保型形式の周期について 吉田敬之(京大理) Yoshida Hiroyuhi

下をn次の総実代数体、Bを下上のquaternion algebraで $\beta \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R})^r \times \mathbb{H}^{n-r}, r > 0$ E+t+1 $A \in \mathcal{F}_{\infty}(B^{\times}) \in \mathcal{F}_{\infty}(B^{\times})$ Aplit する下の archimedean places の集合を δ_1 とする。 (18) = F,) F' は $\sum_{\tau \in \mathcal{E}_{1}} \tau(x)$, $x \in F$ で 生成 され 3 代数 体とする. Kを GAf o open compact subgroup, Koo を Gootの Maximal compact subgroup とする。このとき、下の上に定義 th 3 Shimurn variety (non-connected canonical model) SK が定まり、 $S_K (C) = G_Q \setminus G_A / K K_w となる。<math>S_K \circ$ F上のzeta 函数 ZIA, SK/F1) 1 Langlands [8]により 決定され、 $\prod_{n} L(A, \pi, V_n)$ の形(一般には若干の修正 項がつく)でする。ここにでは人により決るの存限程 of automorphic representation EPIC. V, 13 GOL-group o 2^V[下':Q] 次元表現である。

この様なπ (Hilbert modular form)には、Gal(Q/F)の A-aaic 表現のながし函数を保っ形で対応している。(けっ Taylor [18], 及びるの引用文献。) 他方 Z(A, SK/F/) は、SKの cohomology 群における Gal(Q/F/)の2-aric表現

 S_K の zeta 函数の特殊値が、Shimura [16]の周期不変量 $P(X,S,\Gamma)$, Q(X,S) で表わされるであろう、という予想を た村先生が 1989年に筆者に伝えられた。このた村予想が本稿を書く主要な motivation になった。

h 3.

この計算で本質的なのは、Mが下上のmotiveのとき、
Deligneの periods c[±](Res_{F/Q}(M))を、てもHom(F, C)で
index プけられる て-periodsの積として表わしておくことで
ある。Deligne は L(A, M) = L(A, Res_{F/Q}(M))であるから、C[±](Res_{F/Q}(M))を主に考えたが、たensor 積等の操作による period の変化を見るには、この分解が重要である。この
样な分解は Shingurs 「16」にある周期の定義から suggest されたものである。

 $\S 6$ ではた村万変量 $Q(X, \delta)$ を予想は仮定でずに参察した。主要結果は $Q(X, \delta)$ が consistant に定義できることである。

- 記号 I° Fを有限次代数体とする。FからCの中へのmon-trivial homomorphisms 全体の集合を J_F により表わす。 I_F により、 J_F で生成される f_{Nie} $Z_{\text{I-module}}$ を表わす。
- 2° 体丸上の有限次元 vector spaces の成す category をV(k)により表わす。
- 3° 環Rに係数をもつ、か行加列行列全体の集合を $M_{n,m}(R)$ とかく、 $M_{n,n}(R)$ を $M_n(R)$ と 般す、
- 4 群 N, H と準同型 $H \longrightarrow A$ in(N) が与えられたとき N と H の 半直積を $N \times_s H$ と N く 。
- - 6 をは複素上半平面を表わす。

7 $a,b\in \mathbb{C}$ ヒする、a,b の少くとも一方が non-Zero であ、て、その商($a \neq o$ のときは b/a)が \mathbb{Q} に入るとき、 $a \sim b$ とかく、

§1. New functors \bigotimes_{Ω} Ind, \bigotimes_{Ω} Res and zeta functions of Shimura varieties

Let G be a group and H be a subgroup of index $n < \infty$. Let k be a field and V be a vector space over k of dimension $d < \infty$. Let σ be a representation of H into GL(V). Let $G = \bigcup_{i=1}^n s_i H$ be a coset decomposition and put $\Omega = \bigcup_{i=1}^r s_i H$, where r is any integer such that $1 \le r \le n$. Let H' be the stabilizer of Ω under the natural action of G on G/H:

$$(1.1) H' = \{g \in G \mid g\Omega = \Omega\}.$$

We can construct a representation τ of H' in the following way. For every i, $1 \le i \le r$, we prepare a vector space $s_i V$ over k which is isomorphic to V. Take $g \in H'$. Then we have

$$gs_i = s_{j(i)}h_i, \qquad 1 \le i \le r, \qquad h_i \in H.$$

Here $i \longrightarrow j(i)$ is a permutation on r-letters. Put $W = \bigotimes_{i=1}^r s_i V$ and set

(1.2)
$$\tau(g)(\bigotimes_{i=1}^r s_i v_i) = \bigotimes_{i=1}^r s_{j(i)} \sigma(h_i) v_i, \quad s_i v_i \in s_i V_i.$$

Extending (1.2) k-linearly to whole W, we can easily verify that τ defines a representation of H' on W.

The definition (1.2) is somewhat informal. We can rewrite it as follows. Let V_i , $1 \le i \le r$ be a vector space over k isomorphic to V. Put $W_1 = \bigotimes_{i=1}^r V_i$. For $g \in H'$, set

$$g^{-1}s_i = s_{k(i)}h_i^*, \qquad 1 \le i \le r, \qquad h_i^* \in H.$$

Then we find $i \longrightarrow k(i)$ is a permutation on r-letters and that

$$j(k(i)) = i,$$
 $h_{k(i)} = (h_i^*)^{-1} = s_i^{-1} g s_{k(i)}.$

Put

(1.3)
$$\tau_1(g)(\bigotimes_{i=1}^r v_i) = \bigotimes_{i=1}^r \sigma(s_i^{-1} g s_{k(i)}) v_{k(i)}, \qquad v_i \in V_i.$$

This is merely a reformulation of (1.2) identifying s_iV with V_i . Thus, by (1.3), τ_1 defines a representation of H' on W_1 which is equivalent to τ . We see easily that the equivalence class of τ does not depend on a choice of $\{s_i\}$. We denote τ_1 by $\bigotimes_{\Omega} \operatorname{Ind}_H^{H'} \sigma$ or $\bigotimes_{\Omega} \operatorname{Ind}(\sigma; H \longrightarrow H')$. We can perform similar construction replacing \otimes by \oplus . The representation constructed using \oplus instead of \otimes in (1.3) shall be denoted by $\bigoplus_{\Omega} \operatorname{Ind}_H^{H'} \sigma$ or $\bigoplus_{\Omega} \operatorname{Ind}(\sigma; H \longrightarrow H')$. We have

(1.4)
$$\dim(\bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma) = (\dim \sigma)^{r}, \qquad \dim(\bigoplus_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma) = r(\dim \sigma).$$

Examples. (1) If $\Omega = G$, then H' = G. Clearly $\bigoplus_G \operatorname{Ind}_H^G \sigma$ is the usual induced representation.

- (2) If $\Omega = H$, then H' = H. We have $\otimes_H \operatorname{Ind}_H^H \sigma \cong \bigoplus_H \operatorname{Ind}_H^H \sigma \cong \sigma$.
- (3) Assume $\Omega = G$, dim $\sigma = 1$. Then $\sigma \longrightarrow \bigotimes_G \operatorname{Ind}_H^G \sigma$ is the dual map of the transfer map $G/[G,G] \longrightarrow H/[H,H]$.

Let $\tau = \bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma$ be realized by (1.3). Let χ_{σ} and χ_{τ} denote characters of σ and τ respectively. We can express χ_{τ} in the following way. Let $\{e_{1}, \dots, e_{d}\}$ be a basis of V over k. Put

$$\sigma(h)e_i = \sum_{j=1}^d \sigma_{ji}(h)e_j, \qquad h \in H, \qquad 1 \le i \le d.$$

Then $\{e_{j_1} \otimes e_{j_2} \otimes \cdots \otimes e_{j_r}\}$ make a basis of $\bigotimes_{i=1}^r V_i$ when j_1, \dots, j_r run over $[1, d]^r$. We have

$$\tau(g)(\bigotimes_{i=1}^{r} e_{j_{i}}) = \bigotimes_{i=1}^{r} \sigma(s_{i}^{-1} g s_{k(i)}) e_{j_{k(i)}},$$
$$\sigma(s_{i}^{-1} g s_{k(i)}) e_{j_{k(i)}} = \sum_{l=1}^{d} \sigma_{l j_{k(i)}}(s_{i}^{-1} g s_{k(i)}) e_{l}.$$

Hence $\bigotimes_{i=1}^r e_{j_i}$ contributes

$$\prod_{i=1}^{r} \sigma_{j_i j_{k(i)}} (s_i^{-1} g s_{k(i)})$$

to the trace. Therefore we obtain

(1.5)
$$\chi_{\tau}(g) = \sum_{i_1, \dots, i_r \in [1, d]^r} \prod_{i=1}^r \sigma_{j_i j_{k(i)}}(s_i^{-1} g s_{k(i)}), \qquad g \in H'.$$

If $g \in \bigcap_{i=1}^r s_i H s_i^{-1} \subseteq H'$, then (1.5) simplifies to

(1.6)
$$\chi_{\tau}(g) = \prod_{i=1}^{r} \chi_{\sigma}(s_{i}^{-1}gs_{i}), \qquad g \in \cap_{i=1}^{r} s_{i}Hs_{i}^{-1}.$$

The above construction $\bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma$ applies also to the case where σ is a λ -adic representation of a Galois group or σ is a representation of a Weil group. In other words, the continuity condition of $\bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma$ can easily be derived from that of σ .

We shall consider the case of λ -adic representation in more detail. Let F and E be algebraic number fields of finite degree. Let λ be a finite place of E and let

$$\sigma_{\lambda}: \operatorname{Gal}(\overline{\mathbf{Q}}/F) \longrightarrow GL(V)$$

be a λ -adic representation . Here V is a $d < \infty$ dimensional vector space over E_{λ} . Take $G = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}), \ H = \operatorname{Gal}(\overline{\mathbf{Q}}/F), \ G = \cup_{i=1}^n s_i H, \ \Omega = \cup_{i=1}^r s_i H$ and apply the

above consruction. Let F' be the fixed field of H' and \tilde{F} be the normal closure of F. Put $K = \operatorname{Gal}(\overline{\mathbf{Q}}/\tilde{F})$. We have $H' = \operatorname{Gal}(\overline{\mathbf{Q}}/F') \supseteq K$. Then $\tau_{\lambda} = \bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma_{\lambda}$ defines a λ -adic representation

$$\tau_{\lambda}: \operatorname{Gal}(\overline{\mathbf{Q}}/F') \longrightarrow GL(W)$$

where W is a d^r -dimensional vector space over E_{λ} .

Let S be a finite set of prime ideals of F. We assume that σ_{λ} is unramified outside of S. If p is a prime ideal of F such that $p \notin S$, we set

$$(1.7) f_{\mathfrak{p}}(\sigma_{\lambda}, X) = \det(1 - \sigma_{\lambda}(F_{\mathfrak{p}})X) \in E_{\lambda}[X],$$

where $F_{\mathfrak{p}}$ denotes a representative from the Frobenius conjugacy class of \mathfrak{p} in $\mathrm{Gal}(\overline{\mathbf{Q}}/F)$.

Let \mathfrak{p}' be a prime ideal of F' and let \mathfrak{P}' be a prime divisor of \mathfrak{p}' in \tilde{F} . For $1 \leq i \leq r$, let \mathfrak{p}_i be the restriction of $s_i^{-1}\mathfrak{P}'$ to F. Then the set of prime ideals $\{\mathfrak{p}_1,\mathfrak{p}_2,\cdots,\mathfrak{p}_r\}$ does not depend on the choice of \mathfrak{P}' and $\{s_i\}$. Let S' be the set of \mathfrak{p}' such that either one of \mathfrak{p}_i ramifies in F/\mathbb{Q} or that σ_{λ} ramifies at one of \mathfrak{p}_i .

THEOREM 1.1. Let the notation be the same as above. Then τ_{λ} is unramified outside of S'. If $f_{\mathfrak{p}}(\sigma_{\lambda}, X) \in E[X]$ whenever $\mathfrak{p} \notin S$, then for any prime ideal $\mathfrak{p}' \notin S'$ of F', we have $f_{\mathfrak{p}}(\tau_{\lambda}, X) \in E[X]$. Furtheremore if λ' is another finite place of E and $\sigma_{\lambda'}$ is a λ' -representation of $Gal(\overline{\mathbb{Q}}/F)$ unramified outside of S such that $f_{\mathfrak{p}}(\sigma_{\lambda}, X) = f_{\mathfrak{p}}(\sigma_{\lambda'}, X)$ if $\mathfrak{p} \notin S$, then we have $f_{\mathfrak{p}}(\tau_{\lambda}, X) = f_{\mathfrak{p}}(\tau_{\lambda'}, X)$ for $\mathfrak{p}' \notin S'$.

PROOF: From the realization of τ_{λ} by (1.3), we have

(1.8)
$$\operatorname{Ker}(\tau_{\lambda}) \supseteq \bigcap_{i=1}^{r} s_{i} \operatorname{Ker}(\sigma_{\lambda}) s_{i}^{-1}.$$

Assume $\mathfrak{p}' \notin S'$. First we shall show that τ_{λ} is unramified at \mathfrak{p}' . Let $\tilde{\mathfrak{P}}'$ be a prime divisor of \mathfrak{p}' in $\overline{\mathbf{Q}}$ and let $I_{\tilde{\mathfrak{p}}'}$ be the inertia group of $\tilde{\mathfrak{P}}'$. It suffices to show $\tau_{\lambda}(I_{\tilde{\mathfrak{p}}'}) = \{1\}$. By (1.8), this assertion follows if we could show

$$(1.9) s_i^{-1} I_{\tilde{\mathbf{n}}'} s_i \subseteq H,$$

(1.10)
$$\sigma_{\lambda}(s_i^{-1}I_{\tilde{\mathfrak{P}}'}s_i) = \{1\}$$

for every $1 \leq i \leq r$. Let \mathfrak{P}' be a prime ideal of \tilde{F} which lies under $\tilde{\mathfrak{P}}'$. Since $s_i^{-1}I_{\tilde{\mathfrak{P}}'}s_i=I_{s_i^{-1}\tilde{\mathfrak{P}}'}$, (1.9) is equivalent to $I_{s_i^{-1}\mathfrak{P}'}\subseteq \operatorname{Gal}(\tilde{F}/F)$, where $I_{s_i^{-1}\mathfrak{P}'}$ is the inertia group of $s_i^{-1}\mathfrak{P}'$ in $\operatorname{Gal}(\tilde{F}/\mathbf{Q})$. This condition is equivalent to that $s_i^{-1}\mathfrak{P}'$ is unramified in F/\mathbf{Q} , i.e., \mathfrak{p}_i is unramified in F/\mathbf{Q} . Hence (1.9) is verified. Since $s_i^{-1}\tilde{\mathfrak{P}}'$ is a prime divisor of \mathfrak{p}_i in $\overline{\mathbf{Q}}$, (1.10) follows from the assumption that σ_{λ} is unramified at \mathfrak{p}_i .

Next we shall show E-rationality for $p' \notin S'$. Put

$$K = \operatorname{Gal}(\overline{\mathbf{Q}}/\tilde{F}), \qquad \overline{G} = G/K, \qquad \overline{H} = H/K,$$
$$\overline{\Omega} = \Omega/K, \qquad \overline{F}_{\mathbf{p}'} = F_{\mathbf{p}'} \mod K \in \overline{G}.$$

Let U be the cyclic subgroup of \overline{G} generated by $\overline{F}_{p'}$. Let

$$(1.11) \overline{\Omega} = \bigcup_{i=1}^{m} U \overline{t}_{i} \overline{H}, \overline{t}_{i} \in \overline{G}$$

be a double coset decomposition of $\overline{\Omega}$. For every j, let n_j be the minimal positive integer a such that $\overline{F}^a_{\mathfrak{p}'} \in \overline{t_j} \overline{H} \overline{t_j}^{-1}$. Then

(1.12)
$$\overline{\Omega} = \bigcup_{j=1}^{m} \bigcup_{i=0}^{n_j-1} \overline{F}_{\mathfrak{p}'}^i \overline{t}_j \overline{H}$$

is a coset decomposition of $\overline{\Omega}$. Take $t_j \in G$ so that $t_j \mod K = \overline{t_j}$. Then

(1.13)
$$\Omega = \bigcup_{j=1}^{m} \bigcup_{i=0}^{n_j-1} s_{ij} H, \qquad s_{ij} = F_{p'}^{i} t_j$$

is a coset decomposition of Ω . We may realize τ_{λ} using (1.13) and (1.3) on

$$W = \bigotimes_{j=1}^{m} \bigotimes_{i=0}^{n_j-1} V_{ij}, \qquad V_{ij} \cong V.$$

Since

$$F_{p'}^{-1}s_{ij}H = \begin{cases} s_{n_j-1,j}H & \text{if } i = 0, \\ s_{i-1,j}H & \text{if } 1 \le i \le n_j - 1, \end{cases}$$

we have

$$\tau_{\lambda}(F_{\mathfrak{p}'})(\otimes_{j=1}^{m}\otimes_{i=1}^{n_{j}-1}v_{ij})=\otimes_{j=1}^{m}(\sigma_{\lambda}(t_{j}^{-1}F_{\mathfrak{p}'}^{n_{j}}t_{j})v_{n_{j}-1,j}\otimes(\otimes_{i=1}^{n_{j}-1}v_{i-1,j})).$$

For $1 \leq j \leq m$, let A_j be the linear operator on $\bigotimes_{i=0}^{n_j-1} V_{ij}$ defined by

$$A_{j}(\bigotimes_{i=1}^{n_{j}-1} v_{ij}) = \sigma_{\lambda}(t_{j}^{-1} F_{p'}^{n_{j}} t_{j}) v_{n_{j}-1, j} \otimes (\bigotimes_{i=1}^{n_{j}-1} v_{i-1, j}).$$

Then we have $\tau_{\lambda}(F_{\mathfrak{p}'}) = \bigotimes_{i=1}^{m} A_{i}$. Therefore it suffices to show

(1.14)
$$\det(1 - A_j X) \in E[X], \quad 1 \le j \le m.$$

Let $\tilde{\mathfrak{P}}'$ be a prime divisor of \mathfrak{p}' in $\overline{\mathbf{Q}}$ and let $F_{\tilde{\mathfrak{P}}'} \in \operatorname{Gal}(\overline{\mathbf{Q}}/F')$ be a Frobenius element of $\tilde{\mathfrak{P}}'$. We may take $F_{\mathfrak{p}'} = F_{\tilde{\mathfrak{P}}'}$. We have $t_j^{-1}F_{\mathfrak{p}'}^{n_j}t_j = F_{t_j^{-1}\tilde{\mathfrak{P}}'}^{n_j}$. Let \mathfrak{p}_j (resp. \mathfrak{p}'_j) be the restriction of $t_j^{-1}\tilde{\mathfrak{P}}'$ to F (resp. F'). Let f_j (resp. f'_j) be the degree of

 \mathfrak{p}_j (resp. \mathfrak{p}'_j) in F/\mathbf{Q} (resp. F'/\mathbf{Q}). Let $\tilde{F}_{t_j^{-1}\tilde{\mathfrak{p}}'}$ be a Frobenius element of $t_j^{-1}\tilde{\mathfrak{p}}'$ in $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$. We may assume

$$(\tilde{F}_{t_j^{-1}\tilde{\mathfrak{P}}'})^{f_j} = F_{\mathfrak{p}_j}, \qquad (\tilde{F}_{t_j^{-1}\tilde{\mathfrak{P}}'})^{f_j'} = F_{\mathfrak{p}_j'} = F_{t_j^{-1}\tilde{\mathfrak{P}}'}.$$

Hence we have

$$t_j^{-1} F_{\mathfrak{p}'}^{n_j} t_j = (\tilde{F}_{t_i^{-1} \tilde{\mathfrak{p}}'})^{n_j f_j'} \in H.$$

Therefore f_j must divide $n_j f'_j$ and we obtain

$$t_j^{-1} F_{\mathfrak{p}'}^{n_j} t_j = F_{\mathfrak{p}_j}^{n_j f_j' / f_j}.$$

Now the assertion (1.14) and also the last assertion of Theorem 1.1 follows from the next Lemma.

LEMMA 1.2. Let V be a finite dimensional vector space over a field k and let $A \in End(V)$. Let $W = \bigotimes_{i=0}^{n-1} V_i$, $V_i \cong V$. Define $A_1 \in End(W)$ by

$$A_1(\bigotimes_{i=0}^{n-1} v_i) = Av_{n-1} \otimes (\bigotimes_{i=1}^{n-1} v_{i-1}).$$

Put $f_A(X) = \det(1 - AX)$, $f_{A_1}(X) = \det(1 - A_1X)$. Then $f_{A_1}(X)$ depends only on $f_A(X)$. Furthermore if k_0 is a subfield of k such that $f_A(X) \in k_0[X]$, then we have $f_{A_1}(X) \in k_0[X]$.

The proof is omitted since it is easy. This completes the proof of Theorem 1.1.

Let $\sigma_{\lambda}: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \longrightarrow GL(V)$ and $\tau_{\lambda}: \operatorname{Gal}(\overline{\mathbb{Q}}/F') \longrightarrow GL(W)$ be as above. If σ_{λ} is of Hodge-Tate type, then we can show that τ_{λ} is also of Hodge-Tate type and its type can be determined.

Let p be a rational prime which lies under λ . Set

$$\mu_{p^{\infty}} = \{ z \in \mathbf{Q} \mid z^{p^a} = 1 \text{ for some } 1 \le a \in \mathbf{Z} \}.$$

Define a homomorphism χ of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ into \mathbf{Z}_p^{\times} by

$$g(z) = z^{\chi(g)}, \qquad g \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}), \qquad z \in \mu_{p^{\infty}}.$$

Let \mathfrak{p} be a prime factor of p in F and take a prime divisor $\tilde{\mathfrak{P}}$ of \mathfrak{p} in $\overline{\mathbf{Q}}$. We identify $\overline{\mathbf{Q}}_p$ with $\overline{\mathbf{Q}}_{\tilde{\mathfrak{p}}}$ and consider $\mu_{p^{\infty}}$ as a subgroup of $\overline{\mathbf{Q}}_p^{\times}$. We regard E_{λ} as a subfield of $\overline{\mathbf{Q}}_p$. Let $\mathbf{C}_p = \hat{\mathbf{Q}}_p$ be the completion of $\overline{\mathbf{Q}}_p$. Put $V_{\mathbf{C}_p} = \mathbf{C}_p \otimes_{E_{\lambda}} V$. Then $\operatorname{Gal}(\overline{\mathbf{Q}}_{\tilde{\mathfrak{p}}}/F_{\mathfrak{p}} \vee E_{\lambda}) \ni g$ acts on $V_{\mathbf{C}_p}$ by

$$g(c \otimes v) = g(c) \otimes \sigma_{\lambda}(g)v, \qquad c \in \mathbf{C}_p, \quad v \in V.$$

For every $i \in \mathbf{Z}$, let

$$V^{i} = \{ v \in V_{\mathbf{C}_{p}} \mid g(v) = \chi(g)^{i}v \text{ for every } g \in \mathrm{Gal}(\overline{\mathbf{Q}}_{\tilde{\mathbf{u}}}/F_{\mathfrak{p}} \vee E_{\lambda}) \}$$

and put $V(i) = \mathbf{C}_p \otimes_{F_p \vee E_\lambda} V^i$. Then $\bigoplus_{i \in \mathbf{z}} V(i)$ can be considered as a sub \mathbf{C}_p -vector space of $V_{\mathbf{C}_p}$ (cf. Serre [10], III-6). We call σ_λ is of Hodge-Tate type at \mathfrak{p} if

$$(1.15) V_{\mathbf{C}_{\mathfrak{p}}} = \bigoplus_{i, \in \mathbf{Z}} V(i_{\mathfrak{p}}).$$

PROPOSITION 1.3. Assume that σ_{λ} is of Hodge-Tate type (1.15) at every prime factor \mathfrak{p} of p in F. Let \mathfrak{p}' be any prime factor of p in F'. Define prime ideals $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ of F as above. Then τ_{λ} is of Hodge-Tate type at \mathfrak{p}' such that

$$\mathbf{C}_p \otimes_{E_{\lambda}} W = \bigoplus_{i_{\mathfrak{p}_1}, \cdots, i_{\mathfrak{p}_r} \in \mathbf{Z}^r} W(i_{\mathfrak{p}_1} + i_{\mathfrak{p}_2} + \cdots + i_{\mathfrak{p}_r}).$$

PROOF: Let $\tilde{\mathfrak{P}}'$ be a prime factor of \mathfrak{p}' in $\overline{\mathbf{Q}}$. Let \tilde{F} be the normal closure of F in $\overline{\mathbf{Q}}$ and \mathfrak{P}' be the restriction of $\tilde{\mathfrak{P}}'$ to \tilde{F} . For every $1 \leq i \leq r$, take $v_i \in V^{i_{p_i}}$ so that

$$gv_i = \chi(g)^{i_{\mathfrak{p}_i}}v_i, \qquad g \in \mathrm{Gal}(\overline{\mathbf{Q}}_{\tilde{\mathfrak{p}}'}/F_{\mathfrak{p}_i} \vee E_{\lambda}).$$

Then $v_1 \otimes \cdots \otimes v_r \in \mathbf{C}_p \otimes_{E_\lambda} W$ and we can easily verify that

$$g(\otimes_{i=1}^r v_i) = \chi(g)^{i_{\mathfrak{p}_1} + \dots + i_{\mathfrak{p}_r}} (\otimes_{i=1}^r v_i) \quad \text{if} \quad g \in \operatorname{Gal}(\overline{\mathbf{Q}}_{\tilde{\mathfrak{p}}'} / \tilde{F}_{\mathfrak{p}'} \vee E_{\lambda}).$$

In view of the injectivity result of [10], III-6 and III-31, Theorem 1, the assertion follows immmediately.

Let $\sigma_{\lambda}: \mathrm{Gal}(\overline{\mathbf{Q}}/F) \longrightarrow GL(V)$ be as before. We define L-series $L(s,\sigma_{\lambda})$ attached to σ_{λ} by

$$L(s,\sigma_{\lambda}) = \prod_{\mathfrak{p} \notin S} \det(1 - \sigma_{\lambda}(F_{\mathfrak{p}})N(\mathfrak{p})^{-s})^{-1},$$

a formal Dirichlet series with coefficients in E_{λ} . We assume that F is normal over \mathbf{Q} until (1.17). For $1 \leq i \leq r$, put

$$\sigma_{\lambda}^{i}(h) = \sigma_{\lambda}(s_{i}^{-1}hs_{i}), \qquad h \in H = \operatorname{Gal}(\overline{\mathbf{Q}}/F).$$

Put $\tau_{\lambda} = \bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma_{\lambda}$. Then we have

(1.16)
$$\tau_{\lambda}|H \cong \bigotimes_{i=1}^{r} \sigma_{\lambda}^{i}.$$

Therefore we obtain

$$\operatorname{Ind}_{H}^{G}(\otimes_{i=1}^{r}\sigma_{\lambda}^{i}) \cong \bigoplus_{\chi \in \widehat{G/H}}(\tau_{\lambda} \otimes \chi).$$

Here χ extends over irreducible representations of G/H and we have assumed that E_{λ} is sufficiently large so that every χ is realized over E_{λ} . Now the well known property of L-series yields

(1.17)
$$L(s, \bigotimes_{i=1}^{r} \sigma_{\lambda}^{i}) = \prod_{\chi \in \widehat{G/H}} L(s, \tau_{\lambda} \otimes \chi)$$

up to finitely many Euler factors.

We are going to consider a relation between $\bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma_{\lambda}$ and the Langlands L-function used to express the zeta functions of certain Shimura varieties (cf. Langlands [8]). Let F be a totally real algebraic number field and B be a quaternion algebra over F. Set $H = \operatorname{Gal}(\overline{\mathbf{Q}}/F)$. Fix an embedding of $\overline{\mathbf{Q}}$ into \mathbf{C} . Then J_F can be identified with $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})/H$. Let $G = \operatorname{Res}_{F/\mathbf{Q}}(B^{\times})$. Then the L-group LG of G is given by

$$^{L}G = GL_{2}(\mathbf{C})^{J_{F}} \times_{s} Gal(\overline{\mathbf{Q}}/\mathbf{Q})$$

where the multiplication is defined by

$$(g_1, \sigma_1)(g_2, \sigma_2) = (g_1\sigma_1(g_2), \sigma_1\sigma_2), \quad g_1, g_2 \in GL_2(\mathbf{C})^{J_F}, \quad \sigma_1, \sigma_2 \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}).$$

Here we take the action of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$ on $GL_2(\mathbf{C})^{J_F}$ by

$$\sigma(g) = (g_{\sigma^{-1}\tau})_{\tau \in J_F}$$
 for $g = (g_{\tau})_{\tau \in J_F}$, $g_{\tau} \in GL_2(\mathbf{C})$.

Put ${}^LG^0 = GL_2(\mathbf{C})^{J_F}$. We shall define two representations of LG . Let $V = \bigoplus_{\tau \in J_F} V_{\tau}$, $V_{\tau} \cong \mathbf{C}^2$. Let r_0^* be the standard representation of ${}^LG^0$ on V, i.e.,

$$g(\bigoplus_{\tau \in J_F} v_{\tau}) = \bigoplus_{\tau \in J_F} g_{\tau} v_{\tau}, \qquad g = (g_{\tau}) \in {}^L G^0.$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, define $I_{\sigma} \in GL(V)$ by

$$I_{\sigma}(\bigoplus_{\tau\in J_F}v_{\tau})=\bigoplus_{\tau\in J_F}v_{\sigma^{-1}\tau}.$$

Then we can verify

(1.18)
$$I_{\sigma_1\sigma_2} = I_{\sigma_1}I_{\sigma_2}, \qquad \sigma_1, \sigma_2 \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}),$$

$$(1.19) I_{\sigma}r_0^*(g) = r_0^*(\sigma(g))I_{\sigma}, \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}), g \in {}^LG^0.$$

Put

$$r_0((g,\sigma)) = r_0^*(g)I_{\sigma}, \qquad (g,\sigma) \in {}^LG.$$

By (1.18) and (1.19), we see easily that r_0 defines a representation of LG on V.

Let δ be a subset of J_F at which B splits and B ramifies at $J_F \setminus \delta$. We assume that δ is not empty. Since J_F is identified with $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})/H$, δ can be identified with a subset Ω of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})/H$. Let

$$H' = \{ g \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \mid g\Omega = \Omega \}$$

and let F' be the subfield of $\overline{\mathbf{Q}}$ which corresponds to H'. Let $W = \bigotimes_{\tau \in \delta} V_{\tau}$, $V_{\tau} \cong \mathbf{C}^2$. Let r_1^* be the representation of ${}^L G^0$ on W defined by

$$g(\otimes_{\tau \in \delta} v_{\tau}) = \otimes_{\tau \in \delta} g_{\tau} v_{\tau}, \qquad g = (g_{\tau}) \in {}^{L}G^{0}.$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/F')$, define $J_{\sigma} \in GL(W)$ by

$$J_{\sigma}(\otimes_{\tau \in \delta} v_{\tau}) = \otimes_{\tau \in \delta} v_{\sigma^{-1}\tau}.$$

Then we have

$$J_{\sigma_1\sigma_2} = J_{\sigma_1}J_{\sigma_2}, \qquad J_{\sigma}r_1^*(g) = r_1^*(\sigma(g))J_{\sigma}$$

for $\sigma_1, \sigma_2, \sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/F'), g \in {}^LG^0$. Therefore we can define a representation $r_1^{(0)}$ of $GL_2(\mathbf{C})^{J_F} \times_s \operatorname{Gal}(\overline{\mathbf{Q}}/F')$ by

$$r_1^{(0)}((g,\sigma)) = r_1^*(g)J_{\sigma}, \qquad g \in {}^LG^0, \quad \sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/F').$$

Then we let

$$r_1 = \operatorname{Ind}(r_1^{(0)}; {}^LG^0 \times_s \operatorname{Gal}(\overline{\mathbf{Q}}/F') \longrightarrow {}^LG).$$

THEOREM 1.4. Let π be an automorphic representation of G_A . Let E be an algebraic number field of finite degree and λ be a finite place of E. Let σ_{λ} : $Gal(\overline{\mathbb{Q}}/F) \longrightarrow GL_2(E_{\lambda})$ be a λ -adic representation. We assume that $L(s,\pi,r_0) = L(s,\sigma_{\lambda})$ holds up to finitely many Euler factors, when we fix an embedding of E_{λ} into C and consider two L-series as Euler products over rational primes. Then we have

$$L(s,\pi,r_1) = L(s,\bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'}\sigma_{\lambda})$$

up to finitely many Euler factors.

PROOF: Let $\iota: E_{\lambda} \subset \mathbf{C}$ be the fixed embedding. Then $\iota \circ \sigma_{\lambda}$ defines a homorphism of $\operatorname{Gal}(\overline{\mathbf{Q}}/F)$ into $GL_2(\mathbf{C})$. Put $\rho = \iota \circ \sigma_{\lambda}$. Let $G = \bigcup_{i=1}^n s_i H$, $\Omega = \bigcup_{i=1}^r s_i H$. For $g \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$, set

(1.20)
$$\tilde{\rho}(g) = ((\rho(s_i^{-1}gs_{k(i)})), g) \in {}^LG.$$

Here the meaning of $(\rho(s_i^{-1}gs_{k(i)})) \in {}^LG^0$ is as follows. We identify J_F with $\{s_i|F; 1 \leq i \leq n\}$. Then the s_i -component of $(\rho(s_i^{-1}gs_{k(i)}))$ is $\rho(s_i^{-1}gs_{k(i)}) \in GL_2(\mathbb{C})$. We have set

$$g^{-1}s_i = s_{k(i)}h_i^*, \qquad 1 \le i \le n, \quad h_i^* \in H.$$

It can be verified that $\tilde{\rho}$ defines a homomorphism of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ into LG . By the definition of $r_1^{(0)}$, we obtain

$$(1.21) \qquad (r_1^{(0)} \circ \tilde{\rho})(g))(\otimes_{i=1}^r v_{s_i}) = \otimes_{i=1}^r \rho(s_i^{-1} g s_{k(i)}) v_{k(i)}, \qquad g \in \operatorname{Gal}(\overline{\mathbf{Q}}/F').$$

Comparing (1.21) with (1.3), we get

(1.22)
$$\iota \circ \tau_{\lambda} \cong r_{1}^{(0)} \circ (\tilde{\rho}|\operatorname{Gal}(\overline{\mathbf{Q}}/F')),$$

where $\tau_{\lambda} = \bigotimes_{\Omega} \operatorname{Ind}_{H}^{H'} \sigma_{\lambda}$. Now let us show

$$(1.23) \iota \circ \operatorname{Ind}_{H'}^{G} \tau_{\lambda} \cong r_{1} \circ \tilde{\rho}.$$

Let $G = \bigcup_{i=1}^m t_i H'$. We realize $\operatorname{Ind}_{H'}^G \tau_{\lambda}$ by the similar formula to (1.3). Thus $\operatorname{Ind}_{H'}^G \tau_{\lambda}$ is realized on $\bigoplus_{i=1}^m W_i$, $W_i \cong W$, where W is the representation space of τ_{λ} . Put, for $g \in G$,

$$g^{-1}t_i = t_{l(i)}h'_i, \qquad 1 \le i \le m, \quad h'_i \in H'.$$

Then we have

$$(\operatorname{Ind}_{H'}^G \tau_{\lambda})(g)(\bigoplus_{i=1}^m w_i) = \bigoplus_{i=1}^m \tau_{\lambda}(t_i^{-1}gt_{l(i)})w_{l(i)}, \qquad g \in G.$$

On the other hand, take a coset decomposition

$${}^{L}G = \bigcup_{i=1}^{m} \tilde{\rho}(t_i)({}^{L}G^0 \times_{s} H')$$

and realize r_1 on $\bigoplus_{i=1}^m W_i'$, $W_i' \cong W'$ where W' is the representation space of $r_1^{(0)}$. Then we have

$$r_1(\tilde{\rho}(g))(\bigoplus_{i=1}^m w_i') = \bigoplus_{i=1}^m r_1^{(0)}(\tilde{\rho}(t_i^{-1}gt_{l(i)}))w_{l(i)}', \qquad w_i' \in W_i', \quad g \in G.$$

Since we may take $W'_i = W_i \otimes_{E_\lambda} \mathbb{C}$, (1.23) follows from (1.22). Let p be a rational prime at which π , $\operatorname{Ind}_H^G \sigma_\lambda$ and $\operatorname{Ind}_{H'}^G (\otimes_{\Omega} \operatorname{Ind}_H^{H'} \sigma_\lambda)$ are unramified and also

$$(1.24) L(s,\pi,r_0) = L(s,\sigma_{\lambda})$$

holds at Euler *p*-factors. Fix a Frobenius element $F_p \in \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ of p. Let $\pi = \otimes_p \pi_p \otimes \pi_\infty$ and let $(g_p, F_p) \in {}^L G$ be the Langlands class of π_p . By (1.24), we have

$$\tilde{\rho}(F_p) = (g_p, F_p).$$

Therefore we obtain

$$\det(1 - Xr_1((g_p, F_p))) = \det(1 - Xr_1 \circ \tilde{\rho}(F_p))$$

$$= \det(1 - X(\iota \circ \operatorname{Ind}_{H'}^G \tau_{\lambda})(F_p)) = \iota(\det(1 - X(\operatorname{Ind}_{H'}^G \tau_{\lambda})(F_p)))$$

by (1.23). This completes the proof.

Let M be a motive over F with coefficients in E. For every finite place λ of E, the λ -adic realization $H_{\lambda}(M)$ of M determines a λ -adic representation $\sigma_{\lambda}: \operatorname{Gal}(\overline{\mathbf{Q}}/F) \longrightarrow GL(H_{\lambda}(M)); \{\sigma_{\lambda}\}$ makes a compatible system of λ -adic representations. Let Ω be any non-empty subset of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})/\operatorname{Gal}(\overline{\mathbf{Q}}/F)$ and define F' as before. By Theorem 1.1, we have a compatible system of λ -adic representations $\{\bigotimes_{\Omega}\operatorname{Ind}_{\operatorname{Gal}(\overline{\mathbf{Q}}/F)}^{\operatorname{Gal}(\overline{\mathbf{Q}}/F)}\sigma_{\lambda}\}$ of $\operatorname{Gal}(\overline{\mathbf{Q}}/F')$. We conjecture that this system of representations is realized by a motive.

CONJECTURE 1.5. There exists a motive M' over F' with coefficients in E such that the λ -adic representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/F')$ obtained from M' coincides with $\bigotimes_{\Omega} \operatorname{Ind}_{\operatorname{Gal}(\overline{\mathbb{Q}}/F)}^{\operatorname{Gal}(\overline{\mathbb{Q}}/F)} \sigma_{\lambda}$ for every finite place λ of E.

The rank of M' is $(\operatorname{rank} M)^r$ where $r = |\Omega|$. In analogy with the case of induced representations, we denote the above M' by $\bigotimes_{\Omega} \operatorname{Res}_{F/F'} M$. (Of course F' is not a subfield of F in general.) The computation of special values of the L-function attached to M' based on Deligne's conjecture shall be performed in §5 and shall be shown to be consistent with a conjecture and certain results of Shimura.

§2. Factorization of Deligne's period $c^{\pm}(M)$ of a motive M

Let E and F be algebraic number fields of finite degree. Let M be a motive over F with coefficients in E. Let λ be a finite place of E and consider the λ -adic realization $H_{\lambda}(M) \in V(E_{\lambda})$ of M. For a prime ideal \mathfrak{p} of F such that $(\lambda, \mathfrak{p}) = 1$, put

(2.1)
$$Z_{\mathfrak{p}}(M,X) = \det(1 - F_{\mathfrak{p}}X, H_{\lambda}(M)^{I_{\mathfrak{p}}})^{-1},$$

where $F_{\mathfrak{p}}$ denotes a geometric Frobenius of \mathfrak{p} . It is conjectured that $Z_{\mathfrak{p}}(M,X) \in E[X]$ independently of λ . We shall assume this conjecture. For $\sigma \in J_E$, put

(2.2)
$$L_{\mathfrak{p}}(\sigma, M, s) = \sigma Z_{\mathfrak{p}}(M, N(\mathfrak{p})^{-s}),$$

(2.3)
$$L(\sigma, M, s) = \prod_{\mathfrak{p}} L_{\mathfrak{p}}(\sigma, M, s).$$

Let $\operatorname{Res}_{F/\mathbf{Q}}(M) = R_{F/\mathbf{Q}}(M)$ denote the motive over \mathbf{Q} with coefficients in E obtained from M by the restriction of scalar. Then we have

(2.4)
$$L(\sigma, M, s) = L(\sigma, R_{F/\mathbf{Q}}(M), s)$$

for every $\sigma \in J_E$. Since $E \otimes_{\mathbf{Q}} \mathbf{C} \cong \mathbf{C}^{J_E}$, we can define a function $L^*(M,s)$ taking values in $E \otimes_{\mathbf{Q}} \mathbf{C}$ by arranging $L(\sigma, M, s)$. Deligne's conjecture predicts

(2.5)
$$L^*(M,0)/c^+(R_{F/\mathbf{Q}}(M)) \in E$$

if 0 is critical for $R_{F/\mathbf{Q}}(M)$ (which is assumed to be homogeneous) with $E \subset E \otimes_{\mathbf{Q}} \mathbf{C}$ canonically. Here the period $c^+(R_{F/\mathbf{Q}}(M)) \in (E \otimes_{\mathbf{Q}} \mathbf{C})^{\times}$ is defined as follows.

Let M be a motive over \mathbb{Q} with coefficients in E. Let $H_B(M) \in V(E)$ denote the Betti realization of M. Then the complex conjugation F_{∞} acts on $H_B(M)$. We have

$$(2.6) H_B(M) = H_B^+(M) \oplus H_B^-(M),$$

where $H_B^{\pm}(M)$ denotes the eigenspaces of $H_B(M)$ with eigenvalues ± 1 . We assume that M is homogeneous of weight w. Then we have

$$H_B(M) \otimes_{E,\sigma} \mathbf{C} = \bigoplus_{p+q=w} H^{pq}(\sigma, M), \qquad \sigma \in J_E.$$

In view of the Gamma factor of the conjectural functional equation of $L^*(M, s)$, we find that if 0 is critical for M, then:

(2.7) Whenever
$$H^{pq}(\sigma, M) \neq \{0\}$$
 and $p < q$, $p < 0$, $q > -1$ must hold.

If w is odd, (2.7) is sufficient for 0 to be critical. If w is even, F_{∞} must act on $\bigoplus_{\sigma \in J_E} H^{pp}(\sigma, M)$, p = w/2 by scalar. Put

$$F_{\infty} = (-1)^{p+\epsilon}$$
, $\epsilon = 0$ or 1 on $H^{pp}(\sigma, M)$.

Then

(2.8)
$$\begin{cases} p < \epsilon & \text{if } p + \epsilon \text{ is even,} \\ -\epsilon - 1 < p & \text{if } p + \epsilon \text{ is odd,} \end{cases}$$

must be satisfied; (2.7) and (2.8) are sufficient for 0 to be critical.

Remark. We see that $n \in \mathbf{Z}$ is critical for M hence the transcendental part of $L^*(M,n)$ is predictable by Deligne's conjecture if and only if the following conditions are satisfied. (Of course, we admit the conjectural functional equation for $L^*(M,s)$.)

$$(2.9) p < n \le q if H^{pq}(\sigma, M) \ne \{0\}, p < q.$$

(2.10)
$$\begin{cases} n > p - \epsilon & \text{if } p + \epsilon + n \text{ is even,} \\ n$$

if $F_{\infty} = (-1)^{p+\epsilon}$, $\epsilon = 0$ or 1 on $H^{pp}(\sigma, M) \neq \{0\}$.

Let $H_{DR}(M) \in V(E)$ be the de Rham realization of M. We have the canonical isomorphism

$$I: H_B(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M) \otimes_{\mathbf{Q}} \mathbf{C}$$

as $E \otimes_{\mathbf{Q}} \mathbf{C}$ -modules. We choose $F^{\pm}(M) \in V(E)$ as certain subspaces of $H_{DR}(M)$ obtained from the Hodge filtration; explicitly we have

$$I^{-1}(F^{+}(M) \otimes_{E,\sigma} \mathbf{C}) = \begin{cases} \bigoplus_{p \geq q} H^{pq}(\sigma, M) & \text{if} \quad F_{\infty} = 1 \text{ on } H^{pp}(\sigma, M), \\ \bigoplus_{p > q} H^{pq}(\sigma, M) & \text{if} \quad F_{\infty} = -1 \text{ on } H^{pp}(\sigma, M). \end{cases}$$

$$I^{-1}(F^{-}(M) \otimes_{E,\sigma} \mathbf{C}) = \begin{cases} \bigoplus_{p>q} H^{pq}(\sigma, M) & \text{if } F_{\infty} = 1 \text{ on } H^{pp}(\sigma, M), \\ \bigoplus_{p\geq q} H^{pq}(\sigma, M) & \text{if } F_{\infty} = -1 \text{ on } H^{pp}(\sigma, M). \end{cases}$$

Put $H_{DR}^{\pm}(M) = H_{DR}(M)/F^{\mp}(M)$. We have the canonical isomorphisms

$$I^{\pm}: H_B^{\pm}(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}^{\pm}(M) \otimes_{\mathbf{Q}} \mathbf{C}.$$

Let $\delta(M) = \det(I)$, $c^{\pm}(M) = \det(I^{\pm})$ be the determinants calculated by E-rational basis. Then $\delta(M)$, $c^{\pm}(M) \in (E \otimes_{\mathbf{Q}} \mathbf{C})^{\times}$ are determined up to multiplications by elements of E.

Now going back to the general case, let M be a motive over F with coefficients in E. We assume that F is totally real. For every $\tau \in J_F$, we have the Betti realization $H_{\tau,B}(M) \in V(E)$ of M and the complex conjugation $F_{\infty_{\tau}}$ associated with τ acts on $H_{\tau,B}(M)$. Similarly to (2.6), we have

(2.11)
$$H_{\tau,B}(M) = H_{\tau,B}^+(M) \oplus H_{\tau,B}^-(M),$$

 $H_{\tau,B}^{\pm}(M) \in V(E)$. We assume that $R_{F/\mathbb{Q}}(M)$ is homogeneous of weight w. Then we have

$$H_{\tau,B}(M) \otimes_{E,\sigma} \mathbf{C} = \bigoplus_{p+q=w} H^{pq}(\tau,\sigma,M), \qquad \sigma \in J_E.$$

If w is even, we assume that $\bigoplus_{\tau \in J_F} F_{\infty_{\tau}}$ acts on $\bigoplus_{\tau} \bigoplus_{\sigma} H^{pp}(\tau, \sigma, M)$, p = w/2 by scalar. The de Rham realization $H_{DR}(M) \in V(E)$ has the structure of a free $E \otimes_{\mathbf{Q}} F$ -module. We have the canonical isomorphism

$$I_{\tau}: H_{\tau,B}(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M) \otimes_{F,\tau} \mathbf{C}$$

as $(E \otimes_{\mathbf{Q}} \mathbf{C})$ -modules. By the Hodge filtration obtained from the convergence of the spectral sequence

$$E_1^{pq} = H^q(M, \Omega^p) \Longrightarrow H_{DR}^{p+q}(M),$$

we can define subspaces $F^{\pm}(M) \in V(E)$ of $H_{DR}(M)$ as in the case $F = \mathbf{Q}$; $F^{\pm}(M)$ has the structure of a vector space over F. We have

$$I_{\tau}^{-1}(F^{+}(M) \otimes_{F,\tau} \mathbf{C})$$

$$= \begin{cases} \bigoplus_{\sigma \in J_{E}} \bigoplus_{p \geq q} H^{pq}(\tau, \sigma, M) & \text{if } F_{\infty_{\tau}} = 1 \text{ on } H^{pp}(\tau, \sigma, M), \\ \bigoplus_{\sigma \in J_{E}} \bigoplus_{p > q} H^{pq}(\tau, \sigma, M) & \text{if } F_{\infty_{\tau}} = -1 \text{ on } H^{pp}(\tau, \sigma, M). \end{cases}$$

$$I_{\tau}^{-1}(F^{-}(M) \otimes_{F,\tau} \mathbf{C})$$

$$= \begin{cases} \bigoplus_{\sigma \in J_{E}} \bigoplus_{p > q} H^{pq}(\tau, \sigma, M) & \text{if } F_{\infty_{\tau}} = 1 \text{ on } H^{pp}(\tau, \sigma, M), \\ \bigoplus_{\sigma \in J_{E}} \bigoplus_{p \geq q} H^{pq}(\tau, \sigma, M) & \text{if } F_{\infty_{\tau}} = -1 \text{ on } H^{pp}(\tau, \sigma, M). \end{cases}$$

Put $H_{DR}^{\pm}(M) = H_{DR}(M)/F^{\mp}(M)$. We have the canonical isomorphisms

$$I_{\tau}^{\pm}: H_{\tau,B}^{\pm}(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}^{\pm}(M) \otimes_{F,\tau} \mathbf{C}$$

as $(E \otimes_{\mathbf{Q}} \mathbf{C})$ -modules. Let $\delta_{\tau}(M) = \det(I_{\tau})$, $c_{\tau}^{\pm}(M) = \det(I_{\tau}^{\pm})$ be the determinant calculated by E-rational basis of the left hand side and by $E \otimes_{\mathbf{Q}} F$ -basis (since they are free $E \otimes_{\mathbf{Q}} F$ -modules) of the right hand side modules. Then $\delta_{\tau}(M)$, $c_{\tau}^{\pm}(M) \in (E \otimes_{\mathbf{Q}} \mathbf{C})^{\times}$ are determined up to multiplications by elements of $(E \vee \tilde{F})$. Here \tilde{F} denotes the normal closure of F in \mathbf{Q} .

PROPOSITION 2.1. Let the notation be the same as above. We have

$$c^{+}(R_{F/\mathbf{Q}}(M)) = \prod_{\tau \in J_F} c_{\tau}^{+}(M), \qquad c^{-}(R_{F/\mathbf{Q}}(M)) = \prod_{\tau \in J_F} c_{\tau}^{-}(M),$$
$$\delta(R_{F/\mathbf{Q}}(M)) = \prod_{\tau \in J_F} \delta_{\tau}(M),$$

up to multiplications by elements of $E \vee \tilde{F}$.

PROOF: It is known (cf. Deligne [6]) that $H_B(R_{F/\mathbb{Q}}(M)) = \bigoplus_{\tau \in J_F} H_{\tau,B}(M)$ as vector spaces over E and that $H_{DR}(R_{F/\mathbb{Q}}(M))$ can be identified with $H_{DR}(M)$ forgetting its structure as a vector space over F. We see that

$$H_B^+(R_{F/\mathbf{Q}}(M)) = \bigoplus_{\tau \in J_F} H_{\tau,B}^+(M), \qquad H_B^-(R_{F/\mathbf{Q}}(M)) = \bigoplus_{\tau \in J_F} H_{\tau,B}^-(M),$$

and that $H_{DR}^{\pm}(R_{F/\mathbb{Q}}(M))$ is identified with $H_{DR}^{\pm}(M)$ forgetting the structure of a vector space over F. We have the isomorphism of $(E \otimes_{\mathbb{Q}} \mathbb{C})$ -modules

$$I^+: H_R^+(R_{F/\mathbb{Q}}(M)) \otimes_{\mathbb{Q}} \mathbb{C} \cong H_{DR}^+(R_{F/\mathbb{Q}}(M)) \otimes_{\mathbb{Q}} \mathbb{C}.$$

Since

$$(2.12) H_{DR}^{+}(R_{F/\mathbf{Q}}(M)) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}^{+}(R_{F/\mathbf{Q}}(M)) \otimes_{F} F \otimes_{\mathbf{Q}} \mathbf{C}$$

$$\cong \bigoplus_{\tau \in J_{F}} (H_{DR}^{+}(M) \otimes_{F,\tau} \mathbf{C}),$$

 I^+ may be written as

$$I^+: \oplus_{\tau \in J_F}(H_{\tau,B}^+(M) \otimes_{\mathbf{Q}} \mathbf{C}) \cong \oplus_{\tau \in J_F}(H_{DR}^+(M) \otimes_{F,\tau} \mathbf{C}).$$

Restricting I^+ to a direct factor, we obtain

$$I_{\tau}^+: H_{\tau,B}^+(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}^+(M) \otimes_{F,\tau} \mathbf{C}.$$

The isomorphism (2.12) does not preserve E-structure but preserve $E \vee \tilde{F}$ -structure on both sides. Hence we obtain the first assertion. The second and the last assertions can be proved in similar way. This completes the proof.

§3. Variations of periods $c_{\tau}^{\pm}(M)$ under standard operations

(I) Let M and N be motives over F with coefficients in E. Let d(M) and d(N) be the ranks of M and N respectively. For example, we have $d(M) = \dim_E H_{\tau,B}(M)$ for every $\tau \in J_F$. We assume that $R_{F/\mathbb{Q}}(M)$ and $R_{F/\mathbb{Q}}(N)$ are homogeneous of weights w and w' respectively. For $\tau \in J_F$, we obviously have

(3.1)
$$H_{\tau,B}(M \otimes N) = H_{\tau,B}(M) \otimes_{E} H_{\tau,B}(N), \\ H_{\tau,B}^{+}(M \otimes N) = (H_{\tau,B}^{+}(M) \otimes_{E} H_{\tau,B}^{+}(N)) \oplus (H_{\tau,B}^{-}(M) \otimes_{E} H_{\tau,B}^{-}(N)), \\ H_{\tau,B}^{-}(M \otimes N) = (H_{\tau,B}^{+}(M) \otimes_{E} H_{\tau,B}^{-}(N)) \oplus (H_{\tau,B}^{-}(M) \otimes_{E} H_{\tau,B}^{+}(N)), \\ H_{DR}(M \otimes N) = H_{DR}(M) \otimes_{(E \otimes_{\mathbf{Q}} F)} H_{DR}(N).$$

Since

$$H_{\tau,B}(M) \otimes_{E} H_{\tau,B}(N) \otimes_{\mathbf{Q}} \mathbf{C} \cong (H_{\tau,B}(M) \otimes_{\mathbf{Q}} \mathbf{C}) \otimes_{E \otimes_{\mathbf{C}}} (H_{\tau,B}(N) \otimes_{\mathbf{Q}} \mathbf{C}),$$

$$H_{DR}(M) \otimes_{(E \otimes_{\mathbf{Q}} F)} H_{DR}(N) \otimes_{F,\tau} \mathbf{C}$$

$$\cong (H_{DR}(M) \otimes_{F,\tau} \mathbf{C}) \otimes_{E \otimes_{\mathbf{C}}} (H_{DR}(N) \otimes_{F,\tau} \mathbf{C}),$$

we have

(3.2)
$$\delta_{\tau}(M \otimes N) = \delta_{\tau}(M)^{d(N)} \delta_{\tau}(N)^{d(M)}.$$

Assume d(N) = 1, w' is even and put p' = w'/2. Assume further that $H_B(R_{F/\mathbb{Q}}(N)) \otimes_{\mathbb{Q}} \mathbb{C}$ is of Hodge type (p', p'). If $H_B(R_{F/\mathbb{Q}}(N)) \otimes_{\mathbb{Q}} \mathbb{C}$ does not have a component of Hodge type (p, p), we have

$$F^{\pm}(M \otimes N) = F^{\pm}(M) \otimes_{E \otimes F} H_{DR}(N).$$

In view of (3.1), we immediately obtain

(3.3)
$$c_{\tau}^{\pm}(M \otimes N) = c_{\tau}^{\pm \epsilon_{\tau}}(M) \delta_{\tau}(N)^{d_{\tau}^{\pm}(M)},$$

where $F_{\infty_{\tau}} = (-1)^{\epsilon_{\tau}}$ on $H_{\tau,B}(N)$ and $d_{\tau}^{\pm}(M) = \dim_E H_{\tau,B}^{\pm}(M)$. If $H_B(R_{F/\mathbf{Q}}(M)) \otimes_{\mathbf{Q}} \mathbf{C}$ has a component of type (p,p), we assume that F_{∞} acts on both of $\bigoplus_{\sigma \in J_E} H^{pp}(\sigma, R_{F/\mathbf{Q}}(M))$ and $\bigoplus_{\sigma \in J_E} H^{p'p'}(\sigma, R_{F/\mathbf{Q}}(N))$ by scalar. Then we obtain

$$(3.4) \quad c_{\tau}^{\pm}(M \otimes N) = \begin{cases} c_{\tau}^{\pm}(M)\delta_{\tau}(N)^{d_{\tau}^{\pm}(M)} & \text{if} \quad F_{\infty} = 1 \quad \text{on} \quad H_{B}(R_{F/\mathbf{Q}}(N)), \\ c_{\tau}^{\mp}(M)\delta_{\tau}(N)^{d_{\tau}^{\mp}(M)} & \text{if} \quad F_{\infty} = -1 \quad \text{on} \quad H_{B}(R_{F/\mathbf{Q}}(N)). \end{cases}$$

For $n \in \mathbb{Z}$, let T(n) denote the Tate motive over F. We have

$$(3.5) L^*(M \otimes T(n), s) = L^*(M, s+n),$$

(3.6)
$$\delta_{\tau}(T(n)) = (2\pi\sqrt{-1})^n,$$

(3.7)
$$F_{\infty} \quad \text{acts on} \quad H_B(R_{F/\mathbb{Q}}(T(n))) \quad \text{by} \quad (-1)^n.$$

Hence, if F_{∞} acts on $\bigoplus_{\sigma \in J_E} H^{pp}(\sigma, R_{F/\mathbb{Q}}(M))$ by scalar, we obtain

(3.8)
$$c_{\tau}^{\pm}(M(n)) = \begin{cases} (2\pi\sqrt{-1})^{nd_{\tau}^{\pm}(M)}c_{\tau}^{\pm}(M) & \text{if } n \text{ is even,} \\ (2\pi\sqrt{-1})^{nd_{\tau}^{\mp}(M)}c_{\tau}^{\mp}(M) & \text{if } n \text{ is odd,} \end{cases}$$
$$\delta_{\tau}(M(n)) = (2\pi\sqrt{-1})^{nd(M)}\delta_{\tau}(M),$$

where $M(n) = M \otimes T(n)$.

(II) Let M, N and related notations be the same as in the beginning of (I). PROPOSITION 3.1. We assume $\bigoplus_{\sigma \in J_E} H^{pp}(\sigma, R_{F/\mathbf{Q}}(M)) = \{0\}$. We further assume that if

$$H^{pq}(\tau, \sigma, M) \neq \{0\}, \quad p > q \quad \text{and} \quad H^{p'q'}(\tau, \sigma, M) \neq \{0\}, \quad p' \geq q'$$

for $\tau \in J_F$, $\sigma \in J_E$, then p - q > p' - q' holds. Then we have

$$c_{\tau}^{+}(M \otimes N) = c_{\tau}^{+}(M)^{d_{\tau}^{+}(N)} c_{\tau}^{-}(M)^{d_{\tau}^{-}(N)} \delta_{\tau}(N)^{d_{\tau}^{+}(M)},$$

$$c_{\tau}^{-}(M \otimes N) = c_{\tau}^{+}(M)^{d_{\tau}^{-}(N)} c_{\tau}^{-}(M)^{d_{\tau}^{+}(N)} \delta_{\tau}(N)^{d_{\tau}^{-}(M)}.$$

PROOF: By the assumption, we immediately obtain

$$F^{+}(M) = F^{-}(M), \quad F^{\pm}(M \otimes N) = F^{\pm}(M) \otimes_{E \otimes F} H_{DR}(N).$$

Let

$$I_{\tau}^{M}: H_{\tau,B}(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M) \otimes_{F,\tau} \mathbf{C}$$

 $I_{\tau}^{N}: H_{\tau,B}(N) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(N) \otimes_{F,\tau} \mathbf{C}$

be canonical isomorphisms. Let $u_1^{\pm}, \dots, u_n^{\pm}$ (resp. v_1, \dots, v_m) be a basis of $H_{\tau,B}^{\pm}(M)$ (resp. $H_{\tau,B}(N)$) over E where $n=d_{\tau}^{+}(M), m=d_{\tau}(N)$. Let e_1^{-}, \dots, e_n^{-} be a basis of $F^{-}(M)$ as free $E \otimes F$ -module. Take e_1^{+}, \dots, e_n^{+} so that $e_1^{+}, \dots, e_n^{+}, e_1^{-}, \dots, e_n^{-}$ becomes a basis of $H_{DR}(M)$ as free $E \otimes F$ -module. Let d_1, \dots, d_m be a basis of $H_{DR}(N)$ as free $E \otimes F$ -module. Put

$$I_{\tau}^{M}(u_{i}^{\pm}) = \sum_{j=1}^{n} x_{ij}^{+,\pm} e_{j}^{+} + \sum_{j=1}^{n} x_{ij}^{-,\pm} e_{j}^{-},$$
$$I_{\tau}^{N}(v_{i}) = \sum_{j=1}^{m} y_{ij} d_{j}$$

with $x_{ij}^{\pm,\pm}$, $y_{ij} \in E \otimes_{\mathbf{Q}} \mathbf{C}$. Put

$$X_{11} = (x_{ij}^{+,+}), \quad X_{12} = (x_{ij}^{-,+}), \quad X_{21} = (x_{ij}^{+,-}), \quad X_{22} = (x_{ij}^{-,-}) \in M_n(E \otimes_{\mathbf{Q}} \mathbf{C}),$$

 $Y = (y_{ij}) \in M_m(E \otimes_{\mathbf{Q}} \mathbf{C}).$

Then we have

$$c_{\tau}^{+}(M) = \det(X_{11}), \quad c_{\tau}^{-}(M) = \det(X_{21}), \quad \delta_{\tau}(N) = \det(Y).$$

We may assume that v_1, \dots, v_t (resp. v_{t+1}, \dots, v_m) is a basis of $H_{\tau,B}^+(N)$ (resp. $H_{\tau,B}^-(N)$) where $t = d_{\tau}^+(N)$. We have

$$(I_{\tau}^{M} \otimes I_{\tau}^{N})(u_{i}^{+} \otimes v_{j}) = (\sum_{k=1}^{n} x_{ik}^{+,+} e_{k}^{+}) \otimes (\sum_{l=1}^{m} y_{jl} d_{l})$$
$$(I_{\tau}^{M} \otimes I_{\tau}^{N})(u_{i}^{-} \otimes v_{j}) = (\sum_{k=1}^{n} x_{ik}^{+,-} e_{k}^{+}) \otimes (\sum_{l=1}^{m} y_{jl} d_{l})$$

modulo $F^-(M \otimes N)$. Therefore we have

$$c_{\tau}^+(M) = \det \begin{pmatrix} X_{11} \otimes Y_1 \\ X_{21} \otimes Y_2 \end{pmatrix}, \qquad c_{\tau}^-(M) = \det \begin{pmatrix} X_{11} \otimes Y_2 \\ X_{21} \otimes Y_1 \end{pmatrix},$$

where $Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix}$ with $Y_1 \in M_{t,m}(E \otimes_{\mathbf{Q}} \mathbf{C}), Y_2 \in M_{m-t,m}(E \otimes_{\mathbf{Q}} \mathbf{C})$. Hence we obtain

$$c_{\tau}^{+}(M) = \det(X_{11})^{t} \det(X_{21})^{m-t} (\det Y)^{n},$$

$$c_{\tau}^{-}(M) = \det(X_{11})^{m-t} \det(X_{21})^{t} (\det Y)^{n},$$

and the assertion follows.

(III) Let $n \geq 2$ and suppose that we are given motives M_i over F with coefficients in E for $1 \leq i \leq n$. We assume that M_i is of rank 2 for every i and let

$$H_{\tau,B}(M_i) \otimes_{E,\sigma} \mathbf{C} = H^{a_i(\tau,+),a_i(\tau,-)}(\tau,\sigma,M_i) \oplus H^{a_i(\tau,-),a_i(\tau,+)}(\tau,\sigma,M_i),$$

 $1 \leq i \leq n, \tau \in J_F$. We assume that $a_i(\tau, +) > a_i(\tau, -)$ for every $\tau \in J_F$ and i. We shall give a formula for $c_{\tau}^{\pm}(M_1 \otimes M_2 \otimes \cdots \otimes M_n)$, which is suggested by Blasius [2]. Let Λ be the set of all maps from $\{1, 2, \cdots, n\}$ to $\{\pm 1\}$. Set

$$\Lambda_{\pm} = \{ \lambda \in \Lambda \mid \prod_{i=1}^{n} \lambda(i) = \pm 1 \},$$

$$\Lambda^{+} = \{ \lambda \in \Lambda \mid \sum_{i=1}^{n} a_{i}(\tau, \lambda(i)) > \sum_{i=1}^{n} a_{i}(\tau, -\lambda(i)) \}.$$

We have $|\Lambda_{\pm}| = 2^{n-1}$. We assume that

(3.9)
$$\sum_{i=1}^{n} a_i(\tau, \lambda(i)) \neq \sum_{i=1}^{n} a_i(\tau, -\lambda(i)) \text{ for every } \lambda \in \Lambda.$$

We note that if (3.9) is not satisfied, then the action of $F_{\infty_{\tau}}$ on $H^{pp}(\tau, \sigma, M_1 \otimes \cdots \otimes M_n)$ is not a scalar. By (3.9), we have $|\Lambda^+| = 2^{n-1}$ since $\lambda \in \Lambda^+$ is equivalent to $-\lambda \notin \Lambda^+$. Let n_i (resp. m_i) be the number of $\lambda \in \Lambda^+$ such that $\lambda(i) = 1$ (resp. $\lambda(i) = -1$). We have

$$(3.10) n_i + m_i = 2^{n-1}.$$

PROPOSITION 3.2. We assume that (3.9) holds for every $\tau \in J_F$. Then we have

$$c_{\tau}^{\pm}(M_1\otimes M_2\otimes\cdots\otimes M_n)=\prod_{i=1}^n(c_{\tau}^+(M_i)c_{\tau}^-(M_i))^{(n_i-m_i)/2}\delta_{\tau}(M_i)^{m_i}.$$

PROOF: Take u_i^{\pm} so that

$$Eu_i^{\pm} = H_{\tau,B}^{\pm}(M_i), \qquad 1 \le i \le n.$$

Choose d_i^- so that

$$(E \otimes F)d_i^- = F^-(M_i) = F^+(M_i)$$

and choose d_i^+ so that

$$H_{DR}(M_i) = (E \otimes F)d_i^+ + (E \otimes F)d_i^-, \qquad 1 \le i \le n.$$

Let

$$I_{\tau}^{M_i}: H_{\tau,B}(M_i) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M_i) \otimes_{F,\tau} \mathbf{C}$$

be the canonical isomorphism and put

$$I_{\tau}^{M_{i}}(u_{i}^{\pm}) = x_{i}^{+,\pm}d_{i}^{+} + x_{i}^{-,\pm}d_{i}^{-}, \qquad 1 \leq i \leq n$$

with $x_i^{\pm,\pm} \in E \otimes_{\mathbf{Q}} \mathbf{C}$. Then we have

$$c_{\tau}^{\pm}(M_i) = x_i^{+,\pm}, \qquad \delta_{\tau}(M_i) = \det \begin{pmatrix} x_i^{+,+} & x_i^{-,+} \\ x_i^{+,-} & x_i^{-,-} \end{pmatrix}.$$

A basis of $H_{\tau,B}^{\pm}(M_1 \otimes \cdots \otimes M_n)$ over E is given by $\bigotimes_{i=1}^n u_i^{\epsilon(i)}$ when ϵ extends over Λ_{\pm} . Also we see easily that a basis of $H_{DR}^{\pm}(M_1 \otimes \cdots \otimes M_n)$ is given by $\bigotimes_{i=1}^n d_i^{\lambda(i)}$ mod $F^-(M_1 \otimes \cdots \otimes M_n)$ when λ extends over Λ^+ . Since

$$\otimes_{i} I_{\tau}^{M_{i}}(\otimes_{i} u_{i}^{\epsilon(i)}) = \otimes_{i} (x_{i}^{+,\epsilon(i)} d_{i}^{+} + x_{i}^{-,\epsilon(i)} d_{i}^{-}) = \sum_{\lambda \in \Lambda^{+}} \prod_{i=1}^{n} x_{i}^{\lambda(i),\epsilon(i)} \otimes_{i} d_{i}^{\lambda(i)}$$

mod $F^-(M_1 \otimes M_2 \otimes \cdots \otimes M_n)$, we have

$$c_{\tau}^{\pm}(M_1 \otimes M_2 \otimes \cdots \otimes M_n) = \det(X^{\pm}),$$

where X^{\pm} is the $2^{n-1} \times 2^{n-1}$ -matrix whose (λ, ϵ) -entry for $\lambda \in \Lambda^+$, $\epsilon \in \Lambda_{\pm}$ is given by $\prod_{i=1}^n x_i^{\lambda(i), \epsilon(i)}$. We shall prove the formula for c_{τ}^+ since the other case can be shown similarly.

It suffices to show

$$(3.11) \det(X^{+}) = c \prod_{i=1}^{n} (x_{i}^{+,+} x_{i}^{+,-})^{(n_{i}-m_{i})/2} (x_{i}^{+,+} x_{i}^{-,-} - x_{i}^{-,+} x_{i}^{+,-})^{m_{i}}, \qquad c \in \mathbf{Q},$$

regarding $x_i^{\pm,\pm}$, $1 \leq i \leq n$ as indeterminates. It is obvious that $\det(X^+)$ is a homogeneous polynomial of degree $2^{n-1}n$ with **Z**-coefficients of 4n-variables $x_i^{\pm,\pm}$. Fix $i, 1 \leq i \leq n$. If we change variables $x_i^{+,\pm} \longrightarrow \mu x_i^{+,\pm}$ with $\mu \in \mathbb{C}$, then every (λ, ϵ) -entry of X^+ with $\lambda(i) = 1$ is multiplied by μ . Hence $\det(X^+)$ is multiplied by μ^{n_i} . Therefore we have

(3.12)
$$\det(X^+) = \sum_{a+b=n_i} (x_i^{+,+})^a (x_i^{+,-})^b Q_{a,b}$$

where $Q_{a,b}$ is a polynomial which does not contain the variables $x_i^{+,\pm}$. Suppose $\lambda \in \Lambda^+$, $\lambda(i) = -1$. Put $\lambda'(j) = \lambda(j)$, $j \neq i$, $\lambda'(i) = 1$. Then $\lambda' \in \Lambda^+$ since $a_i(\tau, +) > a_i(\tau, -)$. Thus we may set

$$X^{+} = \begin{pmatrix} x_{i}^{+,+}A & x_{i}^{+,-}B \\ x_{i}^{+,+}C & x_{i}^{+,-}D \\ x_{i}^{-,+}C & x_{i}^{-,-}D \end{pmatrix}$$

where A, B, C and D are $(n_i - m_i) \times 2^{n-2}$, $(n_i - m_i) \times 2^{n-2}$, $m_i \times 2^{n-2}$ and $m_i \times 2^{n-2}$ matrices respectively which does not contain the variables $x_i^{\pm,\pm}$. By standard operations on matrices, we have

$$\det(X^{+}) = \det\begin{pmatrix} x_{i}^{+,+}A & x_{i}^{+,-}B \\ x_{i}^{+,+}C & x_{i}^{+,-}D \\ 0 & x_{i}^{-,-}D - (x_{i}^{-,+}x_{i}^{+,-}/x_{i}^{+,+})D \end{pmatrix}$$

$$= \det\begin{pmatrix} A & x_{i}^{+,+}x_{i}^{+,-}B \\ C & 0 \\ 0 & (x_{i}^{+,+}x_{i}^{-,-} - x_{i}^{-,+}x_{i}^{+,-})D \end{pmatrix}$$

$$= (x_{i}^{+,+}x_{i}^{-,-} - x_{i}^{-,+}x_{i}^{+,-})^{m_{i}} \det\begin{pmatrix} A & x_{i}^{+,+}x_{i}^{+,-}B \\ C & 0 \\ 0 & D \end{pmatrix}.$$

Hence we have

$$\det(X^+) = (x_i^{+,+} x_i^{-,-} - x_i^{-,+} x_i^{+,-})^{m_i} \sum_{j} (x_i^{+,+} x_i^{+,-})^{j} P_j$$

where P_j is a polynomial which does not contain the variables $x_i^{\pm,\pm}$. By (3.12), $P_j = 0$ except for $m_i + 2j = n_i$. Therefore we have

$$\det(X^+) = (x_i^{+,+} x_i^{-,-} - x_i^{-,+} x_i^{+,-})^{m_i} (x_i^{+,+} x_i^{+,-})^{(n_i - m_i)/2} Q$$

where Q is a polynomial with **Q**-coefficients which does not contain the variables $x_i^{\pm,\pm}$. Since this expression holds for arbitrary i, we obtain (3.11). This completes the proof.

§4. On motives attached to Hilbert modular forms and Shimura's invariants

Let F be a totally real algebraic number field of degree n over \mathbb{Q} . Let $k = (k(\tau)) \in \mathbb{Z}^{J(F)}$ be a weight. By the Hilbert modular cusp form of weight k, we understand an element of $S_k(\mathfrak{c},\psi)$ in the notation of Shimura [12], p. 649. Assume that f is a non-zero common eigenfunction of all Hecke operators. We attach Dirichlet series D(s,f) to f by (2.25) of [12]. Now the form of the Gamma factor and the functional equation of D(s,f) (cf. (2.47), (2.48) of [12]) suggest the following conjecture.

Conjecture 4.1. Assume $k(\tau) \mod 2$ is independent of τ and put $k_0 = \max_{\tau \in J_F} k(\tau)$. Let E be the algebraic number field of finite degree generated by eigenvalues of Hecke operators of f (cf. [12], Prop. 2.8.). Then there exists a motive M_f over F with coefficients in E which satisfies the following conditions.

- (1) $L(\sigma, M_f, s) = D(s, f^{\sigma})$ for every $\sigma \in J_E$.
- (2) $H_{\tau,B}(M_f) \otimes_{E,\sigma} \mathbf{C} \cong H^{(k_0+k(\tau))/2-1,(k_0-k(\tau))/2}(\tau,\sigma,M_f) \oplus H^{(k_0-k(\tau))/2,(k_0+k(\tau))/2-1}(\tau,\sigma,M_f), \ \sigma \in J_E, \ \tau \in J_F.$
- (3) $\bigwedge^2 M_f \cong \operatorname{Art}_{\psi^{-1}}(1-k_0)$ where $\operatorname{Art}_{\psi^{-1}}$ denotes the Artin motive attached to ψ .

Let χ be a Hecke character of F of finite order. Let \mathfrak{c} be the conductor of χ and $\mathbf{Q}(\chi)$ be the field generated over \mathbf{Q} by values of χ . As in [6], §6, we can attach a motive $\operatorname{Art}_{\chi} = N_{\chi}$ over F with coefficients in $\mathbf{Q}(\chi)$ such that $L(s, \chi^{\sigma}) = L(\sigma, N_{\chi}, s)$ for every $\sigma \in J_{\mathbf{Q}(\chi)}$. The rank of N_{χ} is 1 and the Hodge type of $H_{\tau,B}(N_{\chi}) \otimes_{\mathbf{Q}} \mathbf{C}$ is (0,0) for every $\tau \in J_F$. For the real archimedean place ∞_{τ} corresponding to $\tau \in J_F$, we have

(4.1)
$$\chi_{\infty_{\tau}}(x) = \operatorname{sgn}(x)^{m_{\tau}}, \quad x \in k_{\infty_{\tau}}^{\times} \cong \mathbf{R}^{\times}, \quad m_{\tau} = 0 \quad \text{or} \quad 1.$$

If $m_{\tau} = 0$ (resp. $m_{\tau} = 1$), then $F_{\infty_{\tau}}$ acts on $H_{\tau,B}(N_{\chi})$ by 1 (resp. -1). We are going to calculate $\delta(R_{F/Q}(N_{\chi}))$.

For this purpose, let us recall the following facts concerning an Artin motive M over \mathbf{Q} . Let ρ be a representation of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$ into $\operatorname{GL}(V)$ where V is a vector space over E of finite dimension m. Then there exists an Artin motive $M = \operatorname{Art}_{\rho}$ over \mathbf{Q} with coefficients in E such that (cf. [6])

(4.2)
$$L(s, \rho^{\sigma}) = L(\sigma, M, s) \text{ for every } \sigma \in J_E,$$

$$(4.3) H_B(M) = V, H_{DR}(M) = (V \otimes_{\mathbf{Q}} \overline{\mathbf{Q}})^{\mathrm{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})}.$$

Obviously $\delta(M) = \delta(\bigwedge^m M)$ and $\bigwedge^m M$ is the Artin motive attached to the representation $\det \rho$ of $\operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. For a Dirichlet character η of \mathbf{Q} of conductor (f), f > 0, put

(4.4)
$$g_0(\eta) = \sum_{u=1}^f \eta(u) \exp(2\pi \sqrt{-1}u/f).$$

Then, as is shown in [6], §6, we have

(4.5)
$$\delta(\bigwedge^m M) = g_0((\det \rho)_*)^{-1}$$

where $(\det \rho)_*$ denotes the Dirichlet character associated to $\det \rho$.

We may regard χ as a character of Gal(K/F) where K is a finite Galois extension of \mathbf{Q} . Put $\rho = \operatorname{Ind}(\chi; Gal(K/F) \longrightarrow Gal(K/\mathbf{Q}))$. Then $R_{F/\mathbf{Q}}(N_{\chi})$ is the Artin motive associated with ρ . We have (cf. [5], Prop. 1.2)

$$(\det \rho)(\sigma) = \chi(t(\sigma))\epsilon(\sigma), \qquad \sigma \in \operatorname{Gal}(K/\mathbf{Q})$$

where t denotes the transfer map from $\operatorname{Gal}(K/\mathbf{Q})^{ab}$ to $\operatorname{Gal}(K/F)^{ab}$ and ϵ denotes the determinant of the left regular representation of $\operatorname{Gal}(K/\mathbf{Q})$ on $\operatorname{Gal}(K/\mathbf{Q})/\operatorname{Gal}(K/F)$. Let χ_* denote the character of ideal class group of conductor \mathfrak{c} of F associated with χ and let ϵ_* denote the Dirichlet character associated with ϵ . We have

$$(\det \rho)_*(n) = \chi_*(n)\epsilon_*(n), \qquad n \in \mathbf{Z}, \quad n > 0.$$

Define a Gauss sum by

(4.6)
$$g(\chi) = \sum_{x \in \mathfrak{c}^{-1} \mathfrak{d}_F^{-1}/\mathfrak{d}_F^{-1}, x >> 0} \chi_*(x \mathfrak{cd}_F) \exp(2\pi \sqrt{-1} \operatorname{Tr}_{F/\mathbf{Q}}(x))$$

where \mathfrak{d}_F denotes the different of F.

LEMMA 4.2. Put $E = \mathbf{Q}(\chi)$. We have $g(\chi)/g_0(\det \rho) \in E \vee \tilde{F}$.

We omit the proof which is not difficult.

Let $M=M_f$ and $N=N_\chi$ be as above. Define $m_\tau=0,1$ by (4.1) and let $\epsilon_\tau=+$ (resp. -) if $m_\tau=0$ (resp. 1) for $\tau\in J_F$. We assume that $k(\tau)\geq 2$ for every τ . Let E denote the number field generated by the eigenvalues of f under Hecke operators and the values of χ . By (3.4), we have

$$c_{\tau}^{+}(M\otimes N)=c_{\tau}^{\epsilon_{\tau}}(M)\delta_{\tau}(N), \qquad c_{\tau}^{-}(M\otimes N)=c_{\tau}^{-\epsilon_{\tau}}(M)\delta_{\tau}(N).$$

By Proposition 2.1, we have

$$c^+(R_{F/\mathbf{Q}}(M\otimes N)) = \prod_{\tau} c_{\tau}^{\epsilon_{\tau}}(M)\delta_{\tau}(N), \qquad c^-(R_{F/\mathbf{Q}}(M\otimes N)) = \prod_{\tau} c_{\tau}^{-\epsilon_{\tau}}(M)\delta_{\tau}(N)$$

modulo $(E \vee \tilde{F})^{\times}$. We have, by Lemma 4.2,

$$\prod_{\tau} \delta_{\tau}(N) = \delta(R_{F/\mathbf{Q}}(N)) = g_0(\det \rho)^{-1} = g(\chi)^{-1}$$

modulo $(E \vee \tilde{F})^{\times}$. By (3.8) we obtain

$$c^{+}((R_{F/\mathbf{Q}}(M\otimes N))(m)) = \begin{cases} (2\pi\sqrt{-1})^{nm} \prod c_{\tau}^{\epsilon_{\tau}}(M)g(\chi)^{-1} & \text{if } m \text{ is even} \\ (2\pi\sqrt{-1})^{nm} \prod c_{\tau}^{-\epsilon_{\tau}}(M)g(\chi)^{-1} & \text{if } m \text{ is odd} \end{cases}$$

modulo $(E \vee \tilde{F})^{\times}$. Put

$$D(s,f,\chi^{-1}) = \sum_{\mathfrak{n}} c(\mathfrak{n},f) \chi(n)^{-1} N(\mathfrak{n})^{-s}.$$

Then Deligne's conjecture predicts

(4.7)
$$D(m, f, \chi^{-1})/((2\pi\sqrt{-1})^{nm} \prod_{\tau \in J_F} c_{\tau}^{(-1)^m \epsilon_{\tau}}(M)g(\chi)^{-1}) \in E \vee \tilde{F}$$

if $m \in \mathbf{Z}$ is critical for $R_{F/\mathbf{Q}}(M \otimes N)$, that is

$$(k_0 - \min_{\tau \in J_F} k(\tau))/2 < m \le (k_0 + \min_{\tau \in J_F} k(\tau))/2 - 1.$$

(cf. (2.9) in §2.)

We see easily that (4.7) is consistent with Theorem 4.3, (I) of [12] by putting

(4.8)
$$u(r,f) = \prod_{\tau} c_{\tau}^{\epsilon_{\tau}}(M_f), \qquad r = (m_{\tau}).$$

However Shimura's result is more precise in two points. First it is shown that the quantity on the left of (4.7) belongs to E. Secondly it transforms covariantly under

 $\sigma \in J_E$. We note one more important fact which cannot be derived from Deligne's conjecture. Define

$$I(f^{\sigma}) = (2\pi\sqrt{-1})^{n(1-k_0)} \pi^{\sum_{\tau \in J_F} k(\tau)} g(\psi)^{-1} \langle f^{\sigma}, f^{\sigma} \rangle, \qquad \sigma \in J_E$$

where E denotes the field generated by eigenvalus of Hecke operators of f. Consider $\{I(f^{\sigma})\}$ as an element of $(E \otimes_{\mathbf{Q}} \mathbf{C})^{\times}$. Then Theorem 4.3, (II) of [12] suggests

(4.9)
$$c^{+}(R_{F/\mathbf{Q}}(M_f))c^{-}(R_{F/\mathbf{Q}}(M_f)) = \prod_{\tau \in J_F} c_{\tau}^{+}(M_f)c_{\tau}^{-}(M_f) = \{I(f^{\sigma})\} \mod E \vee \tilde{F}.$$

Now let $f \in S_k(\mathfrak{c}, \psi)$, $g \in S_l(\mathfrak{c}, \varphi)$ which are common eigenfunctions of all Hecke operators. Let

$$D(s,f) = \sum_{\mathfrak{n}} c(\mathfrak{n}, f) N(\mathfrak{n})^{-s}, \qquad D(s,g) = \sum_{\mathfrak{n}} c(\mathfrak{n}, g) N(\mathfrak{n})^{-s},$$

$$k_0 = \max_{\tau \in J_F} k(\tau), \qquad l_0 = \max_{\tau \in J_F} l(\tau).$$

Put

$$D(s, f, g) = \sum_{\mathbf{n}} c(\mathbf{n}, f) c(\mathbf{n}, g) N(\mathbf{n})^{-s},$$

$$\mathfrak{D}_{\epsilon}(s, f, g) = L_{\epsilon}(2s + 2 - k_0 - l_0, \psi \varphi) D(s, f, g).$$

Here $L_{\mathfrak{c}}$ denotes the L-function whose Euler \mathfrak{p} -factors are dropped for $\mathfrak{p}|\mathfrak{c}$. Then $\mathfrak{D}_{\mathfrak{c}}(s,f,g)$ coincides with the L-function $L(id.,M_f\otimes M_g,s)$ up to finitely many Euler \mathfrak{p} -factors. By Proposition 3.2, we have

$$(4.10) c_{\tau}^{+}(M_{f} \otimes M_{g}) = c_{\tau}^{-}(M_{f} \otimes M_{g}) = \begin{cases} c_{\tau}^{+}(M_{f})c_{\tau}^{-}(M_{f})\delta_{\tau}(M_{g}) & \text{if } k(\tau) > l(\tau), \\ c_{\tau}^{+}(M_{g})c_{\tau}^{-}(M_{g})\delta_{\tau}(M_{f}) & \text{if } k(\tau) < l(\tau). \end{cases}$$

Hence, by (3.8), we obtain

$$(4.11) c_{\tau}^{+}((M_{f} \otimes M_{g})(m)) = c_{\tau}^{-}(M_{f} \otimes M_{g})(m))$$

$$= \begin{cases} (2\pi\sqrt{-1})^{2m}c_{\tau}^{+}(M_{f})c_{\tau}^{-}(M_{f})\delta_{\tau}(M_{g}) & \text{if } k(\tau) > l(\tau), \\ (2\pi\sqrt{-1})^{2m}c_{\tau}^{+}(M_{g})c_{\tau}^{-}(M_{g})\delta_{\tau}(M_{f}) & \text{if } k(\tau) < l(\tau). \end{cases}$$

Let E be the field generated by eigenvalues of Hecke operators of f and g. First we assume that

$$k(\tau) > l(\tau)$$
 for every $\tau \in J_F$.

By Proposition 3.2 and (4.11), we obtain

$$c^{+}(R_{F/\mathbf{Q}}((M_f \otimes M_g)(m)))$$

$$= (2\pi\sqrt{-1})^{2mn}c^{+}(R_{F/\mathbf{Q}}(M_f))c^{-}(R_{F/\mathbf{Q}}(M_f))\delta(R_{F/\mathbf{Q}}(M_g)) \mod (E \vee \tilde{F})^{\times}.$$

Since $\bigwedge^2 M_g \cong \operatorname{Art}_{\varphi^{-1}}(1-l_0)$, we have $\delta(R_{F/\mathbb{Q}}(M_g)) = (2\pi\sqrt{-1})^{n(1-l_0)}g(\varphi)$. Thus we have shown

(4.12)
$$c^{+}(R_{F/\mathbf{Q}}((M_f \otimes M_g))(m)) = (2\pi\sqrt{-1})^{n(2m+1-l_0)}g(\varphi)\{I(f^{\sigma})\} \mod (E \vee \tilde{F})^{\times}.$$

From (4.12), we see easily that Deligne's conjecture is consistent with Shimura [12], Theorem 4.2. However Shimura's result is more precise in two points mentioned above and also in that the condition on weights is less restrictive.

Next assume that

$$k(\tau) > l(\tau)$$
 for $\tau \in \delta$, $k(\tau) < l(\tau)$ for $\tau \in \delta'$

where δ and δ' are subsets of J_F such that $\delta \cup \delta' = J_F$, $\delta \cap \delta' = \emptyset$. By Proposition 3.2, we have

$$c^{+}(R_{F/\mathbf{Q}}((M_f \otimes M_g)) = c^{-}(R_{F/\mathbf{Q}}((M_f \otimes M_g))) = \prod_{\tau \in \delta} c_{\tau}^{+}(M_f)c_{\tau}^{-}(M_f)$$
$$\times \prod_{\tau \in \delta'} c_{\tau}^{+}(M_g)c_{\tau}^{-}(M_g) \prod_{\tau \in \delta} \delta_{\tau}(M_f) \prod_{\tau \in \delta'} \delta_{\tau}(M_g) \mod (E \vee \tilde{F})^{\times}.$$

Since

$$\bigwedge^2 M_f \cong \operatorname{Art}_{\psi^{-1}}(1-k_0), \qquad \bigwedge^2 M_g \cong \operatorname{Art}_{\varphi^{-1}}(1-l_0),$$

we obtain

$$(4.13) c^{+}(R_{F/\mathbf{Q}}((M_{f} \otimes M_{g})(m))) = (2\pi\sqrt{-1})^{2mn+(1-k_{0})|\delta'|+(1-l_{0})|\delta|} \times \prod_{\tau \in \delta} c_{\tau}^{+}(M_{f})c_{\tau}^{-}(M_{f}) \prod_{\tau \in \delta'} c_{\tau}^{+}(M_{g})c_{\tau}^{-}(M_{g}) \prod_{\tau \in \delta} \delta_{\tau}(\operatorname{Art}_{\varphi^{-1}}) \prod_{\tau \in \delta'} \delta_{\tau}(\operatorname{Art}_{\psi^{-1}})$$

by (3.8). Since $\delta_{\tau}(\operatorname{Art}_{\varphi^{-1}}) \sim 1$, $\delta_{\tau}(\operatorname{Art}_{\psi^{-1}}) \sim 1$, we have

(4.14)
$$\mathfrak{D}_{\mathfrak{c}}(m,f,g) \sim \pi^{2mn+(1-k_0)|\delta'|+(1-l_0)|\delta|} \\ \prod_{\tau \in \delta} c_{\tau}^{+}(M_f)c_{\tau}^{-}(M_f) \prod_{\tau \in \delta'} c_{\tau}^{+}(M_g)c_{\tau}^{-}(M_g)$$

if m is critical for $\operatorname{Res}_{F/\mathbf{Q}}(M_f\otimes M_g)$, that is

$$\frac{k_0 + l_0}{2} - \frac{|k(\tau) - l(\tau)|}{2} - 1 < m < \frac{k_0 + l_0}{2} + \frac{|k(\tau) - l(\tau)|}{2}$$

for all $\tau \in J_F$.

We shall show that (4.14) is consistent with Shimura's results and a part of his conjectures. (The part involving modular forms of half integral weight shall remain mysterious.)

Let χ (resp. χ') be the system of eigenvalues of Hecke operators attached to f (resp. g). Set

(4.15)
$$Q(\chi, \delta) = \pi^{(k_0 - 1)|\delta| - \sum_{\tau \in \delta} k(\tau)} \prod_{\tau \in \delta} c_{\tau}^{+}(M_f) c_{\tau}^{-}(M_f).$$

We note that

$$D(s,\chi,\eta) = \sum_{\mathfrak{A}} \eta(\mathfrak{A}) \chi(\mathfrak{A}) N(\mathfrak{A})^{-s-1} = D(s + \frac{k_0}{2}, f, \eta)$$

when η is a Hecke chracter of finite order of F,

$$D(s,\chi,\chi') = \sum_{\mathfrak{A}} \chi(\mathfrak{A}) \chi'(\mathfrak{A}) N(\mathfrak{A})^{-s} = D(s + \frac{k_0 + l_0}{2} - 2, f, g)$$

in the normalization of Shimura [15], [16]. By (4.14) and (4.15), we obtain

$$D(\frac{t}{2}, \chi, \chi') = D(\frac{t}{2} + \frac{k_0 + l_0}{2} - 2, f, g)$$

$$\sim \pi^{tn + \sum_{\tau \in \delta} k(\tau) + \sum_{\tau \in \delta'} l(\tau) \pi^{-2n} Q(\chi, \delta) Q(\chi', \delta') / L_{\epsilon}(t - 2, \psi \varphi)$$

if $t \in \mathbf{Z}$ satisfies

$$\begin{split} t &\equiv k_0 + l_0 \mod 2, \\ &- \frac{|k(\tau) - l(\tau)|}{2} + 1 < \frac{t}{2} \leq \frac{|k(\tau) - l(\tau)|}{2} + 1 \qquad \text{for every} \quad \tau \in J_F. \end{split}$$

Since $L_{\mathfrak{c}}(t-2,\psi\varphi) \sim \pi^{(t-2)n}$, we obtain

(4.16)
$$D(\frac{t}{2}, \chi, \chi') \sim \pi^{\sum_{\tau \in \delta} k(\tau) + \sum_{\tau \in \delta'} l(\tau)} Q(\chi, \delta) Q(\chi', \delta').$$

This is consistent with Theorem 5.3 of [15] and the definition of $Q(\chi, \delta)$ in [16]. Next we assume that $k(\tau)$ is even for every $\tau \in J_F$ and put, for $r \in (\mathbf{Z}/2\mathbf{Z})^{J_F}$, $\delta \subseteq J_F$,

(4.17)
$$V(\chi, r) = \pi^{nk_0/2} \prod_{\tau \in J_F} c_{\tau}^{(-1)^{k_0/2} r_{\tau}}(M_f),$$

(4.18)
$$P(\chi, \delta, r) = \pi^{-\sum_{\tau \in \delta} k(\tau)/2} \pi^{k_0 |\delta|/2} \pi^{-|\delta|} \prod_{\tau \in \delta} c_{\tau}^{(-1)^{k_0/2} r_{\tau}} (M_f).$$

If t is an integer such that $|t| < k(\tau)/2$ for every τ and η is a Hecke character of finite order of F such that

$$\eta(x) = \operatorname{sgn}(x)^{t+r}, \qquad x \in F_{\infty}^{\times},$$

then we have

$$D(t,\chi,\eta) = D(t + \frac{k_0}{2}, f, \eta) \sim \pi^{n(t+k_0/2)} \prod_{\tau \in J_F} c_{\tau}^{(-1)^{k_0/2} r_{\tau}}(M_f) \sim \pi^{nt} V(\chi,r).$$

This is consistent with (8.2a) of [16].

We see easily that $\bar{\chi}$ attaches to $f \otimes \psi^{-1}$. Since we have assumed that $k(\tau)$ is even for every τ , $\psi(x) = 1$, $x \in F_{\infty}^{\times}$ holds. Therefore $c_{\tau}^{\pm}(M_f) \sim c_{\tau}^{\pm}(M_f \otimes \operatorname{Art}_{\psi})$ for every τ . Thus we may take $P(\bar{\chi}, \delta, r) \sim P(\chi, \delta, r)$ for every $\delta \subseteq J_F$, $r \in (\mathbf{Z}/2\mathbf{Z})^{J_F}$. Now (C3) and (C4) of [16], p. 293 state that

$$(4.19) V(\chi, r) \sim \pi^{(\sum_{\tau \in J_F} k(\tau)/2) + n} P(\chi, \delta, r) P(\bar{\chi}, \iota - \delta, r - r\delta)$$

(4.20)
$$Q(\chi, \delta) \sim \pi^{|\delta|} P(\chi, \delta, r) P(\bar{\chi}, \delta, \delta - r)$$

for every $r \in (\mathbf{Z}/2\mathbf{Z})^{J_F}$, $\delta \subseteq J_F$. It is obvious that (4.19) and (4.20) follow from (4.15), (4.17) and (4.18) in view of $P(\chi, \delta, r) \sim P(\bar{\chi}, \delta, r)$.

§5. Special values of zeta functions of Shimura varieties

Let M be a motive over F with coefficients in E. Let $M' = \bigotimes_{\Omega} \operatorname{Res}_{F/F'} M$. Our first task is to compute τ' -periods, $\tau' \in J_{F'}$ of M' from τ -periods, $\tau \in J_F$ of M. For this purpose, we supplement Conjecture 1.5 with specifying Betti and de Rham realizations of M'.

Let $\tau' \in J_{F'}$ and take any $\tilde{\tau}' \in G$ such that $\tilde{\tau}'|F' = \tau'$. Then $\{\tilde{\tau}'s_i|F \mid 1 \leq i \leq r\}$ defines a set of r-distinct elements of J_F which does not depend on the choice of $\tilde{\tau}'$ and s_i . We have

$$(5.1) H_{\tau',B}(M') = \bigotimes_{i=1}^{r} H_{\tilde{\tau}'s_{i}|F,B}(M)$$

where $\bigotimes_{i=1}^{r}$ denotes the tensor product as E-modules. If

$$H_{\tau,B}(M) \otimes_{E,\sigma} \mathbf{C} = \oplus H^{pq}(\tau,\sigma,M), \qquad \tau \in J_F, \quad \sigma \in J_E$$

is the Hodge decomposition,

(5.2)
$$H_{\tau',B}(M') \otimes_{E,\sigma} \mathbf{C} = \bigotimes_{i=1}^r H^{pq}(\tilde{\tau}'s_i|F,\sigma,M)$$

is the Hodge decomposition of $H_{\tau',B}(M')$. The de Rham realization of M' is

$$(5.3) H_{DR}(M') = (\bigotimes_{i=1}^{r} (H_{DR}(M) \bigotimes_{F,s_i} \mathbf{Q}))^{\operatorname{Gal}(\overline{\mathbf{Q}}/F')},$$

where $\bigotimes_{i=1}^r$ denotes the tensor product as $E \otimes_{\mathbf{Q}} \overline{\mathbf{Q}}$ -modules and $\sigma \in \operatorname{Gal}(\overline{\mathbf{Q}}/F')$ acts as

$$\sigma(\otimes_{i=1}^r(v_i\otimes_{F,s_i}a_i))=\otimes_{i=1}^r(v_i\otimes_{F,\sigma s_i}\sigma(a_i)), \qquad v_i\in H_{DR}(M), \quad a_i\in \overline{\mathbf{Q}}.$$

Since $H_{DR}(M)$ has a structure of free $E \otimes_{\mathbf{Q}} F$ -module, we can verify that the right hand side of (5.3) has a natural structure of free $E \otimes_{\mathbf{Q}} F'$ -module of rank = rank $(M)^r$. From (5.3), we obtain an isomorphism as $E \otimes_{\mathbf{Q}} \mathbf{C}$ -modules

$$(5.4) H_{DR}(M') \otimes_{F',\tau'} \mathbf{C} \cong \otimes_{i=1}^{r} (H_{DR}(M) \otimes_{F,\tilde{\tau}'s_{i}|F} \mathbf{C}), \tau' \in J_{F'}.$$

Here the isomorphism is given by

$$(\otimes_{i=1}^r(v_i\otimes_{F,s_i}a_i))\otimes_{F',\tau'}1\longrightarrow(\otimes_{i=1}^r(v_i\otimes_{F,\tilde{\tau}'s_i|F}\tilde{\tau}'(a_i)),\quad v_i\in H_{DR}(M),\quad a_i\in\overline{\mathbf{Q}}.$$

For $\tau \in J_F$, let

$$I_{\tau}: H_{\tau,B}(M) \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M) \otimes_{F,\tau} \mathbf{C}$$

be the canonical isomorphism of $E \otimes_{\mathbf{Q}} \mathbf{C}$ -modules. Let $\tau' \in J_{F'}$. In view of (5.1) and (5.4), we can take the canonical isomorphism

$$I_{\tau'}: H_{\tau',B}(M') \otimes_{\mathbf{Q}} \mathbf{C} \cong H_{DR}(M) \otimes_{F',\tau'} \mathbf{C}$$

as

$$(5.5) I_{\tau'} = \bigotimes_{i=1}^{\tau} I_{\tilde{\tau}'s_i|F}.$$

PROPOSITION 5.1. Let M be a motive over F with coefficients in E. We assume that M is of rank 2 and let

$$H_{\tau,B}(M)\otimes_{E,\sigma}\mathbf{C}=H^{a(\tau,+),a(\tau,-)}(\tau,\sigma,M)\oplus H^{a(\tau,-),a(\tau,+)}(\tau,\sigma,M),$$

 $au \in J_F, \, \sigma \in J_E$ be the Hodge decomposition. We assume

$$(5.6) a(\tau,+) > a(\tau,-).$$

Let Ω be any subset of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})/Gal(\overline{\mathbf{Q}}/F)$ such that $|\Omega| = r \geq 2$. Define F' and $M' = \bigotimes_{\Omega} Res_{F/F'}M$ as above. Let Λ be the set of all maps from $\{1, 2, \dots, r\}$ to $\{\pm 1\}$. We assume that

(5.7)
$$\sum_{i=1}^{r} a(\tilde{\tau}' s_i | F, \lambda(i)) \neq \sum_{i=1}^{r} a(\tilde{\tau}' s_i | F, -\lambda(i))$$

holds for every $\lambda \in \Lambda$. Set

$$\Lambda^{+} = \{ \lambda \in \Lambda \mid \sum_{i=1}^{r} a(\tilde{\tau}' s_{i} | F, \lambda(i)) > \sum_{i=1}^{r} a(\tilde{\tau}' s_{i} | F, -\lambda(i)) \}.$$

and let n_i (resp. m_i) be the number of $\lambda \in \Lambda^+$ such that $\lambda(i) = 1$ (resp. $\lambda(i) = -1$), $1 \le i \le r$. (n_i and m_i depend on τ' .) Then we have, modulo $E \vee \tilde{F}$,

(5.8)
$$c_{\tau'}^{\pm}(M') = \prod_{i=1}^{\tau} (c_{\tilde{\tau}'s_i|F}^{+}(M)c_{\tilde{\tau}'s_i|F}^{-}(M))^{(n_i - m_i)/2} \delta_{\tilde{\tau}'s_i|F}(M)^{m_i}$$

for every $\tau' \in J_{F'}$.

PROOF: For every $\tau \in J_F$, take u_{τ}^{\pm} so that

$$Eu_{\tau}^{\pm} = H_{\tau,B}^{\pm}(M).$$

Take d^- so that

$$(E \otimes F)d^- = F^-(M) = F^+(M),$$

and then take d^+ so that

$$H_{DR}(M) = (E \otimes F)d^{+} + (E \otimes F)d^{-}.$$

Put

$$I_{\tilde{\tau}'s_{i}|F}(u_{\tilde{\tau}'s_{i}|F}^{\pm}) = x_{i}^{+,\pm}d^{+} + x_{i}^{-,\pm}d^{-},$$

with $x_i^{\pm,\pm} \in E \otimes_{\mathbf{Q}} \mathbf{C}$. Then we have

$$c_{\tilde{\tau}'s_i|F}^{\pm}(M) = x_i^{+,\pm}, \qquad \delta_{\tilde{\tau}'s_i|F}(M) = \det \begin{pmatrix} x_i^{+,+} & x_i^{-,+} \\ x_i^{+,-} & x_i^{-,-} \end{pmatrix}.$$

These quantities are elements of $(E \otimes_{\mathbf{Q}} \mathbf{C})^{\times}$ determined modulo multiplications by $E \vee \tilde{F}$. Set

$$\Lambda_{\pm} = \{ \lambda \in \Lambda \mid \prod_{i=1}^{r} \lambda(i) = \pm 1 \}.$$

By (5.1), a basis of $H^{\pm}_{\tau',B}(M')$ over E is given by $\bigotimes_{i=1}^n u^{\epsilon(i)}_{\tilde{\tau}'s_i|F}$ when ϵ extends over Λ_{\pm} . By (5.2) and (5.7), we have $F^+(M') = F^-(M')$. A basis of $H_{DR}(M') \bigotimes_{F',\tau'} \tilde{F}$ modulo $F^-(M') \bigotimes_{F',\tau'} \tilde{F}$ over $E \bigotimes_{\mathbf{Q}} \tilde{F}$ is given by $\bigotimes_{i=1}^r d^{\lambda(i)}$ where λ extends over Λ^+ . We have

$$\otimes_{i=1}^r I_{\tilde{\tau}'s_i|F}(\otimes_{i=1}^r u_{\tilde{\tau}'s_i|F}^{\epsilon(i)}) = \otimes_{i=1}^r (x_i^{+,\epsilon(i)}d^+ + x_i^{-,\epsilon(i)}d^-) = \sum_{\lambda \in \Lambda^+} \prod_{i=1}^r x_i^{\lambda(i),\epsilon(i)} \otimes_{i=1}^r d_i^{\lambda(i)}$$

 $\mod F^-(M') \otimes_{F',\tau'} \tilde{F}$. Therefore we obtain

$$c_{\tau'}^{\pm}(M') = \det(X^{\pm})$$

where X^{\pm} is the $2^{r-1} \times 2^{r-1}$ -matrix whose (λ, ϵ) -entry for $\lambda \in \Lambda^+$, $\epsilon \in \Lambda_{\pm}$ is given by $\prod_{i=1}^r x_i^{\lambda(i), \epsilon(i)}$. Now (5.8) follows from (3.10) (and from the same formula for $\det(X^-)$). This completes the proof.

By (3.8), we obtain

$$c_{\tau'}^{\pm}(M'(m)) = (2\pi\sqrt{-1})^{2^{r-1}m} \prod_{i=1}^{r} (c_{\tilde{\tau}'s_{i}|F}^{+}(M)c_{\tilde{\tau}'s_{i}|F}^{-}(M))^{(n_{i}-m_{i})/2} \delta_{\tilde{\tau}'s_{i}|F}(M)^{m_{i}},$$

and by Proposition 2.1, we have

(5.10)
$$c^{\pm}(\operatorname{Res}_{F'/\mathbf{Q}}(M')(m)) = (2\pi\sqrt{-1})^{2^{r-1}mn'} \times \prod_{\tau'\in J_{E'}} \prod_{i=1}^{r} (c_{\tilde{\tau}'s_{i}|F}^{+}(M)c_{\tilde{\tau}'s_{i}|F}^{-}(M))^{(n_{i}-m_{i})/2} \delta_{\tilde{\tau}'s_{i}|F}(M)^{m_{i}},$$

mod $E \vee \tilde{F}$, where $n' = [F' : \mathbf{Q}]$.

Now let $f \in S_k(\mathfrak{c}, \psi)$ be a new form and let M_f be the motive over F with coefficients in E attached to f as is given in Conjecture 4.1. We set $M_f' = \bigotimes_{\Omega} \operatorname{Res}_{F'/F}(M_f)$. We regard $c^+(\operatorname{Res}_{F'/Q}(M_f')(m))$ as a complex number fixing an embedding $E \subset \mathbb{C}$. Since $\bigwedge^2 M_f \cong \operatorname{Art}_{\psi^{-1}}(1-k_0)$, we have $\delta_{\tau}(M_f) \sim \pi^{1-k_0}$ for every $\tau \in J_F$. Then (5.10) yields

$$c^{\pm}(\operatorname{Res}_{F'/\mathbb{Q}}(M'_f)(m))$$

$$\sim \pi^{2^{r-1}mn'} \prod_{\tau' \in J_{F'}} (\pi^{1-k_0 \sum_{i=1}^r m_i} \prod_{i=1}^r (c^+_{\tilde{\tau}'s_i|F}(M_f) c^-_{\tilde{\tau}'s_i|F}(M_f))^{(n_i-m_i)/2}),$$

Deligne's conjecture predicts

(5.12)
$$L(m, M_f) \sim c^{\pm}(\operatorname{Res}_{F'/\mathbf{Q}}(M'_f)(m))$$

if $m \in \mathbf{Z}$ is critical for M'_f . In view of the relation (4.15) of $Q(\chi, \delta)$ with $c^{\pm}(M_f)$, $c^{\pm}(\operatorname{Res}_{F'/\mathbf{Q}}(M'_f)(m))$ can be expressed as a product of π and $Q(\chi, \delta)$. (Note that we have assumed $r \geq 2$). Here χ denotes the system of eigenvalues of Hecke operators attached to f.

We shall show that (5.11) and (5.12) are in perfect accordance with a certain result of Shimura [14], II. Assume that F contains a subfield F_0 such that $[F:F_0]=2$. Set $\Omega = \text{Gal}(\overline{\mathbf{Q}}/F_0)/\text{Gal}(\overline{\mathbf{Q}}/F)$. Then we have $H' = \text{Gal}(\overline{\mathbf{Q}}/F_0)$, $F' = F_0$.

Apply the above construction. We obtain a motive M'_f over F' with coefficients in E. Set

$$J_{F'}=\{\tau_1,\tau_2,\cdots,\tau_{n/2}\}$$

and choose $\tilde{\tau}_i \in J_F$ so that $\tilde{\tau}_i|F' = \tau_i$, $1 \le i \le n/2$. Let σ be the generator of Gal(F/F'). We assume that the weight of f satisfies

$$(5.13) k(\tilde{\tau}_i|F) > k(\tilde{\tau}_i\sigma|F), 1 \le i \le n/2.$$

Then we have $n_1=2, m_1=0, n_2=1, m_2=1$ for every $\tau' \in J_{F'}$. Hence we get

(5.14)
$$c^{\pm}(\operatorname{Res}_{F'/\mathbf{Q}}(M'_f)(m)) \sim \pi^{mn} \pi^{(1-k_0)n/2} \prod_{i=1}^{n/2} (c_{\tilde{\tau}_i}^{+}(M_f) c_{\tilde{\tau}_i}^{-}(M_f))$$

by (5.11). Set

$$\delta = \{\tilde{\tau}_1, \tilde{\tau}_2, \cdots, \tilde{\tau}_{n/2}\} \subset J_F.$$

Since

$$Q(\chi, \delta) \sim \pi^{(k_0 - 1)n/2 - \sum_{\tau \in \delta} k(\tau)} \prod_{i=1}^{n} (c_{\tilde{\tau}_i | F}^+(M_f) c_{\tilde{\tau}_i | F}^-(M_f)),$$

we obtain

$$c^{\pm}(\operatorname{Res}_{F'/\mathbf{Q}}(M'_f)(m)) \sim \pi^{mn}\pi^{(1-k_0)n}\pi^{\sum_{\tau\in\delta}k(\tau)}Q(\chi,\delta).$$

By (2.9), Conjecture 4.1 and (5.2), we see easily that $m \in \mathbf{Z}$ is critical for M_f' if and only if

$$k_0 - \frac{k(\tilde{\tau}_i|F) - k(\tilde{\tau}_i\sigma|F)}{2} - 1 < m \le k_0 + \frac{k(\tilde{\tau}_i|F) - k(\tilde{\tau}_i\sigma|F)}{2} - 1$$

holds for every $1 \le i \le n/2$. Put

$$L^*(s,\chi) = L(s + k_0 - 2, M_f').$$

Then if $m \in \mathbf{Z}$ satisfies

$$(5.15) 1 - \frac{k(\tilde{\tau}_i|F) - k(\tilde{\tau}_i\sigma|F)}{2} < m \le 1 + \frac{k(\tilde{\tau}_i|F) - k(\tilde{\tau}_i\sigma|F)}{2}$$

for every $1 \le i \le n/2$,

(5.16)
$$L^*(m,\chi) \sim \pi^{(m-1)n} \pi^{\sum_{\tau \in \delta} k(\tau)} Q(\chi,\delta)$$

is predicted.

We see easily that (5.16) is in accordance with [14], II, Theorem 3.11. (C(s)) there essentially coincides with $L^*(s,\chi)$.) Furthermore Shimura obtained the result without assuming that $k(\tau) \mod 2$ is independent of $\tau \in J_F$. In this sense, Shimura's result is more general than (5.16).

§ 6. た村の不変量 Q(X, 8) について

下はQ上n次の総実体、Bは下上のquiternion algebra とする. Bはる CJ_F で $Aplitし、<math>\delta'=J_F$ / δ で Aplitしないとする。 後、て

 $G = Res_{F/Q}(B^{\times})$ とおく。 $G = Res_{F/Q}(B^{\times})$ とおく。 $G = Res_{F/Q}(B^{\times})$ が任意のQ - algebra Kに対して成立つ。 G_{A} によりG の adelization, G_{Af} , G_{B} はそれぞれ G_{A} の finite part ,archimedean part Ξ 表わす。

 $G_{\infty} \cong GL(2, \mathbb{R})^{r} \times (\mathbb{H}^{r})^{n-r}$

である。 Got により Goの単位元の連結成分を表わす。 Zを Gの center とする。

Shimura [14], II に狭い、保型因子、保型形式、arithmeticity を定義する。一部を復習しておこう。

表現 $\sigma_m: H^X \longrightarrow GL_{m+1}(C)$ を、埋込み $H^X \subset GL_2(C)$ と、加欠の symmetric tensor 表現 $GL_2(C) \longrightarrow GL_{m+1}(C)$ をつなって定義する。 $\{arithmeticity の定義には、<math>Q-structure$ をこれたとり方が必要である。 cf、E/4J)

 $\lambda = \sum_{\tau \in \mathcal{S}} \lambda(\tau) \tau, \quad K = \sum_{\tau \in \mathcal{S}'} \kappa(\tau) \tau \in I_F, \quad \lambda(\tau), \quad \kappa(\tau) \ge 0$ $\underbrace{ \text{tweight } \Sigma \cup \Lambda}_{\tau \in \mathcal{S}'} \lambda = \prod_{\tau \in \mathcal{S}'} \left(\kappa(\tau) + 1 \right) \times \mathcal{S} \setminus \sigma \in \mathcal{S}^{\star} \times \mathcal{S}^{\star}$

 $\int (x, Z) = \prod_{\tau \in \delta} \left(c_{\tau} Z_{\tau} + d_{\tau} \right)^{k(\tau)} N(x_{\tau})^{-k(\tau)/2} \\
(6.2) \qquad \bigotimes_{\tau \in \delta'} \sigma_{k(\tau)}(x_{\tau}) \prod_{\tau \in \delta'} N(x_{\tau})^{-k(\tau)/2},$

 $\chi_{\infty} = (\chi_{\tau})_{\tau \cap J_{F}}, \quad \chi_{\tau} = \begin{pmatrix} * & * \\ c_{\tau} & \lambda_{\tau} \end{pmatrix}, \quad \tau + \delta$ $\forall \lambda' \in \mathcal{L} \subset \mathbb{N} \text{ is Andred norm } \xi = \lambda + \delta + \delta = \delta$ $\mathcal{L} \subset \mathbb{N} \text{ is Andred norm } \xi = \lambda + \delta + \delta = \delta$ $\mathcal{L} \subset \mathbb{N} \text{ is Andred norm } \xi = \lambda + \delta = \delta$ $\mathcal{L} \subset \mathbb{N} \text{ is Andred norm } \xi = \delta = \delta$ $\mathcal{L} \subset \mathbb{N} \text{ is Andred norm } \xi = \delta = \delta$

(6.3) $(f|_{R,R}(x))(z) = f(x(z))J(x,z)^{-1},$ $z \in S_c^r \times b'(...)$ $T \in G_{Q+} = G_Q \cap G_{A+}$ o congruence Autogroup $\times J 3$.

 $S_{k,\pi}(\Gamma) = \{f \mid f \mid \xi' \neq \sigma C^{d} - valued \}$ Anolomorphic function $T' \mid f \mid_{k,\pi} r = f, \forall r \in \Gamma \in \Gamma$ $\{f \mid f \mid \xi' \neq \sigma C^{d} - valued \}$

を、weight $N'(k, \kappa)$ の Γ に関する cusp form の空間とする。但し、 $B = M_2(F)$ のときは、東に周知の cusp についての条件が誤せられているものとする。

 $S_{k,\kappa} = \bigvee_{k} S_{k,\kappa}(\Gamma)$ とがく。ここにアは G_{0+} の全ての合同却分群を走る。

 $G_A = \bigcup_{i=1}^{n} G_{0} x_{i} W, \Gamma_{i} = x_{i} W x_{i}^{-1} \cap G_{0}$ $\forall x_{i} \in \mathcal{X} \setminus \mathcal{E}.$

$$(6.6) \qquad J_{k,n}(W) \cong \prod_{n=1}^{h} S_{k,n}(\Gamma_n)$$

$$(f_1, \dots, f_n)$$

が canonical に成立つ、ff,g + Jk, K(W)に対して

$$(6.7) \langle f, g \rangle = \int_{Z_{\omega_{+}}} \overline{f(x)} g(x) dx$$

とおく、ここに $Z_{\omega_{+}}$ は Z_{ω} における I の連結成分を表わし、 $vol(Z_{\omega_{+}} G_{\mathbf{P}}) G_{A}) = 1 となるように invariant measure を normalize しておく、この内積は <math>[1/4]$, [1]

 $J_{k,R} = \bigcup_{W_0} J_{k,R}(W), W = W_0 G_{\infty+}$ $\xi f(\zeta_0)$

 $S_{k,K}(Q)$ は Q-National elements の成す $S_{k,K}$ の subset とする。 (B = M₂(F) の とき は cusp $(i \infty)^r$ の 回りての Fourier 展開 の 條 数 が全て Q に入ることと 同値である。) $J_{k,K}$ ョ f が Q-National \iff f_{λ} ← $S_{k,K}(Q)$, $I \le r_{\lambda} \le h$ と定義する。 (cf. (6.6))

(6,8) $S_{k,K} = S_{k,K} \otimes_{\overline{a}} \mathbb{C}$ $\int_{A_{k,K}} |\overline{a}| \otimes_{\overline{a}} \mathbb{C}$ が成立つ。 B による依存性を強調する時 $I_{k,K}$ にの記号に B を捜入して $(\int_{A_{k,K}} (B_{k,\overline{a}})$ 等と) たわすことにする。

してCのsubfield とする。 KL (TAx) は GAx Eの L- valued Locally constant compactly supported functions 3? convolution について成すし上のalgebra とする。但し TAx の measure は、vol (Rx) = 1 をみたす Bx の measure の product measure から得られているとする。 GAx の open compact ruligroup K に対し、 KL (GAx, K) は、 K両側不変な 函数の成す KL (GAx) の subalgebra とする。

 $f \in J_{k,K}$, $\varphi \in A_{L}(Q_{A_{f}})$ に対して (6,9) $\rho(\varphi) f = f * \varphi$, $\varphi(\chi) = \varphi(\chi^{1}), \chi \in Q_{A_{f}}$ とおくと、 $\rho(\varphi) f \in J_{k,K}$ で $\rho(\varphi) f \in A_{L}$ の表現を与える。 さらに、L C 配 で f が 配-rational ならば、 $\rho(\varphi) f \in A_{L}$

下の各 finite place V に $\chi(v) \in \mathbb{C}$ を対応させる写像文がある $f(\Rightarrow 0) \in \mathcal{S}_{R,R}(B)$ について

T(V) f = $\chi(V)$ f for almost all V をみたすとき、Hecke operator の eigenvalue の system χ は $S_{A,K}(B)$ に occur するといい、f は χ に属するという。 χ に属する f \in $J_{A,K}(B)$ 全体の vector space を $W(\chi,B)$ と かき・

 $W(X, B, \overline{\mathbb{Q}}) = W(X, B) \cap J_{k, K}(B, \overline{\mathbb{Q}})$ $\forall X \in \mathbb{Z}$

Proof, 「FAx の open compact subgroup Wo を十分小さくとり、 fr, g, h ← Sk, k(W), W = Wo Foot とできる。

Mc(FA)を Jacquet - Langhando 印の意味での FA の Hedre 環とし、 ひ を fr, g, h により、 Mc(FA) の作用で生成される Fool FA 上の Cd-valued functions の空間とする。このとき、 Shimizu - Jacquet - Langhando 対応と、 FL(2) における strong multiplicity 1 theorem により、 ひは Mc(FA) の 既約表現空間になることがわかる。 ひ, = ひの Jak (B) とおくと、 ひょば Mc(FAx) 不放であり、 ひょにおける Mc(FAx) の表現は既約である。さらに、 ひゃっまける がなり、 ひゃっままにいく であり、 ひゃっままにいく であり、 ひゃっままにいく であり、 ひゃっままにいく であり、 で、 Bernstein - Zelevinshi (1], P, 17.) よ、 7 次の Lemma が証明できればよい。

Lemma 6.2. R I complex conjugation to stable 打 \mathbb{Q} of subjicted, V is A E of A $< \infty$ 次元 vector space < L. $V = V_c \otimes_R \mathbb{C}$ < E < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C < C

QED

と仮定する。 く , > はV上の positive definite hermitian form T. VuEH, Fix H such that (6. 10) $\langle \rho(u) x, y \rangle = \langle x, \rho(u) y \rangle, \forall x, \forall y \in V$ をみたすと仮定する。こめとき、 ス, ·・・、 ス。が Vo の 丸上の (任意の) basis で、X=((x,)) + Mx(C)とかく Σ , $C \in \mathbb{C}^{X}$ があり、 $C^{-1}X \in M_{d}(k)$ が成立つ。 Proof. Jusis XI, ..., Xd II x) V to k & E 同一視し、Pを 14 -> Ma(k) とみる。 (6.10) から $(*) \quad \rho(u) \quad \chi = \chi \quad \overline{\rho(u)} \quad , \quad \forall u \in \mathcal{N}$ を得る。仕意のかと AII(C/A)に対して、(*)から $(**) \quad \rho(u) \times^{\sigma} = \times^{\sigma} \widetilde{\rho(\widetilde{u})} .$ $\det X \neq 0 \ \forall \lambda . \ \forall), (**) \ n \ \beta$ $P(u) \times^{\sigma} \times^{-1} = X^{\sigma} \times^{-1} P(u), \forall u \in \mathbb{N}$ Pili X X X 1 it scalar ? $(***) \quad \chi^{\sigma} = d_{\sigma} \chi \quad d_{\sigma} \in \mathbb{C}^{*}$ を得る。 $C = \langle x_1, x_1 \rangle \$ ととる。 (***)から、 $(1,1)-\hat{K}$ $\int_{0}^{\infty} \xi + T, \quad d_{0} = c^{0}/c, \quad p_{A} \in X = cX_{0}$ $\forall x' \in X' = X_o$, $\exists h x' \forall \sigma \in Aut(C/k_o)$ is 対して成立つから、Xo ← Ma(皮).

 $f \in W(B, \alpha, \overline{\mathbb{Q}}), f \neq 0$ $\xi \geq y$

 $Q(X,B) = \langle f,f \rangle$ mod \mathbb{Q}^X とがく、 $Q(X,B) \in \mathbb{C}^X/\mathbb{Q}^X$ は、Theorem 6.1 により f のとり方に依うないで定する。同様の証明法 Γ 高次元の 場合にも使える。(例えば [11]で扱われている case。) Shimara [15], Theorem 5、6 Γ 次の棒に幾分精密化できる。

Theorem 6.3, B_1 , B_2 は下上のquaternion algebraで 共に Signature は (δ, δ') とする。 Hechte operator の eigen-value の system χ が $J_{k,\kappa}(B_1)$, $J_{k,\kappa}(B_2)$ に共に occur $+3 \times$ 仮定し、 $9 \in W(\chi, B_1, \mathbb{Q})$, $h \in W(\chi, B_2, \mathbb{Q})$, $1 \in W(\chi, B_1, \mathbb{Q})$, $h \in W(\chi, B_2, \mathbb{Q})$, $1 \in V(\chi, B_1, \mathbb{Q})$, $1 \in V(\chi, B_2, \mathbb{Q})$, $1 \in V(\chi, B_2,$

 $\frac{\text{Proof.}}{m_{\tau}} = \begin{cases} k(\tau), \tau \in \delta \\ k(\tau) + 2, \tau \in \delta' \end{cases}$

をXに属する non-zero form KL. T = & TV を弁が生成する Mc(GLz(FA)) の automorphic representation Kする.
Theorem 6.1 により、BI, B2 は下上の quaternion algebra として同型ではない、と仮定してよい。サスに Bi, B2 の少くとも一方は、下のまる finite place vo でかねする。
Jacquet - Langlands [7], Theorems 14,4,15.1 により、

Try IF Apecial 又は absolutely cuspidal. 下上のquaternion algebra B'で もりから の外では下分版で、もでは分数するものが存在する。B'のsignature IF (で, で).

 $k'(\tau) = k(\tau) + 2$, $\tau \in \delta'$, $k'(\tau) = k(\tau) - 2$, $\tau \in \delta'$ $k'(\tau) = k(\tau) + 2$, $t \in \delta'$, $k'(\tau) = k(\tau) - 2$, $t \in \delta'$ $k'(\tau$

< 9,9 > < 9',9'> ~ < f, f > ~ < h, h > < 9',9'> が成立ち、結論を得る。

Remark. Jak, R (B) の定義は [14], II におけるとのより幾分一般にしている。後,て上の証明で [15], Theorem 5.4をそのままには適用できないが、new form の理論と Theorem 6.1により、この点は処理できる。

 $X \in J_F$ o non-empty subset δ or 5 \hat{h} $\hat{$

Q(X, T) = Q(X, B)

として invariant $Q(X, S) \in \mathbb{C}^{\times}/\mathbb{Q}^{\times}$ は Bの とり方に 依存せずに定義できる。これは Shimura [16], P, 286にある 予想を、次(t)≥2, b T + 5の仮定の下に確かめたことになっている。

Theorem 6.4. χ is Hecke operator of eigenvalue of system, $f \in \mathcal{A}_{m,o}(M_2(F)) \cap W(\chi, M_2(F), \mathbb{Q})$, $f \neq 0$, $g \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B) \cap W(\chi, B, \mathbb{Q})$, $g \neq 0$ $\forall j \in \mathcal{S}_{k,K}(B)$, $g \neq 0$,

 $\widetilde{m}(\tau) = m(\tau|F), \ \widetilde{A}(\tau) = A(\tau|F), \ \widetilde{h}(\tau) = h(\tau|F)$ $\begin{array}{l} \times h'(\lambda, \widetilde{F} \in J_{\widehat{m},o}(M_2(F_1), \overline{\mathbb{Q}}) \ \text{the proof of the proof of } h'(\lambda, \widetilde{F}) \\ \widetilde{F} \in W(\widetilde{X}, M_2(F_1), \overline{\mathbb{Q}}) \ \text{the proof of } h'(\lambda, \widetilde{F}), \\ \widetilde{g} \in W(\widetilde{X}, B_1, \overline{\mathbb{Q}}) \ \text{notation} h'(\lambda, \widetilde{F}) \end{array}$

< 9, 9 > ~ < 9, 9 > ^e

か、ヤマもをに対して及けり至るならば成立つ。

証明は、下のCM-extension KとKネのHeife characterをとり、[15], Theorem 5.7を適用することで得られる。
記明の最後の段階で、[13], Theorem 1, 1 にある CM-periodu
の関係を用いる。 点(て) ≥ 3, ヤてトる の条件がつくのは、
[15], Prop. 5.2 にある non-vanishing result を使うたみで、

この条件は多分不要である。また Theorem 6.4 はもう少し 精密にできる。

 χ が $S_{A,R}$ (B,\overline{Q}) に occur しなくても、適当に見次旅た をとると (l=2 でよれ) χ は $S_{A,\overline{R}}$ ($B_{I,\overline{Q}}$) に occur するから

 $Q(X, T) = Q(\hat{X}, \hat{S})^{1/e}$ (in $\mathbb{C}^{X}/\mathbb{Q}^{X}$) × がく。 Theorems 6.3, 6.4 により、 $\chi(T) \ge 3$ だてん の条件下で、 $Q(X, S) \in \mathbb{C}^{X}/\mathbb{Q}^{X}$ は常に consistant に定義 できることがわかる。 (ここに F は 制限写像 $J_{F_{1}}$) J_{F} による F の full inverse image である。)

References

- [1] I.N.Bernstein and A.V.Zelevinski, Representations of the group GL(n, F), where F is a local non-archimedean field, Russian Math. Surveys 31(1976), 1-68.
- [2] D.Blasius, Appendix to Orloff: Critical values of certain tensor product L-functions, Inv. Math. 90(1987), 181-188.
- [3] A.Borel, Automorphic L-functions, Proc. Symposia Pure Math. 33(1979), part 2, 27-61.
- [4] H.Carayol, Sur les représentations l-adiques associées aux formes modulaires de Hilbert, Ann. Éc. Norm. Sup. 19(1986), 409-468.
- [5] P.Deligne, Les constantes des equations fonctionnelles des fonctions L, in Modular functions of one variable II, 501-597, Lecture notes in Math. 349, 1973, Springer Verlag.
- [6] P.Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Symposia Pure Math. 33(1979), part 2, 313-346.
- [7] H.Jacquet and R.P.Langlands, Automorphic forms on GL(2), Lecture notes in Math. 114, 1970, Springer Verlag.
- [8] R.P.Langlands, On the zeta-functions of some simple Shimura varieties, Can. J. Math. XXXI(1979), 1121-1216.
- [9] R.P.Langlands, Base change for GL(2), Ann. of Math. Studies No. 96, Princeton University Press, 1980.
- [10] J-P.Serre, Abelian l-adic representations and elliptic curves, Benjamin, 1968.
- [11] G.Shimura, On the Fourier coefficients of modular forms of several variables, Göttingen Nachrichten (1975), Nr. 17, 1-8.
- [12] G.Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45(1978), 637-679.
- [13] G.Shimura, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math. 111(1980), 313-375.
- [14] G.Shimura, On certain zeta functions attached to two Hilbert modular forms I, II, Ann. of Math. 114(1981), 127–164, 569–607.
- [15] G.Shimura, Algebraic relations between critical values of zeta functions and inner products, Amer. J. Math. 104(1983), 253-285.
- [16] G.Shimura, On the critical values of certain Dirichlet series and the periods of automorphic forms, Inv. Math. 94(1988), 245-305.

- [17] G.Shimura, On the fundamental periods of automorphic forms of arithmetic type, Inv. Math. 102(1990), 399-428.
- [18] R.Taylor, On Galois representations associated to Hilbert modular forms, Inv. Math. 98(1989), 265–280.

Hiroyuki Yoshida Department of Mathematics Faculty of Science Kyoto University Kyoto 606 Japan