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1. Introduction

This paper investigates the computation of quotient of two multivariate polynomials
by neglecting higher degree terms of didident and divisor. If a multivariate polynomial
is exactly divisible by another then the power-series division allows us to calculate the
quotient, and in the power-series division we can neglect the unnecessary higher degree
terms. However, so long as the authors know, no literature tells us which terms are
unnecessary when the divident and divisor are multivariate polynomials. So, in the first
half of this paper, we clarify it.

If the ”size” of quotient is much smaller than the sizes of divident and divisor, the
power-series method with the higher degree terms discarded will be more efficient than
the conventional division method. In order to see how the power-series division method

is useful in practical calculations, we test this method in the fraction-free Gaussian elim-
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ination algorithm in the second half of this paper.

2. Multivariate power-series division

Number of terms of two exactly divisible polynomials that are essential for the power
series division (significant terms) is different when the division is done with respect to
the total degree and when it is done recursively with respect to individual variables. In
the second case it may depend on the order of the variables. The first case is treated in
Lemma 2 of Ref. 1. The case of the recursive division will be discussed here.
Definitionl
Let deg(P,u) be the highest power of the variable u occurring in the polynomial P.

Let 1p(P,u) be the lowest power of the variable u occurring in the polynomial P.

Let lc(P, u) be the coefficient of the lowest power of the variable u occurring in P. o
Example: P = z3y%2? 4 2zy?2? + 23 + 22. Then deg(P,z) = 3, Ip(P,2) = 2, lc(P,z) =
3y* + 2zy® + 1, Ip(le(P, 2),z) = 0, etc. ©

Theorem1 Let A and B be polynomials in n variables ug, uy, ..., un—1. Let A be exactly
divisible by B. Let the power series division A/B be done recursively in the above order
of variables (GAL: ORDER ug, uy, ..., Us-1). Let By = B and B; =lc¢(Bi_1,ui-1);
i =1,...,n—1 (B; is a polynomial in u;, ..., un—1). Then to calculate the ratio C = A/B
by means of the recursive power-series division, it is sufficient to know only those terms

T of A and B for which
deg(T7 ui) < deg(A, ui) - deg(B7 ui) + lp(Bia ui) , C=0,...,n—-1 (1)
In other words, in GAL one can introduce the following declarations:

DECL POWSER : u; <= deg(A, u;) — deg(B, u;) + Ip(Bi, us) (2)
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Proof: Let us write

N2 M2 N2—M2
A=Y a,u}, B= Y byuy, C= > cx uf .
n=N; m=M, k=N —-M;
Here ay, b, and ¢ are polynomials in uy, ..., un—;. Obviously,
I
WNrtr = 3 a4 ONy M
]:
CNi—My+x = ’ K'=0""aA) (3)

ba,

where J. = min(k,M; — M;) and A = N; — My — (N; — M;). To determine all the
A + 1 coefficients ¢, the knowledge of an,, an 41, - -+ ANy—M+M; and bagy, bag 41, - - o
baf 4+min (a,M; M) is sufficient according to Eq. (3). All other terms of A and B can
be truncated. Therefore, the maximum power of ug that must be kept in A and B is
myg = Ny — My + M; and mg = M; + min (A, My — M), respectively. It is easy to check
that always max(ma,mg) = ma. Therefore, it is sufficient to truncate in A and B all

terms with the power of ug larger than

ma = deg(A) uO) - deg(B3 uO) + lp(Ba uO) . (4)

Using this common truncation cutoff for both A and B may mean that we keep some
redundant terms in B but it is not feasible to have separate truncation cutoffs for A and
B in a computer algebra system. Thus we have proved Eq. (1) for the leading variable
Uo. |

To prove it for all other variables, we will follow the recursive division. Equation (3)
represents again polynomial division, this time with leading variable u,. Let us call the
divisions in Eq. (3) the 1st level divisions while the original division C = A/B is the Oth
level division. Generally, during the (:+1)th level division with the leading variable u;41,

one calculates certain coefficients 7.y, ..e; that contribute to C in the following way:

e €
C = Yepey e (Wit1y Uity « - oy Un—1) UQUT -+ - U + -+ - (5)
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Coefficients v are obtained by divisions similar to that in Eq. (3):

a\u; U; oo g Up—
')’6061-"6.‘(ui+1’ui+2a RS un—l) = ( 2 ;‘2,1 — 1) ’ (6)
i+

In Eq. (6), the leading variable is u;4+1, & plays the same role as A in the 0th level division,
B; 11 plays the role of B = By, and 7eye,...; that of C. Therefore, we can apply the result
of Eq. (4), which means that in Eq. (6) one can truncate all terms of a and B;;; with the
power of u;y; larger than

Meger-e; = deg(a, uip1) — deg(Biy1, tis1) + Ip(Big1, uig1) (7)

From Eq. (6) we have

deg(a, uit1) — deg(Biy1, Uir1) = deg(Veoeyeis Uit1) - (8)

From Eq. (5) we have
deg(Yegey -eis it1) < deg(C,uipr) - 9)
Obviously,
deg(C, uiz1) = deg(A, uiy1) — deg(B, uit1) - (10)

Combining Egs. (7-10) gives

Megey--e; < deg(A’ ui+l) - deg(Ba ui+l) + 1p(B,i+17 ui+1) . (11)

To obtain correct results for all (i+1)th level divisions, we have to make the cutoff at the
maximum of all m,e,...; which is just the right-hand side of Eq. (11) because the equality
in Eq. (9) must hold for at least one combination of exponents ege; - - - €;. This completes

the proof. o

3. Application to Determinant Calculation

Let M be the following N X N matrix
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( Miy My -+ My )
Myy Mz --- Maon
M=
\ My: My, -+ Myn )
We will calculate the determinant D = |M| by the fraction-free Gaussian elimination

method. For k=2,---,N—1and k<1, <N, let

M1,1 cee Ml,k—l MI,J'
D, )M =
Mk—l,l cee Mk—l,k—l Mk—l,j
Mg, -+ M, M;;

Then, in the fraction-free Gaussian elimination algorithm applied for calculating the de-

terminant D, one uses the following recursion formula:
D(i, ) = (D(k, ™D, 5)® ~ D(i, )W D(k, 5)®) /D(k—1, k=1)*.

This is a situation when we know in advance that two polynomials are exactly divisible.
In addition to that, the numerator is being calculated just before the division. Therefore,
in GAL one can declare the truncation rules (2) according to Theorem 1, which will result
in automatic truncation of all insignificant terms during the calculation of the numerator
and automatic use of the power series division. This should substantially decrease, at least
for some types of matrices, the intermediate expression swelling, and as a consequence
also decrease the execution time. In this section we compare the CPU times necessary for
the calculation of the determinants of various matrices without and with the use of the
truncation.

Procedure DETG uses the plain fraction-free Gaussian elimination algorithm without

any truncation. DETG1 and DETGIE are two variations of the same algorithm that
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implements the declarations of Eq. (2) for all variables occurring in the matrix. They
differ only in how deg(D(i,;)®*),w;) is calculated. DETG1 uses the procedure VDEG()
separately for each u;. DETGIE calculates the degrees with respect to all variables
simultaneously using the procedure EMAXMIN(). The upper bound of the degree of the

numerator to be used in Eq. (2) is then
max (deg(D(k, k)®), w) + deg(M(i, )™, u;), deg(D(i, k)P, us) + deg(D(k,5)®,w)) .

As will be seen below, DETGIE gives shorter execution times than DETG1 when the
number of variables occurring in the matrix is large (at least 7 or 8). Finally DETG2

introduces an auxiliary total degree variable T' by means of the substitution
U; = Uy T ’

T is made the leading variable of the Oth level division and the truncation is done with

respect to T only.

Execution times in milliseconds for various types of matrices are in the following tables:

Table I. Matrices from the file MATRX1.DATA: “Random” matrices with relatively large
differences in the number of variables occurring in individual matrix elements and in their
complexity. NV is the order of the matrix and n is the total number of variables occurring

in all matrix elements.

N |n|DETG | DETG1 | DETGLIE | DETG?2

315 170 197 218 234
46| 2289| 2085 2081 3295
56| 13952 | 11981 12408 43403
66| 11377 9714 10056 25701

7 15| 42066 42141 43180 | store jam
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Table II. Matrices from the file M2.DATA: “Special” matrices: M;; is given by a long
expression containing all 8 variables while all other elements contain at most one variable

of power 1 with the exception of a single element equal to the square of a variable. N

and n are as in Table 1.

N|n| DETG|DETG1|DETGLE | DETG2
6 |8 16620 8490 8242 6233
7 | 8 | store jam 19527 19208 14424

Table III. Matrices from the file M3.DATA: “Regular” matrices given by the formula

M;j==z;z;+ (1 +2%)6;; . N and n are as in Table 1.

Nin DETG | DETG1 | DETG1E | DETG?2
313 16 44 54 32
4|4 57 147 179 81
515 190 422 484 209
6|6 611 1075 117 559
T 1937 2553 2563 1546
818 6266 5739 5537 4708
919 21036 13107 12304 15808
10 | 10 72692 30665 28286 | store jam
11 | 11 | store jam 74586 68817 | store jam

Table IV. Modified matrices from the file M3.DATA: “Regular” matrices given by the
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formula M;; = z;z; + 6;; . N and n are as in Table L.

N | n |DETG | DETG1 | DETGLE | DETG2
T17 221 1232 1274 294
818 364 2136 2143 437
919 379 3577 3498 636

10 (10 851 5527 5410 881

11111 1226 8392 8052 1223
12 | 12 1763 12264 11558 1625
13 |13 1859 15219 13965 1830
14 {14 3106 23208 21746 2612
15|15 4136 31554 28979 3224

Generating the truncation rules (2) represents some overhead processing that can in
cases when few truncations occur cancel or even exceed the gains obtained by truncation.
It seems that for general matrices such as those of Table I, the efficiency of procedures
DETG1 or DETGIE is better or at least comparable with that of DETG. In some special
cases, DETG2 can be even more efficient than DETG1/DETGIE, but on the other hand
it can fail in some cases when DETG1 /DETGIE is rather efficient. Although more
calculations are needed to devise a general strategy, on the basis of our preliminary results
it seems that one could proceed as follow: use DETG for matrices of small order and with
simple expressions with very few variables for all elements. Use DETG1 in other cases
when the number of variables is less than 8, otherwise use DETG1E. If DETG1/DETGI1E
fails try DETG2. If determinants of a large number of matrices of the same class are to
be calculated, try all the above procedures on a representative sample of the matrices and

chose the one with the best results.
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The matrices of Table IV represent a rather degenerate case. Although they differ
only in the value of a coefficient in their diagonal elements from the matrices of Table
II1, the resulting determinants differ considerably. The diagonal elements of the matrices
of Table III are equal to 1 + 2z? while those of the matrices of Table IV are equal to
1 + z?. The determinants of the first class of matrices are given by expressions several
pages long, while the determinants of the matrices of Table IV are equal to the simple
expression 1 + iijl z?. Moreover the off-diagonal elements of these matrices do not change

at all during the Gaussian elimination. The diagonal elements at the end of the Gaussian

k

elimination process are My; = 1 + Y z?. Because the elements remain so simple during
i=1

the whole process, there is almost no truncation. That explains the times of Table IV.

4. Conclusion

Tables I, III and IV show that the power-series division method is not useful for the
fraction-free Gaussian algorithm. In the case of determinant calculation, on an average,
the quotient is a larger-sezed polynomial than the divisor. We think this is the reason
why the power-series division is not useful in our test. If the divisor is a much larger
polynomial than the quqtient, we will obtain a much better result, as the result in Table
II shows. Therefore, when we use the power-series division method, we must select the
problems carefully. In fact, we already know that, in the case of GCD calculation, the

method is very useful as ref. 1 shows.
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