ネータの正規化定理について

日大理工·数 小林英恒 (Kobayashi, Hidetsune)

0. 序

体 k 上の多項式環 $k[x_1,x_2,...,x_n]$ のイデアル $a=(f_1,f_2,...,f_r)$ が与えられたとき、これの高さを計算する方法を示す。これによって a で定義される代数的集合の次元が分かる。次元を知るためにはヒルベルト多項式を計算する方法があるが、今回は正規化定理について検討した。この報告は 2 つの部分に分かれ、第 1 節で準備、第 2 節で構成法を示す。

1. 準備

環 A の素イデアルの列

 $P_0 \supset P_1 \supset \ldots \supset P_r$

の長さは rであるという。Pを環 A の素イデアル、

$P \supset P_1 \supset P_2 \supset \ldots \supset P_r$

を Pから始まる素イデアルの列の最長のものとするとき、Pの高さは rであるといい、この高さを $\mathrm{ht}(P)$ と略記する。列の長さが無限大なら Pの高さは ∞ であるという。a を環 A のイデアルとするとき、

$\min_{P\supset a}\mathrm{ht}P$

 e^a の高さという。環 A の素イデアルの高さの最大値を A の次元といい、 $\dim(A)$ と表す。

以下の議論は永田"可換体論"に従う。

次の補題は、2 節の構成法で使われるので、証明をのせておく。 補題 kは体とし、 $f \in k[X_1,X_2,...,X_n]$ 、 $f \not\in k$ ならば、 $k[X_1,X_2,...,X_n]$ の元 $Y_1,Y_2,...,Y_n$ を次のようにとって $k[X_1,X_2,...,X_n]$ が $k[Y_1,Y_2,...,Y_n]$ 上整となるようにできる.

1.
$$Y_1 = f$$
, $Y_i = X_i + X_1^{m_i}$, $i = 2, ..., n$.

2. $Y_1 = f$, $Y_i = X_i + C_i X_1$, i = 2, ..., n ただし kが無限体のとき.

 $1. om_i$ は好みの整数の倍数にとることができる.

証明

1.

 \mathbf{t} を $\deg f$ より大きな整数とする. $\omega(X_1^{lpha_1}X_2^{lpha_2}\cdots X_n^{lpha_n})=\sum lpha_i t^{i-1}$ とおくと、辞書式順序で

$$(\alpha_n, \alpha_{n-1}, \dots, \alpha_1) \succ (\beta_n, \beta_{n-1}, \dots, \beta_1)$$

であることと,

$$\omega(X^{\alpha}) > \omega(X^{\beta})$$

であることとは、同値である. $f=\sum a_A X^A$ の項のうち辞書式順序で最大なものは唯一であるから、 $\omega(X^A)$ が最大になる項は唯一である. その項を

$$M = a_A X_1^{a_1} X_2^{a_2} \cdots X_n^{a_n}$$

とする. $m_i=t^{i-1}\ (i\geq 2)$ ととり, $Y_i=X_i+X_1^{m_i}\ (i\geq 2)$ とおく. Mを X_1,Y_2,\ldots,Y_n で表すと,

$$a_A X_1^{a_1} (Y_2 - X_1^{m_1})^{a_2} \cdots (Y_n - X_1^{m_n})^{a_n}$$

$$=X_1^{\omega(M)}+a_1(Y_2,\ldots,Y_n)X_1^{\omega(M)-1}+\ldots$$
となる. よって

$$f(X_1, X_2, \dots, X_n) = f(X_1, Y_2 - X_1^{m_1}, \dots, Y_n - X_1^{m_n})$$

= $X_1^{\omega(M)} + b_1(Y_2, \dots, Y_n) X_1^{\omega(n)-1} + \dots + b_{\omega(M)}(Y_2, \dots, Y_n)$

ここで,
$$Y_1 = f(X_1, X_2, \dots, X_n)$$
 とおくと,

$$X_1^{\omega(M)} + b_1(Y_2, \dots, Y_n) X_1^{\omega(M)-1} + \dots + b_{\omega(M)}(Y_2, \dots, Y_n) - Y_1 = 0$$

これは X_1 が $k[Y_1, Y_2, \dots, Y_n]$ 上整であることを示す.

 $X_i+X_1^{m_i}=Y_i$ より, X_i は $k[X_1,Y_1,\ldots,Y_n]$ 上整だから, $k[X_1,X_2,\ldots,X_n]$ は $k[Y_1,Y_2,\ldots,Y_n]$ 上整である.

2.

kが無限体であるとき、

$$f(c_1X_1, X_2 + c_2X_1, \dots, X_n + c_nX_1), c_i \in k$$

の X_1 の最高次の係数 $f(c_1,c_2,\ldots,c_n)$ が 0 でなければよい。 \square

定理 $a\subset k[X_1,X_2,\ldots,X_n]$ は高さ rのイデアルとすると、 $k[X_1,X_2,\ldots,X_n]$ の元 Y_1,Y_2,\ldots,Y_n で

- 1. $k[X_1, X_2, ..., X_n]$ は $k[Y_1, Y_2, ..., Y_n]$ 上整
- 2. $k[Y_1, Y_2, \dots, Y_n] \cap a = (Y_1, Y_2, \dots, Y_r)$
- 3. $Y_{r+1} = X_{r+1} + f_i(X_1, X_2, \dots, X_r), f_i \in \pi[X_1, X_2, \dots, X_r]$

となるものが存在する。ここに、 π は k の素体。

系
$$A = k[a_1, a_2, \ldots, a_n]$$
 とする。 $z_1, z_2, \ldots, z_t \in A$ で

- 1. A は $k[z_1, z_2, \ldots, z_t]$ 上整
- $2. z_1, z_2, \ldots, z_l$ は k上代数的独立

となるものが存在する。

2. 正規化の構成的な方法

 $k[x_1,x_2,\ldots,x_n]$ \supset (f_1,f_2,\ldots,f_m) なるイデアルが与えられたとする。 $t<\deg f_1$ なる整数をとり、 $m_i=t^{i-1}$ $(i\geq 2)$ とおく。 以下、無限体のときに限って議論をすすめることにする。 有限体の時も同様に議論を進めることができる。)

$$\begin{cases} u_1 = x_1 \\ u_2 = x_2 + c_1 x_1 \\ \dots \\ u_n = x_n + c_n x_1 \end{cases}$$

なる座標変換を行なう。 f_1 は

$$f_1 = cu_1^N + a_1(u_2, \dots, u_n)u_1^{N-1} + \dots + a_N(u_2, \dots, u_n)$$

の型になっていることを確認したのち、

$$y_1 = f_1, y_2 = u_2, \dots, y_n = u_n$$

とおく。

また、

$$f_i(u_1, u_2 - c_2 u_2, \dots, u_n - c_n u_n) \not \sim \tilde{f_i}(u_1, u_2, \dots, u_n)$$

とおく。

 $a=(ilde f_1, ilde f_2,\dots, ilde f_m)$ の辞書式順序によるグレブナ基底を $\{g_1,g_2,\dots,g_s\}$ とおく。

命題 $a \cap k[y_1, y_2, \dots, y_n] \ni h(y_1, y_2, \dots, y_n)$ で (y_1) に属さないものが存在するためには、 $\{g_1, g_2, \dots, g_s\}$ のうちに y_2, y_3, \dots, y_s の多項式であるものが存在することが必要十分である。

証明

 $h(y_2,\ldots,y_n) \in a \cap k[y_1,y_2,\ldots,y_n]$ が存在したとする。

$$y_1 = f_1(x_1, x_2, \dots, x_n) = f_1(u_1, u_2 - c_2u_1, \dots, u_n - c_nu_1) \in a$$

だから、

$$0 \neq h(0, y_2, \dots, y_n) \in a, h(0, y_2, \dots, y_n) \longrightarrow 0 \{g_1, \dots, g_s\}$$

ゆえ、 g_1,g_2,\ldots,g_s のうち、いくつかは y_2,\ldots,y_n の多項式。 逆はあきらか。 \Box

 $\{g_1,g_2,\ldots,g_s\}$ の番号をつけなおして、 g_1,\ldots,g_{s_1} は u_1 を含み、 g_{s_1+1},\ldots,g_r は u_1 を含まないとする。

$$a \bigcap k[y_2, \dots, y_s] = (g_{s_1+1}, \dots, g_s)$$

で、 $\{g_{s_1}+1,\ldots,g_s\}$ は $a\cap k[y_2,\ldots,y_n]$ のグレブナ基底である。次に

$$\begin{cases} v_2 = y_2 \\ v_3 = y_3 + \tilde{c}_3 y_2 \\ \dots \\ v_n = y_n + \tilde{c}_n y_2 \end{cases}$$

と座標変換を行う。

$$g_j(v_2, v_3 - \tilde{c}_3 v_2, \dots, v_n - \tilde{c}_n v_n) \not \sim \tilde{g}_j(v_2, \dots, v_n)$$

とおき、あらためて、 $y_i=v_i,\ i=3,\ldots,n$ とおく。また、 $y_2=g_{s_1+1}(v_2,v_3-\tilde{c}_2v_2,\ldots,v_n-\tilde{c}_nv_n)$ とおく。

 $(ilde{g}_{s_1+1},\ldots, ilde{g}_n)$ のグレブナ基底を $\{h_1,h_2,\ldots,h_t\}$ とおく。

前の命題と同様に、

$$a \cap k[y_1, y_2, y_3, \dots, y_n] \ni g(y_1, y_2, \dots, y_m)$$

で、 (y_1,y_2) に属さないものが存在することと、 h_1,\ldots,h_t の中に y_3,\ldots,y_n の多項式が存在することとが同値である。

このような gがなければ、ここで終了、有れば同様の繰り返しを行ない。終了した時点で

$$a \bigcap k[y_1, y_2, \dots, y_n] = (y_1, \dots, y_r)$$

となる。