goooboooogn
0 8100 1992 O 280-304
280

Zeta functions of prehomogeneous vector spaces with
coefficients related to periods of automorphic forms

Fumihiro Sato ($% ﬁ:‘i‘iﬁt )

Department of Mathematics, Rikkyo University
Nishi-Ikebukuro, Toshimaku, Tokyo 171, Japan

§0 Introduction

The purpose of this paper is to generalize the theory of zeta functions associated with pre-
homogeneous vector spaces ([SS], [S1]) to zeta functions whose coeflicients involve periods
of automorphic forms. We prove the functional equations and the analytic continuations
of such zeta functions in the case where the infinitesimal character of an automorphic form
is generic and the prehomogeneous vector space in question have a symmetric structure of
K-type. In [S6], we have dealt with the case where automorphic forms are given by matrix
coeflicients of irreducible unitary representations of compact groups.

Our results can be applied, for example, to zeta functions considered in [M3] and [Hej)
and some special cases of zeta functions in [M1,2,4]; however, to reduce the size of this
paper, we do not include any concrete examples. An expanded version of this paper will
appear elsewhere.

In §1, we introduce zeta functions and give their integral representation (Zeta integral).
In §2, the functional equation of the zeta integral will be proved. In §3, we define the notion
of symmetric structure of prehomogeneous vector spaces and establish some elementary
properties. In the final §4, the functional equations of zeta functions will be proved under
the condition that the infinitesimal character of an automorphic form is generic and a
symmetric structure is of K-type.

Main part of this paper was written during my stay in Strassbourg in the spring of 1990.
The author would like to express his sincere gratitude to Départment de Mathématiques
de Université Louis Pasteur, in particular to Professors H.Rubenthaler and G.Schiffmann,
for their hospitality. Thanks are also due to Egami and Arakawa. Discussions with them in
1983 on the work of Maass ([M3]) and Hejhal ([Hej]) were the starting point of the present
work.
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§1 Definition of zeta functions and their integral representa-
tions

1.1  Let (G, p,V) be a prehomogeneous vector spaces (abbrev. p.v.) defined over the
rational number field @ and denote its singular set by S. Then, by definition, V¢ — S¢ is
a single G¢-orbit.

Let Sy,...,S, be the Q-irreducible hypersurfaces contained in S and take @-irreducible
polynomials Py, ..., P, defining Sy, ..., S,, respectively. It is known that the polynomial
P; is unique up to a non-zero constant multiple in . For each i = 1,..., n, there exists a
Q-rational character y; satisfying

Pi(p(g9)z) = xi(9)Pi(z) (9 € G,z € V).

We call Pi,..., P, the basic relative invariants over Q. Any relative invariant of (G, p, V)
with coefficients in @ can be expressed as a product of Py,..., P,, negative power being
allowed.

Denote by X,(G)gq the subgroup of X(G)g generated by xi,...,xn, which is a free
abelian group of rank n.

Let Gg be the identity component of ﬂ ker x; with respect to the Zariski topology. For

=1

G, ={g € G|p(9)z = z}.

In the following, we assume that

an z € V, put

A-1) for any z € Vg — Sq, the isotropy subgroup G, is reductive and X ((G,)°)g = {1};
Q Q Q

(A-2) G has a semidirect product decomposition G = LU, where L is a connected reductive
Q-subgroup and U is a connencted normal Q-subgroup with X(U) = {1}.

The group G always has a semi-direct product decomposition satisfying (A-2). Namely
G is a semi-direct product of U = R,(G), the unipotent radical, and a Levi subgroup L.
In the following we fix a decomposition G = LU satisfying (A-2) once for all, which may
not be the Levi decomposition (for concrete examples, see §3 and §5).

One of the consequences of the assumption (A-1) is the following:

Lemma 1.1 The singular set S is a hypersurface.
Put Lo = LN Gg. Then Ly is connected and we have Gy = LoU (semi-direct product).

Lemma 1.2 The group X(Lo)g 1s trivial.
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Proof. By (A-1) and [S1, Lemma 4.1], we have
rank X,(G)gq =rank X(G)g = rank X(L)g.
This implies that
rank X(Go)g =rank X(Lo)g = 0.
Since Ly is connected, the group X (Lg)g is trivial. ]
Let T be the largest Q-split torus of the identity component of the center Z(L) of L.

Then dim T = rank X(G)g = rank X,(G)g and L is an almost direct product of T and
Lo.

1.2 Let G*,Gf,T*, L and Ut be the identity components of the real Lie groups
Gg,Gor, Tr, Log and Ug, respectively. Then we have

G*=T*L}{Uu*, G}=1L}Uut
and the decomposition

g=thu (g€G*, teT* geLf, uelU?)

is unique. By (A-2), the groups L$ and Ut are unimodular.

Let dt,dh and du be (bi-invariant) Haar measures on 7%, L and U*, respectively. Let
d,g be a right invariant measure on Gt and let A : Gt — R be the module of d,g. Then
we can normalize these measures so that

d.g = d.(thu) = A(t)dt dh du.

As proved in [S1, §4], the assumption (A-1) assures the existence of § = (6;,...,6,) € Q",
for which

Qz) = |P(z)|"%dz = [] | P(z)|"%dz, dz = the Lebesgue measure on Vg

1=1

gives a relatively G*-invariant measure on Vg — Sg with multiplier A.
Let
Ve -Sg=WVu---UV,
be the decomposition into connected components. Each connected component V; is a single
G*-orbit. For an z € V;, put G} = G, NG*. By (A-1), the group G} is a unimodular Lie
group. We normalize a (bi-invariant) Haar measure du, on G} such that

) [ F@de= [ 2p@)) [ FGhdu(h) (F € 14G* dyg).
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1.3 Let ¢ : L — W be a function on L§ with values in a finite-dimensional complex
vector space W, which is invariant under the right multiplication of some arithmetic sub-
group of Lo @ N L. Later we shall assume that ¢ is an automorphic form on L§; however
at the moment we do not assume it.

Now let us associate to ¢ a linear form Z4(s) on S(Vg)®8(V g) with complex parameter
sin C", which we call the zeta integral attached to ¢ (for the definition of S(Vg) and S(V g),
see [S5, §4]).

Consider the canonical surjection p : Gy — Lo = Gy/U. The map p induces a real

analytic mapping
p:Gf — LF =G} /U*.

For an arithmetic subgroup I’ of Go g NG, put I'z, = p(T') C L. Then I'y is an arithmetic
subgroup of Lo g N L (cf. [Bo, Theorem 6]).

For fo, ® fo € S(Vr) ® S(Vg), take an arithmetic subgroup I' of Go,g N G¢ such that
fo is '-invariant, w is I'r,-invariant and ¢ is I'z-invarinat. Then we define the zeta integral
attached to ¢ and w by setting

(1.2) Z¢(5)(foo ® fo) = Zy(s1,-- s‘,,)(foo ® fo)
'v(I‘ /T+ H X (1) At) dt ¢(h) Z fo(2) foo(p(thu)z) dh du,

+
G F xGVQ—SQ

where v(T') = /G"‘/ dh du, which is ﬁmte by Lemma 1.1. Note that the integral Z4(s) is

independent of the choice of T'.
In the following we assume that

(A-3) for any foo ® fo € S(Vr) @ 8(Vg), the integral Z4(s)(foo ® fo) is absolutely con-
vergent, when R(s1),...,R(s,) are sufficiently large.

In case ¢ is a constant function, the integral Z,(s)(fo ® fo) gives an integral represen-
tation of the usual zeta functions associated with (G, p, V) (see [S1,§4], [S5, §4], [SS, §2]).
In this case some sufficient conditions for (A-3) are known by [S2, Theorem 1] and [SS,
Lemmas 2.2, 2.5]. For example, we have the following criterion of convergence of Z4(s):

Proposition 1.3 Assume that X,(G)q = X,(G)c- If Go, = Go NG, (z € V-18)
~is a connected semisimple algebraic group and ¢ : L§ — W is bounded, then Zy4(foo ®
fo) (foo ® fo € S(VR) ® S(Vg)) is absolutely convergent for R(s1) > 61,...,R(s,) > 6,.

Proof. Proposition is an immediate consequence of [S2, Theorem 1] and the recent result
of Kottwith [K] and Chernousov [C]. ]
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Corollary 1.4 Assume that X,(G)g = X,(G)c. If Goy = Go NG, (z € V—-S8)isa
connected semisimple algebraic group and ¢ is a cusp form on L, then Z4(foo ® fo) (foo ®
fo € S(Vgr) ® 8(Vg)) 1s absolutely convergent for R(s1) > 61,...,R(sn) > 6

1.4 What we must do first is to find a good condition under which the integral Z;(f..®fo)
can be decomposed into product of Dirichlet series (related only to f,) and local zeta
functions (related only to f..), as in the case where ¢ is a constant function.

For an z € Vg —Sgq, put I'; = 'NG{. By (A-1), the volume pu(z) = /G+/F dp, is finite
(for du, see (1)). Also put o
Ur = Grnut, Ty, = T',nU*.

Here we note that Gf C G¢. We normalize Haar measures dv, and d7, on LE‘;) and U,
respectively by

dv, =1 and dr, = u(z).

Then we have du, = dv, d7, on G}.

For each connected component V; of Vg — Sg, we fix a representative z; and put X; =
Lb‘-/L(t;,-)' For each z € V,, choose t, € T, h, € L{ and u, € U* such that z =
o(tzhyuz)z;. Define a mapping ~: V; — X, by 2 — 7 = h, - LE';',) € X,. The point
z is independent of the choice of h, and the mapping ~ defines a real analytic mapping
equivariant under the action of L{. :

Forz € VgNV, and y € V,, set

(13) MO%(g) = [ | o, Bt ) dua(),
(x) x

which we call the mean value of ¢ at z. We consider Mg)gb as a function on X;. Now
it is easy to see that the usual manipulation in the theory of p.v.’s leads to the following
lemma:

Lemma 1.5 If R(s1),...,R(s,) are sufficiently large to ensure the absolute convergence
of Zg(s)(foo @ fo), then

2o )= Y ¥ ﬁ;f-‘—— [ TUB@E ) MO0
=1 zeM\V@nV;

1=1
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1.5 From now on, we assume that ¢ is an automorphic form on L with respect to some
arithmetic subgroup. To be precise, let K be a maximal compact subgroup of L¢ and m an
irreducible unitary representation of K on a finite dimensional Hilbert space W,. Denote
by Z(L{) be the algebra of bi-invariant differential operators on L. Let x; Z2(Lg) — C
be an infinitesimal character. Then we call a function ¢ : LT — W, an automorphzc form
of type (x, ™) with respect to I'r, if it satisfies the conditions

D¢ = x(D)¢ (D € 2(L7)),
$(kh) = (k)p(h)  (k € K,h € LF),
¢(hy) = ¢(h) (h€ L3,y €TL),

¢ is slowly increasing.

We denote by A(Lg /T1; x, ™) the space of automorphic forms of type (x, 7) with respect
to I'z. It is known that the dimension of A(L{ /Ty; x, 7) is finite ([BJ, Theorem 1.7}, [H,
Theorem 1]).

Any element D € Z(L{) induces an Lg-invariant differential operator on the homoge-
neous space X; = L+/L( ) which we denote by D. We call a function ¢ : X; — W, a
spherical function of type (x, 7), if it satisfies the conditions

Dy = x(D)y (D € 2(Lg)),

v(kz) = n(k)yY(z) (k€ K,z€X,).

We denote by £(X;; x, 7) the space of spherical functions of type (x, 7) on X;.

Lemma 1.6 Let ¢ be an automorphic form in A(Lg [T1;x, ). If the integral (1.3) con-
verges absolutely, then the mean value M at z is in £(X;;x, 7).

Our final assumption in this section is the following;:
(A-4) the dimension of E(Xi;x,m) (1 <1< v) is finite.

Put m; = dim £(X;; x, ) (1 < i < v) and take a basis { 5"), ey ¢$,‘1).} of £(X;; x, 7). By

Lemma 1.4, we can express Mg‘)¢ as a linear combination of ¢§i), e ,1,05,‘;)',:
(14) MO¢ =5 (g z) y¥).
=1

The coefficients ¢{”'(¢; z) can be viewed as functions of z on NVegnV.
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We define (global) zeta functions (E‘)(¢, fo; s) and local zeta functions @fi)(foo; T, X, $) by

Og 0 — mu(z) fo(2)et” (¢ 2)
! (¢)f0a ) - 'U(I‘) Z

cerwony: L= lBi(@I7

[ HIAG" #0000

(1<i<y1<i<m).

q)gi)(foo; T Xy S)

The zeta functions Cgi)(¢, fo; s) are independent of the choice of I'. By Lemmas 1.5 and 1.6
and the identity (1.4), we easily obtain the following:

Proposition 1.7 Assume that (G, p, V) satisfies (A-1) — (A-4). Then the following iden-
tity holds for sufficiently large R(s;), ..., R(sx):

v m;

Zo(5)(foo ® fo) = 33 CV(&, fo3 8) @1 (fuoi 7, X, 8)-

=1 l=1

Remark. The coefficients cgi)(qb; z) can be expressed as a linear combination of functions
of z of the form (M{)p(5,),e,), where {7} are a finite number of points in X;, {e,} is an
orthonormal basis of W and (, ) is the inner product on W. Thus the coefficients of our
zeta functions are, roughly speaking, mean values (or periods) of automorphic forms.

The simplest case where the assumption (A-4) is satisfied is the following:
The case of Grofiencharacters — ¢ is a unitary character of Lg.

It is known that (A-4) holds also in the following two cases:
Compact Case — Lg is a compact Lie group (by the theorem of Peter-Weyl);

Symmetric Case — X; (1 <1 < v) are reductive symmetric space (by a theorem of van den
Ban, see [B1,Cor. 3.10], [B2, Lemma 2.1]).

In Compact case, the zeta functions (§‘)(¢, fo; s) have been studied in detail in [S6] and we
obtained the functional equations satisfied by Cg')(qﬁ, fo; 8) (for concrete examples, see also
[S4] and [S7]). Therefore, in the subsequent sections, we consider exclusively Symmetric
case.
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§2 Functional equation of the zeta integral

Recall that, in the theory of p.v.’s developed in [SS] and [S1], the proof of the existence of
analytic continuations and functional equations of zeta functions is based on the following
three properties:

1. Analytic continuation and the functional equation of the zeta integral;
2. Functional equations satisfied by local zeta functions;

3. The existence of b-functions (the Bernstein-Sato polynomials), which controles the
singularities of zeta functions and the gamma-factor of functional equations. More-
over, by using the b-functions, one can eliminate the troublesome contribution of
rational points in the singular set to the zeta integral (cf. Lemma 2.2).

We must extend these three properties to our general situation. The easiest part is the
functional equation of the zeta integral, which we describe here.

We keep the notation in §1 and assume the conditions (A-1), (A-2) and (A-3). It is not
necessary in the present section to assume (A-4). Instead we assume that

(A-5) (G, p, V) is decomposed over Q into direct product as
(G’ Ps V) = (Ga P1® p2, Eo F)
and the invariant subspace F is a regular subspace.

For the definition and elementary properties of regular subspaces, we refer to [S1, §2].
Note that, in [S1], we have introduced the notion of k-regularity, where & is the field of
definition. However the k-regularity implies the k-regularity (cf. [S6, §2.1]). Hence in the
assumption (A-5), F is necessarily a @-regular subspace.

Let F* be the vector space dual to F and p% the rational representation of G on F*
contragredient to p,. Set (G, p*, V*) = (G, p1 ® p3, E® F*). The assumption (A-5) implies
that (G, p*, V") is also a p.v. defined over @ and F* is its regular subspace. By Lemma
2.4 in [S1], the assumption (A-1) holds also for (G, p*,V*). Let S* be the singular set of
(G,p*, V"). Let Py,..., P be the basic relative invariants of (G, p*, V*) over Q. Note
that the number of basic relative invariants of (G, p*, V*) is equal to n, the number of basic
relative invariants of (G, p, V). Let x be the @-rational character of G corresponding to

P
' Fr(p"(9)z") = xi(9) P (z") (9€G, 2" € V7).

- Let X,«(G)g be the subgroup of X(G)q generated by x3,...,x;. Since X, (G)g =
X,+(G)q, there exists an n by n unimodular matrix U = (u;);,_, such that

(2.1) x, =[Ix" (1<i<n)
1=1
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Let A = ()y, ..., As) be an n-tuple of half-integers such that
(2.2) (det p2(9))* =[] xi(g)?.
1=1

(for the existence of X, see [S1, Lemma 2.5]).
Let the function ¢ : L3 /T, — W be the same as in §1.3. Then, as in (1.2), we can
define the zeta integral attached to ¢ also for (G, o, V*):

Z3(s)(fo ® fo) = Zy(s1,-- -5 50)(foo @ £)

U—:ﬂﬁ+gxr(t)5iA(t) dt /Go+/r $(h) 2 fo(a*) fo (p(thu)z*) dh du

2*eVg-Sa

(fz ® f5 € (V) ® 8(Vg))-

Now let us recall the Poisson summation formula for functions in fo. ® fo € S(Vg) ®
S(Vg). For fo € §(Vg) and z3 € Fg, take a lattice L in Fg for which the value of
fo(z1,22) (z1 € Eg,z2 € Fg) is determined by the coset of z; modulo £ and 23 is in the
dual lattice

L ={z3€Fy| <23, L>CL}
Put N ‘
folzr,25) = v(L)™ Y folzr, 20) <277,
z€Fg/L
where v(L) = /F e dz,. Then fo(z1,23) is independent of the choice of £ and defines
®

a function in S(Vg). The function fo is called the partial Fourier transform of fo with
respect to F. '

We define the partial Fourier transform fe € S(Vg) of fe € S(Vg) with respect to F
by setting

?;(:cl, zy) = /]; foo(z1,Z2) e~ 2m<ETE> s
»

Then the partial Fourier transforms
~:8(Vg) — 8(Vg) and ~: 8(Vg) — S(Vg)
are linear isomorphisms and the following Poisson summation formula holds:

(23) Z f0($1;$2) foo(p(g)(rhm?))

(z1,72)EV g
= detpg(g)_l Z fO(xl’:E;) foo(p*(g)(ml’l';))
(z1,23)EV Y
(foo ® fo € S(Vg) ® S(Vg),g € G*).
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Let B (resp. B*) be the domain in C" on which Z4(s)(fo ® fo) (resp. Z}(s)(fx ® f5))
converges absolutely. Denote by D (resp. D*) be the convex hull of (B*U~ + X\) U B (resp.
(B — A)U U B*) in C". Then it is clear that (D — \)U = D*.

Proposition 2.1 Let f,, € S(Vg) be a function satisfying that fo and foo vanish identi-
cally on Sg and Sk, respectively. Then Z4(s)(foo ® fo) and Z;(s)(?; ® fo) have analytic
continuations to holomorphic functions on D and D*, respectively, and satisfy the func-
tional equation

Z3((s = NU)(Foo ® fo) = Zs(s)(fwo ® fo) (s € D).

The proof of Proposition 2.1, which is based on (2.3), is quite similar to that of [S1,
Lemma 6.1] and we do not reproduce it here.

For the later use, we recall the construction of functions f,, satisfying the assumption
in Proposition 2.1. Let r = n — rank X, (G)q. Then, among the basic relative invariants
Py, ...,P, of (G,p,V) (resp. Py,..., Pr of (G, p*, V")) over @, there exist precisely n —r
relative invariants which are constant as functions of z, on F (resp. z3 on F*). Hence we
may assume that

P(z1,z2) = P*(z1,23) = P(z1) i=r+1,...,n).

These P,(z1) (r +1 < i < n) are the basic relative invariants of (G, p1, E) over @. We put

T

Pp(zq,25) = H P(z1,22) and Pp(z1,23) = H P*(z1, 23).

=1 =1

Lemma 2.2 ([S1, Lemma 6.2]) (i) For an fJ € C$°(Vg — Sg), put
foo = Pr(z1,22) - f12(21,22).

Then fo and?; vanish on Sg and Sg, respectively.
(i) For an fl, € CF(Vr — Sr), put

% a ! »
foo = Pp(zy, 51:_2) * foo(21,22).

Then fo. -and fo, vanish on Sg and Sg, respectively.
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§3 Prehomogeneous vector spaces with symmetric structure

3.1 In this section, we keep the notation in §1 and assume the conditions (A-1) and
(A-2). Asin §1.3,let p: Gy — Ly be the canonical surjection and put L,y = p(G, N Gy)
forz € V-S.

We call the semi-direct product decomposition G = LU determines a symmetric struc-
ture on (G, p, V) over Q, if for any z € Vg — Sg, there exists an involution (= an
automorphism of order 2) o : Ly — L¢ defined over @ such that

(3.1) Ly :={h € Lo|a(h)=h} DLy D (LF)".

Then, for any z € Vg — Sg, there exists an involution o of Ly defined over R satisfying
(3.1). The involution ¢ induces an involution of L, which we denote also by o, satisfying

(L3 D LiNLyy =L}, > (Lga) .

Therefore the homogeneous spaces X; (1 < ¢ < v) defined in § 1.4 are reductive symmetric
spaces and the construction of zeta functions given in §1 can be applied to (G, p, V) with
symmetric structure.

Lemma 3.1 Suppose that (G, p, V) satisfies the condition (A-5) in §2, namely, V contains
a regular subspace F. Then the decomposition G = LU determines a symmetric structure
also on (G, p*, V"), the p.v. dual to (G, p, V) with respect to F.

Proof. By (A-5), one can find a relative invariant P of (G, p, V) with coefficients in Q
for which the rational mapping ¢p : V— S — V™ defined by

¢p(21,22) = (21, grad,, (log P(z1, 22)))

gives rise to a G-equivariant biregular mapping of V —S onto V* — S* defined over @. For
z € Vg — Sq, put z* = ¢p(z) € Vg — Sg. Then we have G, = G,- and L,y = L, (cf.
[S1, Lemma 2.4]). Now the assertion is obvious. ]

3.2 Let Py, be a parabolic subgroup of L and put P = P;U. We denote the restriction
of the representation p to P by the same symbol p. We do not assume that P, is defined
over Q. In fact, in §4, we need to consider a parabolic subgroup defined over R.

Lemma 3.2 Suppose that G = LU determines a symmetric structure of (G, p, V). Then
(1) (P,p, V) is also a p.v.
(i) If(G,p, V) is regular, so is (P, p, V).
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Proof. Let Vi ={z € V| Pi(z) =--- = P,(z) = 1}. Then V, is a single p(Gg)-orbit
(cf. [S6, Lemma 1.1]). Fix a point zo € V;. The mapping f : V; — Lg/L(,,) defined
by B(p(hu)zo) = h - L) (b € Lo,u € U) is clearly Lo-equivaraint. Since Lo/L,,) is a
symmetric space and Py, = Py N Ly is a parabolic subgroup of Ly, there exists a Zariski-
open Py -orbit € is Lo/L,,) (see [V, §1]). Then Q@ = p(T)87(p) is a Zariski-open

P-orbit in V. Hence (P, p, V) is a p.v. The second assertion is obvious. [

We denote by Sp the singular set of (P, p, V). It is obvious that Sp D S. Recall that
the parabolic subgroup Pr, = P N Lg of Ly is called g-anisotropic for an involution o of
Ly if Py, No(Pyr,) is a Levi subgroup of Py, (cf. [V, §1]).

Lemma 3.3 Suppose that G = LU determines a symmetric structure of (G, p, V) and
P;, = Py N Ly 1s o-anisotropic for the involution o corresponding to some zo € V — S.
Then

(i) the point zo is in V — Sp.

(ii) Forz € V—Sp, the isotropy subgroup P, = {p € P| p(p)z = z} 1s (not necessarily
connected) reductive.

(iii) The singular set Sp is a hypersurface.

Proof. We use the notation in the proof of Lemma 3.2. By replacing z, by p(t)z, (t € T)
if necessary, we may assume that zo € V;. By [V, Theorem 1] and the assumption that
PLo
prove the second assertion, it is sufficient to consider the case where z = . Since the
identity component of P, coincides with that of (P, - U),, = P,, N (P, - U), we prove
that (P, - U),, is reductive. It is obvious that (P, - U),, is the semi-direct product of
P, NL,) and U,, = UNG,,. By (A-1), G, is reductive; hence its normal subgroup
U,, is reductive. Put L'y = Py, N o(P,). By the assumption, L’y is a Levi subgroup of
P;,. The group Py, NL(,,) is reductive. This proves the second part. The third assertion
is an immediate consequence of the second. 1

is o-anisotropic, we see that ((zo) is in €Qp. This implies the first assertion. To

3.3 Let the assumption be as in Lemma 3.3. Take a field k£ such that zo € V — S,,
P, and the involution ¢ are defined over k. We examine the group X, (P), of k-rational
characters corresponding to relative invariants of (P, p, V).

For simplicity, we assume that

(A-6) the basic relative invariants Py, ..., P, of (G, p, V) over @ are absolutely irreducible.

This is equivalent to the condition

Xo(G)e = X,(G)e-
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Let Tj be the identity component of the center of Ly. The central torus Ty is o-stable.
Hence we get a separable isogeny T , x Tg_ — T, where

Tor={teTplo@ =1 and To ={teTp|o()=1"}".
We consider the following commutative diagram of the natural mappings:

XPy — XP)® X (T

restriction to T x Tg_
X, (P =5 X(T)x @ X(T)_)x.
Here note that X(T), = X(T)q, since T is a @-split torus.

Lemma 3.4 The homomorphism & : X,(P)y — X(T)x & X(To_)x ts injective and of
finite cokernel.

Proof. Any character x in X,(P)j is trivial on P,,U. The group P,, U contains (P, N
L(z,))U and hence ((Lg)?)"U. Since Tg, is a subgroup of ((Lg)?)°, x is trivial on Ty, .
This implies that £ is injective. As we have already seen in §1, £(X,(G)x) = £(X,(G)g)
is of finite index in X(T); (= X(T)g). Let x be a k-rational character of T;_. Then,
for some integer e;, x** can be extended to a k-rational character of P such that ker x*
contains TT{, D(Ly)U’, where D(Ly) is the derived group of L. Since (P,)° is contained
in TT{, D(Lg)U’, there exists an integer e such that x¢ is trivial on P,. This implies that
x¢ € X,(P)x. Therefore £(X,(P);) is of finite index in X(T); & X(T;_)x- i

Let Py, ..., Py, Poy1, ..., Poy be the basic relative invariants of (P, p, V) over k, where
Py,..., P, are the basic relative invariants of (G, p, V). We have | = rank X(T;_); by
Lemma 3.4. '

Let X, 115+ > Xn4 D€ the k-rational characters correponding to P,41,. .., Pryi, Tespec-
tively. Take a positive integer e such that (x¢ T) (n+1< 1< n+!) are in &(X,(G)).
Then one can find m,; € e'Z (1< i< n,1<j <) such that

(3.2) Xer; [ IIx™ =1 onT.
: =1

These m,; will play a role in the algebraic construction of the Poisson kernel in §4.

§4 Functional equations — The case of symmetric structure of
K.-type

Let (G, p, V) be a p.v. with symmetric structure G = L - U satisfying the assumptions (A-
1), (A-3), (A-5) and (A-6). The assumption (A-2) is automatically satisfied. In this section
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we prove the functional equation satisfied by zeta functions attached to automorphic forms
under the following assumption:

(A-7) Ly is semisimple and the symmetric spaces X; = Ly /L,y (1 <i<v) are K.-space
in the sense of [OS]. '

4.1 Let K be a maximal compact subgroup of L and 6 the corresponding Cartan in-
volution. Let P, be a minimal parabolic subgroup of L§ with Langlands decomposition
Py = M AN with respect to §. Denote by £, m and a the Lie algebras of LL M and A,
respectively. Let ¥ (C a*) be the set of restricted roots and £% the set of positive restricted
roots corresponding to Py. Put £ = {X € £ |[H,X] = ao(H)X} for a € Z.

Following [OS], we call a mapping € : £ — {£1} a signature of roots, if it satisfies the
condition ‘ :

()=d-a)  (ae),
ela+ f)=¢c(a)e(B) fo,f €L and a+F €X.
For a signature of roots ¢, define an involution 4. of £, by
(X)) =€e(—a)0(X) X € £5,a €L,
6.(X) = 0(X) Xem+a

Then a precise formulation of the condition (A-7) is as follows:

(A-T)" for each i =1,...,v, there exists a representative z; € V; and a signature of roots
€ such that L, y = M - K, where K, is the analytic subgroup of L with the Lie
algebra

b, ={X € £]0,(X)=X}.

In this case, one can apply the results in [OS] to the homogeneous spaces X; = Lg/ LE;‘,).
Let W = Nk(A)/Zk(A) be the Weyl gorup. Note that M = Z(A). Define a subgroup
W of W by W = (LE ) 0 Nk (A))/M. Put r; = [W : W] and fix a complete system
{wg’), e, wS")} of representatives of W/W). Then, by [0S, Proposition 1.10] (or by [Mat]),
the set y g ' ’
(4.1) , U1 A]ng')L(";‘,) = U1 Pgwg-')LE;i) (disjoint union)
i= J=

is an open dense subset of L{.

_Let Py, be a minimal R-parabolic subgroup of Ly such that Py g N L = P,. The
parabolic subgroup Py, is f.-anisotropic. Put

P=TP;,, U and P*=T*RU".
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Note that P* is not necessarily connected. Using the notation in §3.3, we have Ty = T _
and Tg , = {1}.

As in §3.2, let Sp the singular set of (P,p, V). Then it follows from (4.1) that the
P*-orbit decomposition of Vg — Spg is given by

Ve —Spr=U UV, Vi=nPay, =, =pw))a:

1=17=1

Let Py,..., Py, Pat1,-.., Poy be the basic relative invariants of (P, p, V) over R. As in
§3.3, P,..., P, are the basic relative invariants of (G, p, V). We have [ = dim A in the
present case. Let m;; (1 <4< n,1<j <) be the rational numbers given by (3.2). Then
the function

ps(@)] = [Pas(@)] [TLIRB@I™ <5<

=1

on Vg — Sg satisfies that

p; (p(tmanu)z)| = x,,,(a) |p; ()| (t € TtmeM,a€ Ain€ NyueU"* z € Vg — Sg).
This implies that |p;| defines a function Iﬁjl on X;:

Ip;l

— v R

V.
N\
X;

X
+

By Lemma 3.4, {X, 1, -» Xn4:} 8ives a basis of X(Tj)g ® C. We can identify X (T;)g®C
with af = a*®gC by X(Ty)g > x — log(x oexp) € a*. For A € ag, write A\ =
Z;‘=1 A log(xnﬂ. o exp) and put

Ip(e)|* = U lp;(2)” (2 € Ve —Sg)

and

o )
0 otherwise.

)| ifz Viis
Ip(z)] { Ip(z)] €

The function Ip(:c)lf; 1s well-defined for R(};),...,R(A;) > 0 and we define |p(:n)]?] for
arbitrary A € ag by analytic continuation. We denote by |'ﬁ(:v)|:\J the function on X induced

G
by [p(:n)[fJ Then Iﬁ(z)l:\J (1 < j < ;) coincide with the functions exp {)\ (H::’ (g))}
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defined by [0S, (3.33)].

4.2 Now we examine the space £(X;; 7, x) of spherical functions of type (m, x) introduced
in §1.5. Let D(X;) = D(LJ/LE';,,)) be the algebra of L{-invariant differential operators on
X;. Denote by Z(X;) the subring of D(X;) consisting of the restrictions D of bi-invariant
differential operators D in Z(L{). It is known that Z(X;) = D(X;) if L{ is of classical
type and D(X;) is a finite Z(X;)-module in general ([Hell, §7], [Hel4]).
Let
Bo: DL /TE) (2 U(L0)' ] (U(20) NU(L0)(E))) = U(@)Y

be the standard isomorphism of D(Lg/ L+ ») onto the ring U(a a)¥ of the Weyl group in-
variants (cf. [OS, §2.3], [Hel3, Chap. II §4, §5]). For u € ag, we obtain an algebra
homomorphism of U(a)¥ into C by extending it to U(a)", which we denote by the same
symbol. Put

X, =po%:D(LF/LE,) — C.

Let 7 be an irreducible unitary representation of K on W, and x : Z(L$) — C be an
infinitesimal character. It is obvious that E(X;;m, x) = {0} unless x : Z(L§) — C factors
through 2(X;) = Z(L§/L{,,):

2(8) c
N\ /

Z(Lg /L)

Now assume that £(X;;,x) # {0} and denote the character of Z(Lg /L{, ) induced by x
also by the same symbol.
For p € ag, put

w(kf) = w(k)y(T) (k€ K,fe X)) } .

E(Xismx,) = {¢ P Xi—o W Dy =x,D)yy  (DeDX))

Since D(X;) D Z(X;), we have

E(Ximyx,) CEXim, x |Z(X)

On the other hand, since D(X;) is a commutative algebra, the ring D(X;) acts on £(X;; 7, )
(x € Hom(Z(L{),C)). We assume that

(A-8) There exists a finite number of p, ..., pa € ag such that
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d
(4.2) E(Xi;m,x) =@ Xi;ﬁ,x#j).

Remark. The assumption always holds unless the symmetric space X; contains an ir-
reducible symmetric space of type EVII or EIX ([Och]). Even in this exceptional case,
the assumption holds for generic x. By [OS, Lemma 2.24], yi,..., 44 do not depend on
1=1,...,v. If Gis of classical type, then d = 1 for any x. In some exceptional cases, it
may occur that d > 2; however, for a generic x, we may take d = 1 ([Hel4]).

Now we define End(W,)-valued spherical functions ¥}’ ("’) (z € X;) by the analytic
continuation (with respect to u) of the integral

(43)  ¥F(@):= / [k )T r(k)dk (wedg,1<i<y1<i <),
K t7

where p = 13 cp+ @ and dk is the normalized Haar measure on K. Then, using the
Poisson integral representation of eigenfunctions on X; of invariant differential operators
([0S, Theorem 5.1]), we immediately obtain the following proposition:

Proposition 4.1 If 4 € ag satisfies 2(%%')1 ¢ Z for all o € &, then the linear mapping

Piw : WY — E(Xi5m,x4)
(v;)je1 — Zji ‘P:r]p(f) Yy
s an i1somorphism, where

W' ={v €Wy |m(m)v=v (me M)}

Thus we have constructed a basis of £(X; 7, x) for generic u € ag.
Let piy, ..., q be the elements in ag appearing in the right hand side of the decomposition
(4.2). We assume in the following that M ¢ Z for all o € E and 1 <! < d. Then, for

¢ € A(L§/T; 7, x) and z € Vg NV;, one can find constants v ((15, z) such that

d g
MP$(g) ZZ v A )8

We put
1 /J(z)fo(m) Jp,(¢a )
0 sr

z€M\V gnV; H IPt(m)Ist

(’)(¢ fO) )_
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and
O i mobys) = [, T IPOI VD m) 200

‘t--

Here CJ(-f,)(¢, fo; 8) are Dirichlet series with values in WM and (I)gi)( foo; T, 14y, 8) are local zeta
functions with values in End(W,).
Now Propaosition 1.4 can be formulated as follows:

Proposition 4.2 We have
v 1; d

Z5(5)(foo ® fo) = 3. 3. 3 8 (fou m, 1y, 8) - C(8, fos 5).-

t=13=11=1

4.3 Let (G,p,V) = (G,p; ® p2,E ® F) and assume that F is a regular subspace.
Denote by (G, p*, V”) the p.v. dual to (G, p, V) with respect to F. In the following we
indicate with the superscript * the notion for (G, p*, V*). For example, we denote by
P, ..., PY the basic relative invariants of (G, p*, V*).

Take a relative invariant P of (G, p, V) with coefficients in @ such that ¢p defined in
the proof of Lemma 3.1 gives a biregular map of V — S onto V* — S*. Since ¢p is defined
over Q and G-equivariant, we have a one to one correspondence of P*-orbits in Vg —S PR
and those in Vi — Spp. Hence we have

Vi-Sha=UU Vs % =0el) = 5" (P)e, 2 = do(e) = 7 (u)p(2:).
1=13=1 )
Since L,y = L. for 2f = ¢p(z:), we may identify X; = L3/L{, , with X = L+/L(m.)
and the assumption (A-7) holds also for (G, p*, V*). Moreover we have the commutative
diagram

v 2y
N -
X

For z* = ¢p(z) (z € V;), it is easy to check the following identity:
[P*(2")155 = [p(2)[1* -
If z is in V; N Vg (and hence z* is in V; N V), then we have
MI4([7) = MP4@) (7€ X),
(527 = o) (42)
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The zeta functions and the local zeta functions associated with (G, p*, V*) are defined
as follows:

CO, f338) = >

V(L) eer{Vny; I1 IPZ(w*)I"

8O mimms) = [ TP @) ) 0.

-t—

Theorem 4.3 For any fo, € S(Vg) and f2 € S(Vg), the integrals (I)gi)(foo;w,u, s),

<I)*( )(foo,7r i, s) ((p,8) € ag x C") converge absolutely, when R(s1) > 61,..., R(s,) > 6,
and R((u,a)) > 0 for all @ € A. Moreover they have analytic continuations to meromor-
phic functions of (1, s) in ag x C™ and satisfy the functional equation

O (foosm, 1, 8) = Z Z T, )87 (Fooy 1, 1,y (s — MU,

1*=1j*=

where I‘g-';]’-':)(u, s) are meromorphic functions independent of fo, and m having an elementary
expression in terms of the gamma function and the exponential function.

Proof. From (4.3), we have
1 .S( —1= +
8 (foim,9) = [ THR@I{ [ P9 7(k) dk } fuolw) 200).
Vie=1 K
Since Py’s are K-invariant, we obtain

(44)  ®(foosm 1, 5) / HlB(y - 1p(y) l"“{/ foolp(k)y)m(k )dk} Q(y).

’Jtl

Similarly we obtain
(45) @*(z)(foo’ T u) )

= [ NP6 { 120 Ov)mk) ak} ),

:] t=1

From these expressions, the convergence of the integrals is obvious. Moreover, since any
matrix coeflicient of

[ folo(k)y)n(k) b (resp. / £2 (0" (k)y)m (k) dk)
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is arapidly decreasing function on Vg (resp. V), the integrals @gi) (resp. (I);(i)) have analytic
continuations to meromorphic functions on ag x C". We note further that, for u,v € W,,

([ Ttk ki - u,0) = ({ [ fulolkp)m(h) dt o))

By [S1, Theorem 1], there exist meromorphic functions I‘gfj:)(u, s) on ag x C" such that
the functional equation

(89 (foos 7, 1t ), 0) = 3 35 T4, 5 (@57 (oo o1, (5 = NV, )

!‘—1 )'—
holds for all u,v € W,. This proves the theorem. ]

For (u, s) € ag x C", put

n e — ! mis N l
P,.(y) = [] Pi(w)" " L= ™55 [ Pa,(0)™.
=1

J=1

Let P be the relative invariant of (G, p*, V*) introduced just before Lemma 2.2. Then, by
[S1, §3], there exists a polynomial br(s, i), the b-function of (G, p, V) with respect to F,
satisfying
(4'6) P;‘(yla %)Pu,s(y) = bF(s) /-“)P#,s+a(y)a
where o = (ay,...,@,) is defined by x5 = x§'+-+x2". We can similarly define the b-
function 6% (s, u) of (G, p*, V*) with respect to F.

Now we are in a position to prove the functional equation of the zeta functions CJ(:,)(qS, fo; 9)

and (8, f3;)-

Theorem 4.4 Assume that :)((—:‘ai)) ¢Z foralla € ¥ and 1 <1< d. Then
(1) the zeta functions C(i)(qﬁ fo;8) and C*(’)(gb fo;8) can be extended to meromorphic func-
tions of s in D and D*, respectwely (for the definition of D and D*, see §2).

(i1) The functions bp(s ,,u,)CJ,(qﬁ fo;s) and b%(s, ul)c*()(cé fo;s) are holomorphic func-
tions of s in D and D*, respectively.

(iii) The following functional equation holds for any fo € S(Vg):

(e, For (s = N) ZZF(”)u,, )¢S, fo 5).-

=1 j3=1



300

Proof. (i) and (ii): Let the notation be as in §2. For an f., € C§°(Vi;), put fo =
Pj(z1, (%;)féo(ml, z3). Then, by Lemma 2.2, we can apply Proposition 2.1 to f,, and we
see that the function

d . .
Zo(5)(foo ® fo) = 30 B (fuoi ™, 11, 8)G31 (8, fo3 9)
1=1
is a holomorphic function of s in D. On the other hand
4 n 0
(") . = st mtpe * Y
¥ i) = [ TR b { [ Pon, 31Ok k| 2).
Since Py is K-invariant, we have
0 0
Py y Q. éo k = Py Y g ;o ’ k ;o = c,>o k .
F(y1 I ) feo (p(k)y) F (1 6y2) ( f ) (¥) foo(¥) = foo(p(k)y)

Hence, integrating by parts, we obtain
OV (foo; 1, 11y, 8) = (s, ) (flos ™, 5 s + @),

where we use the identity (4.6). Thus we see that

d . .
(4.7) Z4(5)(foo ® fo) = 3 br(s, 1) (flo; 7, 11y, 5 + )PP, fo3 )

I=1
is a holomorphic function in D. _
Now we need the following lemma, whose proof is not hard and is omitted.

Lemma 4.5 Let V =C™ and W = C". Let ¥ : X — Hom(V, W) be an Hom(V, W)-
valued function on a domain X in RY. We identify Hom(V, W) with M(m,n;C) and
denote by WU, the (i,7)-entry of ¥. Put ‘

U,;(z)
U,(z) = : : X —C™ (1<j<n).
Vmj(z)
Assume that the functions ¥q,..., ¥, are linearly independent over C. Then there exist

fiy-- oy fo € C(X) such that the rank of the matriz

Ix ¥(z)fi(z)dz \ }m
: : € M(mn,n;C)

[ V() fu(z) dz ) I

is equal to n.
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When 2—&‘;")‘—) ¢ Z (1 <! <d), the lemma can be applied to the function

¥ :V;; — Hom( @ - M W)
defined by
V(z)(v1,- ., va) = |P(z)[* Z‘I’”'

Hence, by (4.7), we see that the functions bp(s, /J,)( (qS fo; s) are holomorphic in D. The
holomorphy of b%(s, ¢;)¢ *(')(qS 13 s) can be shown quite similarly.
(ii1): Now we take f’* € C3(Vi,.) and put f3 (zq,23) = Pp(xl,g—x;)f;(ml,mg) and

foo = E The we can apply Proposition 2.1 to f., and get the functional equation

Zy((s = MUY % ® fo) = Zs(s)(fw ® fo) (s € D).

By proposition 4.2 and Theorem 4.3, we have

d oy e
5 858 (Fari s (5 = NUIGSD(8, Toi (5 = N0
I*=1

Ty

Z Z (I)gl)(foo’ T, Mz-, S)Cj(lt)((ﬁ» fO) 5)

17=11=1

>
33 50 5, = OGP0,

Therefore

d . ————
3 05 (Fos 1y, (s = MU)
=1

(C*(‘ (6, foi (s — A) ‘Z‘,ZP,.,. (1 )9, fos )) =0.

=1 3=1

By the argument based upon Lemma 4.5, we see that the functional equation

*(‘ )(¢) fO) S — ZZ Fl] /J'l’ I)(d)’ fO, S).

1=1 =1

holds for any s € D. 1

Remarks. 1. As we mentioned at the beginning of §2, the functional equation of zeta
functions are based on local functional equations, the existence of b-functions anbd the
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functional equations of the zeta integrals. In the case considered above, the local functional
equation (Thoerem 4.3) and the b-function (4.6) are reduced to the usual local functional
equations and the b-functions of the prehomogeneous vector space (P, p, V).

2. Even when the symmetric spaces X; = L;/L(‘;‘_) is not of K .-type, we can argue quite
similarly to prove the functional equations of zeta functions attached to automorphic forms
on the basis of the results of Oshima [O1]. In the general case, P is not necessarily mini-
mal parabolic, and the functional equations are reduced to the local functional equations
discussed in [S6].

References

[B1] E.P.van den Ban: Invariant defferential operators on a semisimple symmetric spaces
and finite multiplicities in a Plancherel formula. Ark. fér Mat. 25(1987), 175-187.

[B2] E.P. van den Ban: Asymptotic behaviour of matrix coefficients related to reductive
symmetric spaces. Proc. Kon. Ned. Akad. Wet., Ser A 90(1987), 225-249.

[BR] N.Bopp and H.Rubenthaler: Fonction zéta associée a la série principle sphérique de
certaines espaces symétriques. C. R. Acad. Sci. Paris, t. 310(1990), 505-508.

[Bo] A.Borel: Density and maximality of arithmetic groups. J. reine angew. Math.
224(1966), 78-89.

[BH] A.Borel and Harich-Chandra: Arithmetic subgroups of algebraic groups. Ann. of
Math. 75(1962), 485-535.

[BJ] A.Borel and H.Jacquet: Automorphic forms and automorphic representations. Proc.

Symp. pure Math. vol.33(1979), Part I, 189-202.

V.Chernousov: On the Hasse principle for groups of type Eg. Soviet Math. Dokl
39(1989), 592-596.

Harish-Chandra: Automorphic forms on semisimple Lie groups. Lect. notes in Math.
No.68, Springer-Verlag, 1968.

D.Hejhal: Some Dirichlet series with coefficients related to periods of automorphic
eigen forms. Proc. Japan Acad. 58(1982), 413-417.

S.Helgason: Fundamental solutions of invariant differential operators on a symmetric
space. Amer. J. Math. 86(1964), 565-601.



303

[Hel2] S.Helgason: A duality for symmetric spaces with application to group representa-

tions. Adv. in Math. 5(1973), 1-154.

[Hel3] S.Helgason: Groups and geometric analysis. Academic Press, 1984.

[Hel4] S.Helga,éon: Some results on invariant differential operators on symmetric spaces.

[Och]
[01]
[02]
[05]
[S1]

[52]
[S3]

Preprint(1989).
R.E.Kottwitz: On Tamagawa numbers. Ann. of Math. 127(1988), 629-646.

H.Maass: Sphericél functions and quadratic forms. J. Indian Math. Soc. 20(1956),
117—162

H. Maass Zetafunktionen mit Grélencharakteren und Kugelfunktlonen Math. Ann.
132(1957), 1-32.

H.Maass: Uber die raumliche Verteilung der Punkte in Gittern mit indefiniter
Metrik. Math. Ann. 138(1959), 287-315.

H.Maass: Siegel’s modular forms and Dirichlet series. Lect. notes in Math. No.216,
Springer Verlag, 1971.

T.Matsuki: The orbits of affine symmetric spaces under the action of minimal
parabolic subgroups. J. Math. Soc. Japan 12(1982), 307-320.

H.Ochiai: A remark on invariant eigenfunctions on some exceptional noncompact
Riemannian symmetric spaces. Preprint, 1990.

T.Oshima: Poisson transformations on affine symmetric spaces. Proc. Japan Acad.
55(1979), 323-327.

T.Oshima: Fourier analysis on semisimple symmetric spaces. Noncommutative har-

monic analysis, Lect. notes in Math. No.880(1981), 357-369.

T.Oshima and J.Sekiguchi: Eigenspaces of invariant defferential operators on an
affine symmetric space. Invent. Math. 57(1980), 1-81.

F.Sato: Zeta functions in several variables associated with prehomogeneous vector
spaces I: Functional equations. T6hoku Math. J. 34(1982), 437-483.

F.Sato: ibid. II:A convergence criterion. Téhoku Math. J. 35(1983), 77-99.

F.Sato: ibid. III:Eisenstein series for indefinite quadratic forms. Ann. of Math.
116(1982), 177-212.



304

[S4]

[S5]

[Sé]

[S7]

[SK]

[SS]

F.Sato: The Hamburger theorem for Epstein zeta functions. Algebraic Analysis,
Vol.Il, Academic Press, 1989, 789-807.

F.Sato: On functional equations of zeta distributions. Adv. Studies in pure Math.
15(1989), 465-508. .

F.Sato: Zeta functions with polynomial coeflicients associated with prehomogeneous
vector spaces. Preprint, 1989.

F.Sato: The Maass zeta funtions attached to ositive definite quadratic forms. Adv.
Studies in pure Math. 217(1991), 7-7.

M.Sato and T.Kimura: A classification of irreducible prehomogeneous vector spaces

and their invariants. Nagoya Math. J. 65(1977), 1-155.

M.Sato and T.Shintani: On zeta functions associated with prehomogeneous vector
spaces. Ann. of Math. 100(1974), 131-170. |

T.Vust: Opération de groupes réductifs dans un type de cone presque homogene.
Bull. Soc. Math. France 102(1974), 317-334.



