).
By Proposition 2.1, we have

F(Rpjq(M®N)) = [[ 7 (M)6-(N), ¢ (Rpjq(M®N)) =[] ;" (M)é,(N)

modulo (E V F)*. We have, by Lemma 4.2,

[16-(N) = 6(Rp/q(N)) = go(det p)™! = g(x)™*

T

modulo (E V F)*. By (3.8) we obtain

2rv/=D)"™" [1cr(M)g(x)™! if m iseven

c+((RF/Q(M ®N))m)) = { @rv/=1)"" Iy (M)g(x)™! if m isodd

modulo (E V F)*. Put

D(s, f,x7") = X elm, f)x(n) " N(n)™.

n

Then Deligne’s conjecture predicts

47)  D(m, f,x /(2= [] 7 (M)g(x)™) € EVF
r€Jr

if m € Z is critical for Rp)q(M ® N), that is
(ko — minyej k(7))/2 < m < (ko + min ey k(7))/2 - 1.

(cf. (2.9) in §2.)
We see easily that (4.7) is consistent with Theorem 4.3, (I) of [12] by putting

(4.8) u(r, f) = [Ie7 (Mp), = (mr).

However Shimura’s result is more precise in two points. First it is shown that the
quantity on the left of (4.7) belongs to E. Secondly it transforms covariantly under
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o € Jg. We note one more important fact which cannot be derived from Deligne’s
conjecture. Define

I(fa) = (27r\/:T)"(1“k0)7‘-2re.}F k(T)g(lb)_l(fa, fa), = JE

where E denotes the field generated by eigenvalus of Hecke operators of f. Consider
{I(f?)} as an element of (E ®q C)*. Then Theorem 4.3, (II) of [12] suggests

¢ (Rry(My) e (Rryq(My)
(4.9) = [T (Mpes(Mp) = {I(f)} mod EV F.
reJr

Now let f € Si(c, %), g € Si(c,p) which are common eigenfunctions of all Hecke
operators. Let

D(s,f) =3 _c(n, f)N()™",  D(s,9) =3 c(n,g)N(n)~*

n n

ko = max,ejnk(7), lo = maxrej (7).

Put

D(s, f,9) = Zc(n, fle(n,g)N(n)~2,

n

CD‘(s,f,g) = Lr(zs +2- kO - IOa’/)(P)D(S,f,g)’

Here L, denotes the L-function whose Euler p-factors are dropped for p|c. Then
D.(s, f,g) coincides with the L-function L(id., My @ My, s) up to finitely many
Euler p-factors. By Proposition 3.2, we have

F (Mg ® My) = c; (My ® M)
(4.10) _{ cH(Myg)ey (My)é,(My) if k(1) > I(7),
cf (Mg)e7 (My)8-(My) if k(r) < (r)
Hence, by (3.8), we obtain
cf (Mg ® My)(m)) = 7 (My ® My)(m))

(4.11) { (2nv/=1)*™cH(My)er (My)é-(M,) if k(r) > I(r),

(2rV/TT)EmE (My)er (M), (M) if K(r) < (r).
Let E be the field generated by eigenvalues of Hecke operators of f and g.

First we assume that

k(t) > Il(r)  forevery 1€ Jp.
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By Proposition 3.2 and (4.11), we obtain

cH(Rpiq((My ® Mg)(m))
= (2rvV=1)*""ct(Rpjq(My))c™ (Rr/q(My))8(Rr/q(Mg))  mod (EV F)*.

Since A? My = Art,,-1(1—1p), we have §( Rp/q(M,)) = (2m/=1)"(1=0)g(p). Thus
we have shown

ct(Rpyq((Mf ® My))(m))

= (2ry/=1)"@mH1=hlg(o){I(f°)}  mod (EV F)*.

From (4.12), we see easily that Deligne’s conjecture is consistent with Shimura [12],
Theorem 4.2. However Shimura’s result is more precise in two points mentioned

above and also in that the condition on weights is less restrictive.
Next assume that

(4.12)

k() > 1(r) for 7€6, k(r)<l(r) for 7€

where § and §' are subsets of Jp such that §U 8 = Jp, §N & = 0. By Proposition
3.2, we have

" (Rpq((My ® My)) = ¢ (Rrjq((My ® My)) = [ cf (My)c; (My)

. TES
x TT e (My)er (M,) TT 6:(Myp) 1 6:(M;)  mod (EV F)*.
red’ T€b TEH
Since |
2 2
/\ Mf = Art,p-:(l - k()), /\ M, = Art(P—l(l - lox),
we obtain

¢t (Rpjq((My ® My)(m))) = (2my/=T)2mnt(1=k)I8'1+(1=bo)lé

1) o IT et Mp)er () TT e (My)er (M) TT 8, (Axt) T ér(Artyms)
TES TES =y =

by (3.8). Since 6-(Arty,-1) ~ 1, 8;(Arty-1) ~ 1, we have

D.(m, f,g) ~m2mat(1=ko)l8'+(1-k)Is]

(4.14) I cf (Mp)er (My) TT &t (My)es (M)
TES TEY

if m 1s critical for Resp/q(My ® M,), that is

ko+1lo  |k(r) = 1(7)] ko +1lo  |k(r) = 1(7)]
5 5 —l<m< 9 + 3
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for all 7 € Jp.

We shall show that (4.14) is consistent with Shimura’s results and a part of
his conjectures. ( The part involving modular forms of half integral weight shall
remain mysterious.)

Let x (resp. x') be the system of eigenvalues of Hecke operators attached to f
(resp. g). Set

(4.15) Qx, 8) = o= DEI=Lres KD TT cF (Mp)ey (My).
TES

We note that
D(s,x,) = T a(x(@N(@) ™ = Ds + 2, £,1)

when 7 is a Hecke chracter of finite order of F,

sxx)—Zx X ()N (A)~° D(s+k°;lo—2,f,g)

in the normalization of Shimura [15], [16]. By (4.14) and (4.15), we obtain

t t ko+lo
D(§7X’X'):D(§+ 2f’ )

7t es k(T)+Zf€5’ i(r) —ZnQ(X, 6)Q(X,7 6,)/L‘(t = 2,%¢)

if t € Z satisfies

t=ko+ 1y mod 2,

k(1) =KD, _ ¢ _ (&)~ (7))
g tl<gsT

Since L (t — 2,%p) ~ 7(t=2)" we obtain

+1 for every 7 € JF.

t
(4.16) D(5,x,X') ~ wlree MO+ Lren 0Q(x, )Q(X', 8).

This is consistent with Theorem 5.3 of [15] and the definition of @(x,d) in [16].
Next we assume that k(7) is even for every 7 € Jp and put, for r € (Z/2Z)F,
6C Jp,

nko - ko/zrr
(4.17) V(x,r) = x"/2 T =1°"r+ (Mp),
T€EJF
(4.18) P(X, 6, 'I") = er& k(T)/27rk0|5|/27r—|6| H Cs.—l)kO/er(Mf)-

TES
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If t is an integer such that |t| < k(7)/2 for every T and 7 is a Hecke character of
finite order of F such that

n(z) = sgn(z)™*", =z € FX,
then we have

k n —~1)%/2,
D(t,x,1) = D(t + 57, frm) ~ a"CH2) TT VP00 (M) e 7™V (x, 7).
reJr

This is consistent with (8.2a) of [16].

We see easily that ¥ attaches to f ® ¥ 1. Since we have assumed that k(7) is
even for every T, (z) = 1, z € F holds. Therefore ¢cf(M;) ~ cf(M;® Arty) for
every 7. Thus we may take P(%,8,r) ~ P(x,$,r) for every § C Jp, r € (Z/22Z)7F.
Now (C3) and (C4) of [16], p. 293 state that

(4.19) Vix,r) ~ 7resr ¥4y 6 2V P(x, 0 — 6,1 — 16)

(4.20) Q(x,8) ~ w8¥1P(x,8,r)P(x,6,6 — 1)

for every r € (Z/2Z)’F, § C Jp. It is obvious that (4.19) and (4.20) follow from
(4.15), (4.17) and (4.18) in view of P(x,¥é,r) ~ P(x,¥é,r).

85. Special values of zeta functions of Shimura varieties

Let M be a motive over F' with coefficients in E. Let M' = @qResp/pM.
Our first task is to compute 7’-periods, 7' € Jp: of M’ from 7-periods, 7 € Jf of
M. For this purpose, we supplement Conjecture 1.5 with specifying Betti and de
Rham realizations of M'.

Let 7' € Jp: and take any 7 € G such that #|F' = 7'. Then {#'s;|F |1 <: <
r} defines a set of r-distinct elements of Jr which does not depend on the choice
of 7 and s;. We have

(5.1) Ho p(M') = @i_1Hyis,5,8(M)
where ®!_; denotes the tensor product as F-modules. If

H, (M) ®Eg,, C=@H"(1,0,M), re€Jr, o€Jg
is the Hodge decomposition,

(5-2) Hr',B(M,) ®EsC= ®£=1HM('7J55|F7 o, M)
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is the Hodge decomposition of H,s p(M').
The de Rham realization of M’ is

(5.3) Hpr(M') = (®}_1(Hpr(M) ®F., Q))CIQ/F),

where ®]_; denotes the tensor product as E ®q Q-modules and o € Gal(Q/F")
acts as

0(®i=1(vi ®F,s; ai)) = ®j=1(vi ®Fes; 0(a;)),  vi € Hpr(M), a; € Q.

Since Hpg(M) has a structure of free £ ®q F-module, we can verify that the
right hand side of (5.3) has a natural structure of free E ®q F'-module of rank =
rank(M)". From (5.3), we obtain an isomorphism as F ®q C-modules -

(5.4) Hpr(M') ®p,r C = ®_1(Hpr(M) ®F 65 C), 7' € Jp.
Here the isomorphism is given by
(®i=1(vi®F,s, i) ®F,r 1 — (@1 (vi®F 75 r 7' (ai)), vi € Hpr(M), a; €Q.

For 7 € Jp, let ‘
Ir : H. p(M) ®q C = Hpp(M) ®F, C

be the canonical isomorphism of £ ®q C-modules. Let 7' € Jpr. In view of (5.1)
and (5.4), we can take the canonical isomorphism

I Hr’,B(M’) ®Q Cc= HDR‘(M) QF,r C
as
(55) IT' = ®:=II‘7"8.'|F’

PROPOSITION 5.1. Let M be a motive over F with coefficients in E. We assume
that M is of rank 2 and let

HT,B(M) ®E,d C ‘= Ha(‘r,+),a(r,—)(7., o, M) P HG(T,—),G(T,+)(T, o, M),
7 € Jr, 0 € Jg be the Hodge decomposition. We assume
(5.6) a(t,+) > a(r,-).

Let Q be any subset of Gal(Q/Q)/Gal(Q/F) such that |Q| = r > 2. Define F'
 and M' = ®q Resp/p/M as above. Let A be the set of all maps from {1,2,--- ,r}
to {£1}. We assume that

(5.7) i a(#'s;|F, A\(3)) # z": a(#si|F,~(2))

i=1 1=1
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holds for every A € A. Set
' r r
At ={Xx € A| Y a(#silF,A(E) > D a(7F'silF, —A())}-
1=1 =1

and let n; (resp. m;) be the number of A € A* such that A(i) = 1 (resp. A(1) = —1),
1 <:<r. (n; and m; depend on 7'.) Then we have, modulo EV F,

Tr

(5.8) (M) = [I(ch, p(M)ezy, p(M))m=md/ 26, o p(M)™

1=1
for every 7' € Jp.

PROOF: For every T € JF, take uf so that
Euf = HEp(M).

Take d~ so that
(FEQF)Yd™ =F (M) = F+(M),

and then take d* so that
Hpr(M) = (E® F)d* + (EQ F)d".

Put
+a:h _1i -
If’s;lp(uis;w) =T dt +z;%d,

with :l:;-k’i € E ®q C. Then we have

1
i I,

n 4 x?’d‘ xi—}'+
C:l'"s,‘IF(M) =Z; , 61:'8.‘|F(M) = det ,’l;+’_ P

These quantities are elements of (E ®q C)* determined modulo multiplications
by EV F. Set

Ax= e A [[AG) = £1).
1=1
i)

» when € extends over
si|F

By (5.1), a basis of Hrjf’B(M') over E is given by ®?=1u:~_(,
A+. By (5.2) and (5.7), we have Ft(M') = F~(M'). A basis of Hpp(M') QF v F
modulo F~(M') QF F over E ®q Fis given by ®f=ld)‘(i) where A extends over

At. We have

e Trs (BTt p) = Ol (a7 Pt 427 V) = 3 [[ 20 Vep, )¢
AEA-G' 1=1



‘mod F~(M') ® s F. Therefore we obtain
cE(M') = det(X?)

where X+ is the 971 x 27~ matrix whose (A, €)-entry for A € A+, e € Ay is given
by ITi—; a:?(')’f(’). Now (5.8) follows from (3.10) (and from the same formula for
det(X ™) ). This completes the proof.

By (3.8), we obtain
& (M!(m)

= @rVTD)? ™ [ (¢ p(M)cgp (M) =™ 26,0, o (MY™,

i=1

(5.9)

and by Proposition 2.1, we have
E(Resprq(M')(m)) = (2ry/—1)¥ ™'

x T TI(chap(M)cz, p(M)) =26, p(MY™,

r'eJpr i=1

(5.10)

- mod EV F, where n' = [F' : Q).

Now let f € Si(c,%) be a new form and let My be the motive over F' with

coeflicients in F attached to f as is given in Conjecture 4.1. We set M} =
®q Respiyp(My). We regard c*(Res F/q(Mj)(m)) as a complex number fixing
an embedding E C C. Since A\> My 2 Arty-1(1 — ko), we have 6,(My) ~ x'~Fo
for every 7 € Jp. Then (5.10) yields

¢*(Res prq(My)(m))
5.11 r—lmnl —ko , m T _ —
( ) ~ g (ﬂ-l o Loims l—[l(c;'-'sglF(Mf)ci"sg|F(M.f))( )/2),
T'€Jp 1= ‘

Deligne’s conjecture predicts
(5.12) L(m, My) ~ c*(Respiq(M})(m))

if m € Z is critical for M}. In view of the relation (4.15) of Q(x,6) with cE(My),
ci'(ResF//Q(M})(m)) can be expressed as a product of 7 and Q(x,6). (Note that
we have assumed r > 2). Here x denotes the system of eigenvalues of Hecke
operators attached to f. ’

We shall show that (5.11) and (5.12) are in perfect accordance with a certain
result of Shimura [14], II. Assume that F contains a subfield Fy such that [F' : Fy] =
2. Set Q = Gal(Q/Fy)/Gal(Q/F). Then we have H' = Gal(Q/F,), F' = Fy.

249
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Apply the above construction. We obtain a motive M} over F' with coefficients in
E. Set

Jpr = {11,725+ ,Tnj2}
and choose 7; € Jr so that #|F' = 7;, 1 <7 < n/2. Let o be the generator of
Gal(F/F'). We assume that the weight of f satisfies
(5.13) k(7| F) > k(Fio|F), 1<:<n/f2

Then we have ny = 2, my =0, ny = 1, mgy = 1 for every 7’ € Jp. Hence we get

n/2
(514)  E(Respq(M})(m)) ~ 7 r(=8I2 [ (cH(M))es (My))

1=1
by (5.11). Set
6= {%1,%2,'°' a%n/Z} C JF

Since "

Q(x, 8) ~ wlho /2= Lre () T] (e, p(My) ez, p(My)),

1=1

we obtain

ci(ResFr/Q(M})(m)) ~ 7,(m'nﬂ.(l-ko)’nﬂ.zrg k(T)Q(X’ 8).
By (2.9), Conjecture 4.1 and (5.2), we see easily that m € Z is critical for M if
and only if
_ k(7| F) — k(Fio|F)

2

holds for every 1 < i < n/2. Put

L*(s,x) = L(s + ko — 2, My).

k(%i|F) — k(Fio|F) B
2

ko —l<m<ky+ 1

Then if m € Z satisfies

_ K&|F) ~ k(fo|F) _ k(%i|F) — k(fio|F)

. <

(5.15) 1 - <1+ .
for every 1 <7 < n/2,

(5.16) L¥(m, x) ~ ("D {Q(x, 6)

is predicted.

We see easily that (5.16) is in accordance with [14], II, Theorem 3.11. (C(s)
there essentially coincides with L*(s,x).) Furthermore Shimura obtained the re-
sult without assuming that £(7) mod 2 is independent of 7 € Jr. In this sense,
Shimura’s result is more general than (5.16).
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