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Periodic solutions of a singular Hamiltonian system of 2-body type
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0. Introduction and results

In this short note, we study the existence of periodic solutions of a Hamiltonian system
¢ +VV(q,t) =0, (HS)

where ¢ = (q1,-++,qn) € RY (N >3) and V(q,t) : RY x R — R is a given potential. We
deal with the case where a potential has a singularity and is related to 2-body problem.
More precisely, we assume V(gq,t) satisfies
(V1) V(g,t) € C*((RN \{0}) x R, R) is T-periodic in ¢;
(V2) V(g,t) <0 and V(q,t), VV(q,t) — 0 as | ¢ |— oo uniformly in ¢;
(V3) V(q,t) is of a form:

V(q3 t) = -

' q la + W(q’ t)7

where a > 0 and W(q,t) € C*((RM \{0}) x R, R) satisfies
| g |* W(g,2), | ¢ |*T VW(q,1), | ¢ |°** V*W(q,1),
| ¢ |* Wi(g,t) =0 as ¢ — 0 uniformly in .

We consider the following two problems:

(i) Prescribed Period Problem (PP): For a given T > 0, we study the existence of T-
periodic solutions of (HS), i.e., solutions of (HS) such that

gt +T) = q(t) for all . (HS.P)

(ii) Prescribed Energy Problem (PE): Assume V is independent of ¢. For a given H € R,
we study the existence of periodic solutions of (HS) such that

% 14(t) P +V(g(t)) =H  for all ¢. (HS.E)

(Here we do not fix the period of ¢(t).)

We study via variational methods these problems. Recently it is observed that the
order « of the singularity of V(g,t) at ¢ = 0 plays an important role for the existence of
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periodic solutions for both of problems. We consider the following cases separately; (i) the
strong force case a > 2 for (PP) and a > 2 for (PE) (ii) the weak force case a € (0,2).

For the Prescribed Period problem (PP), we use the following variational formulation.
Let E = {q € H}, (R,R"); ¢(t) is T-periodic in t } is a space of T-periodic functions with
norm lgll% = fy [| 4(t) > + | ¢(#) ?) dt and set

A={q€E;q(t)#0forallt}.
We define the functional I(¢): A — R by

T [ ]
I(q) = /0 [%lq 2 —V(q(t),t)] dt.

Then there is one-to-one correspondence between critical points ¢ € A of I(¢q) and T-
periodic solutions of (HS), (HS.P). Therefore we try to find critical points of I(g).
If (V1)—-(V3) holds and a > 2, more generally, under the conditions of (V2)—(V3) and

(V1’) V(q,t) € CY((RM \{0}) x R,R) is T-periodic in ¢
and the following strong force condition (SF) of Gordon [Go):

(SF) there is a neighborhood £ of 0 and U(g) € C'(2\ {0}, R) such that

U(g) — oo, q— 0,
“V(g,t) 2| VU(q) |2  forallge Q\ {0} and ¢,

we can see the functional I(q) satisfies the Palais-Smale condition and we can apply min-
imax methods to obtain critical points of I(q). We refer to [BR, Gr, AC1]. Our main
purpose is to study the weak force case a € (0,2). We remark that the Palais-Smale
condition does not hold in this case. Our result is as follows:

Theorem 0.1 ([T2]). Suppose (V1)-(V3) and a € (1,2). Then the prescribed period
problem (HS), (HS.P) possesses at least one periodic solution.

For the Prescribed energy problem (PE), we can expect the existence of periodic
solutions only under the situations

i) H>0ifa> 2, 0r

(i) H < 0if a €(0,2). _
Actually, if V(¢) = ——ITll—;, we can easily see that periodic solutions of (HS), (HS.E) exist

if and only if (i) or (ii) holds. In the strong force case a > 2, the Palais-Smale condition
holds under additional assumptions and we refer to Ambrosetti and Coti Zelati [AC2] for
the existence result. We study the case a € (0,2). Here we assume
(V4) there is @ € (0, o] such that
VV(g)g > —aV(g) forall g € RV \{0}
in addition to (V1)-(V3).
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Theorem 0.2 ([T3]). Suppose V is independent of t, H < 0 and (V1)-(V4). Moreover
assume o € (1,2) if N > 4 and « € (4/3,2) if N = 3. Then the prescribed energy problem
(HS), (HS.E) possesses at least one periodic solution.

We remark that in case of weak force the existence of generalized solutions, which may
enter the singularity 0, is obtained by [BR] for the prescribed period problem (PP) and
by [AC2] for the prescribed energy problem (PE). We also remark the result very closely
related to Theorem 0.1 is obtained by Coti Zelati and Serra [CS] independently.

In what follows, we sketch outline of the proof of Theorem 0.1. The proof of Theorem
0.2 is done essentially in a same way (but more complicated) to Theorem 0.1 and we refer
to [T3].

1. Perturbed functionals

We take the following approach, which is used by [BR] first time.
1° First we introduce a perturbed potential V(¢,t) = V(q,t)— T?fl’ The correspond-
ing functional

T
Lo = [ Glaf Vaaa

—/T[ll 2 —V(g,t) + ——]dt
o 2 1 “ | g |?

satisfies a variant of the Palais-Smale condition and we can apply a minimax
method of [BR] to get approximate solution ¢.(t) for each e € (0, 1].
2° Second we try to pass to the limit as ¢ — 0 and we try to obtain a solution as a
limit of ¢.(¢)
More precisely, we use the following minimax method; we set

I = {y € C(S"~?,A); deg¥ # 0} (1.1)
where 7 : S x SVN-2 ~ ([0, T]/{0, T}) x V-2 — SN-1 i5 defined by

_ @)
(@)@ ]

and deg? denote the Brower degree of 5. We define

()

b = inf ] : :
inf max, I(7(z)) (1.2)

Then we have
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Proposition 1.1 ([BR]). For any € € (0,1], b is a critical value of I.(q). That is, there
is a critical point ¢.(t) of I.(q) such that I.(q.) = b.. Moreover, there are constants M,
m > 0 independent of € € (0,1] such that

m<b <M forall e € (0,1]. (1.3)

Using the uniform estimate (1.3), we can get

Proposition 1.2 ([BR]). There is a constant C > 0 independent of € € (0, 1] such that
llgelle < C forall e € (0,1]. ]

Therefore we can choose a subsequence — still we denote by ¢ — 0 — such that
ge — qo € E weakly in E and strongly in L. If go(t) # 0 for all ¢, in other words, if
go € A, we can easily see ¢o(¢) is a periodic solution of (HS), (HS.P). The difficulty is to
prove ¢o € A.

Even if g € A, we can see

(i) Set D = {¢; go(t) = 0}. Then meas D = 0;

(ii) go(t) € C2(R\D,RM)NC(R,R");

(iii) go(t) satisfies (HS) in R\D.

Bahri and Rabinowitz [BR] called such a limit function go(t) generalized solution of (HS),
(HS.P). They constructed generalized solutions under the conditions (V1’), (V2) and
(V3) V(g,t) = —o0 as ¢ — 0 uniformly in ¢.

To prove go(t) does not enter the singularity 0, we use a combination of a re-scaling

argument and an estimate of Morse indices.

2. Re-scaling argument

Suppose ¢o(t) enters the singularity 0 at to € (0,7, i.e., go(to) = 0. Then there is a
sequence t¢ € (0,T] such that
1° te — to;
2° | g(t) | takes its local minimum at t..
Case 1: First we study the behavior of ¢.(¢) near the singularity 0 more precisely via a
re-scaling argument. We set

b =| QE(te) l,
z(8) = 671 q (810D 25 1 t,).
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Then z.(s) satisfies | z(0) |= 1 and

' QX

2¢  «zx.
T +—-| 7. [oF2

+ 8XTIVW (S.zc(s), 601D/ 25 4 1) + T 0.
We study the behavior of z.(s) instead of g(t).
After taking a suitable subsequence — still we denote by e —, we may assume that

d=lim —— € [0, 0] | (2.1)

2—a
€

exists. We consider the following two cases separately.
Case 1: d < o0;
Case 2: d = oo.

Case 1: First we deal with Case 1.

Proposition 2.1. Suppose d < co. After taking a subsequence — still denoted by ¢ —,
z(s) converges to a function yq, 4(s) in C (R, RY), where yq,4(s) is the solution of

oo ay 2dy

Y+ + =0, in R,
ly >+t " |y |* |
y(0) = e1, (2.2)
9(0) = \/2(1 + d)es.
Here, €1, €2, -+, eN € RN are vectors satisfying e; - €; = §;;. |

Case 2: In this case, we introduce another re-scaled function
2e(8) = 67 qe (712825 + t.).

Then z.(s) satisfies

1 aéf“"‘ Ze aéf“’

22
Z

ST IVW (82, e 126%s + 1) + A 0.

We have

Proposition 2.2. Suppose d = 0. Then, after taking a subsequence — still denoted by
€ —, we have

2e(s) — 20(s) = e; cos V2s + e1sinv2s in C;"oc(R, RN).
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Here, €1, €2, -+ -, ey € RY are vectors satisfying e; - ej = §;;. |
We remark 2y(s) is a solution of

.Z.+ 2z
|z [*

2(0) = ey,
2(0) = V/2e,.

=0, in R,

3. Estimates of Morse index
Using the propositions 2.1 and 2.2, we have the following estimate of Morse indices.

Proposition 3.1. Suppose ¢y(t) enters the singularity 0 and set

v = #{t € (0,t]; go(t) = 0}.

Theﬁ
limiglf index I’ (g.) > (N — 2)i(a)v (3.1)
where 9
i(a) =max{k € N; k < m} |

Before we sketch the proof of Proposition 3.1, we give a proof of Theorem 0.1.

Proof of Theorem 0.1. First we remark that the following estimate of Morse index
follows from the minimax characterization (1.1)-(1.2) of b,.

Proposition 3.2 (c.f.[BL, LS, T1]). ¢.(t) € A satisfies

indexI'(¢gc) <N -2  foralle € (0,1]. (3.2)

Comparing (3.1) and (3.2), we have
i(a)y <1 (3.3)
Since i(a) > 2 for a € (1,2) and i(a) =1 for a € (0,1}, we find

v=0, if a € (1,2),
v<1, if o € (0, 1].
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Therefore in case a € (1,2), we obtain go(t) # 0 for all ¢ and it is a classical solution. |

Sketch of the proof of Proposition 3.1. Suppose go(to) = 0 and choose ¢. € (0,T] as
above. We deal with only the Case 1: d < 00. The Case 2: d = 0 can be treated similarly.
For L >0, p(s) € H}(-L,L;R) and j = 1,2,---, N, we set

he,;(t) = 5699(5:(a+2)/2(t —te))e;j.
After the change of variable, we take a limit as e — 0 and obtain
5:(2—0)/2Ié,(qe)(he,jvhf,j) :

Llien alel?  al@+2)(yade;)? | ?
- [1#]* - ) pw)
L | Ya,a | | Ya,a |
2d |02 8d(yad.e:)? |0
_2dlel | 8 ,d,eg)ﬁlwl]ds_
| Ya,d | | Ya,a |

Recalling y4 4(s) € span{e;, e} for all s, we can see

limiglf index I (¢¢) > (N — 2)i(a,d) (3.4)

where
the number of negative eigenvalues

of the following eigenvalue problem:

7:(05 d) = Sup oo « 2d
L>0 i + p =0,
a7 T Tvaa

p(L) = (-L) =0.
We repeat the above argument at all other ¢; € (0,T] such that go(¢y) = 0 and we find

limigxfindex I'(ge) > (N - 2)i(a)v

where
i(a) = rglzi{]li(a,d).
Now Proposition 3.1 follows from the following proposition. |
Proposition 3.3.
i(a,d) =max{k € N; k < 2ﬁ}. (3.5)

Thus i(a) = max{k € N; k < 72-}.

Proof. The case d = 0 is proved in [T2]. The case d > 0 is proved similarly. The key of
the proof is the Sturm comparison theorem and the following property of y, 4(s). We use
the polar coordinate and write

Ya,d(s) = r(s)(e1 cos 8(s) + ez sinb(s))
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where r(s) > 0 and 6(s) € R with §(0) = 0. Then we have
(1) s r(s) > 0 for all s # 0 and r(s) — 0o and s — +00;

(ii) 0(3) > 0 for all s;

(iii) 6(s) — -2—7r—j1£—d as s — £00.

4. Remarks

In case a € (0, 1], it seems that the existence of classical periodic solutions is not known.
However by (3.3) we can see there is a generalized solution of (HS), (HS.P) that enters at
most one time in its period. By (3.4) and (3.5), we also have

d<(2-a)? -1 @)

where d is defined in (2.1).

We get the following additional information under slightly stronger conditions: (V1),
(V2) and

(V3”) V(g,t) is of a form:

1
Vig,t) = I + W(q,1t),

where a > 0 and W(q,t) € C*((RY \{0}) x R, R) satisfies

| 1977 W(g,0), | ¢ [*77+ VW (g,8), | ¢ |*77*2 V2W (g, 1),
| ¢ |“=° Wi(q,t) = 0 as ¢ — 0 uniformly in ¢

for some p € (0, a).
We assume ¢o(%) is a generalized solution such that go(tg) = 0. Beaulieu [B] proved that
the limits )
= T <5
exist. We have

Theorem 4.1 ([T4]). Assume (V1), (V2), (V3”) and let ¢.(t) be a critical point of I.(q)
which is obtained through a minimax method (1.1)-(1.2). Suppose qo(t) = lim_¢ g¢(t) is
a generalized solution such that go({) = 0 and let ax = lim;_4 10 Tg_g%f € SN-1. Then we

have
the angle between a4+ and a_ = gg—- '1:(1 modulo 27
where d € [0,(2 — a)? — 1] is defined in (2.1). |

In particular, in case « =1 we have d =0 and ay = a_.
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