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BLOWING UP IN THE CATEGORY OF FORMAL COMPLEX SPACES

E@ABEI R FM

(Shuzo Izumi, Kinki Univ.)

Introduction

This is an introductory note on blowings up of ideals on
formal cémplex spaces. They share many properties with blowings
up of ideals on complex spaces. Hence they may be known or
expected. But analogy often misleads us in formal geometry. So I
think it necessary to certify them before use. (I am preparing a
paper on convergence of formal morphisms.)

There are two main inconveniences in formal geometry in
comparison with analytic geometry. First, the underlying
topological space carries little information. Second, wé can not
use the WeierstraB preparation theorem freely. Consequently we
must replace some geometric arguments in analytic geometry by
more algebraic onés and sometimes we are forced to treat local
rings vthrough their "full completions”. Nevertheless our
arguments are also effective in analytic geometry, because
complex spaces form a subcategory of the category of formal
complex spaces. (So this note will serve as a consistent
introducton to the theory of blowing up in complex analytic

geometry also.) The firm foundation was already 1laid by
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Bingener. When we treat dimension (§4 and §5), we rely upon many
results from algebra: theories of Pfaffian forms on local
algebras, formally equidimensional rings (=quasi-unmixed
rings), excellent rings etc.

Let 'us list some basic definitions and notations about formal
complex épaces. Let X= (|X|, Ox) be a local CG-ringed space and
SC |X| a subset. (See [GR,],[H],[Moj for ringed spaces.) Let
I; C O denote the ideal sheaf defined by the following:

Is(U)= {f€ G (U): f,. € m, forv any £ € SN U}
(m;: the maximal ideal of O :). Then X is a formal complex
space if the following‘ conditions are satisfied (Kraénov»[K]).
(1) For any ne N, X,= (|X],0/I,x,") is a complex space;

(2) The canonical homomorphism Oc—> Lim O/ I ;x| " is an

isomorphism.

(By the embedding theorem ([B;], (1.7) of formal analytic spaces,
we can paraphrase this in a constructive way (see [AT], p.5,
P-6), which may be familiar to analytic geometers.) A morphism
between formal complex spaces is a morphism in the category of
local G-ringed spéces. We abbreviate complex space (resp. formal
complex space) ‘to CS (resp. FCS). The category of CSs (resp.
FCSs) is expressed as GS (resp. FCS). Thus ¢ € CS:X—> Y (resp.
@ EVF@S:X——> ¥) implies a morphism between CSs (resp. FCSs).

The structure sheaf Oy of X€ FGCS is known to be coherent over

itself ([B;], (1.4)). Hence many argument in G6§ can be
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transferred to FGS. By subspace of an FCS (or a»CS) we mean a
closed subspace defined by a coherent ideal sheaf unless it is
specified otherwise. An ideal sheaf IC O is an ideal of
definition if it is coherent and, for any £ € |X|, there exist
its neighborhood U and ke N such that I,x,*C IC I,x, on U. I,x,
is an ideal of definition. An ideal sheaf on an FCS X |is
analytic if it is coherent and includes an ideal of definition
of X. Then a subset SC |X| is analytic in the complex space X,
(of (1) above) if and only if Is is analytic. A morphism
Ph € FCS:X—> Y is adic if an (every) ideal of definition of ¥
generates an ideal of definition of X. Hence & is édic if and
only if the inverse image ideal sheaves of all (some) analytic
ideal sheaves are analytic. The inclusion morphism of a subspace
(or an'open subspace) is adic.

Let SC |X| be an analytic subset of an FCS. Then ¥X,s= (S, O« s)

with ©O¢,s=lim O/I,* is an FCS. We call X,;s the (formal)

completion of X along S. Let SC|X| and TC |Y| be analytic
subsets of FCSs and suppose that ¢ € FCS:X—> ¥ satisfy
| & | (S)C T. Then % induces a morphism P = ’5 s: 1 € FCS:
Xys—> ¥,:, which we call the completion of ® . Completion of an
FCS and that of a morphism in ¥FCS are compatible with

~restriction to open subsets. If ¥ € FCS:Y—> 7 s.t. | w | ('I‘)>C R,
we have W . g B 5.1 =(W +® )s.xr.

We call a local G-algebra a formal analytic algebra if it is
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isomorphic to a stalk algebra Oz, ; at a point of an FCS. A germ
at a point of an FCS (or CS) 1is called integral if its local
ring is integral i.e. reduced and irreducible. For ¢ €8S, we

have the homomorphisms

—

O, ¢ boslxy Dxls.eTL“L’ O, = p, ¢
corresponding to the completions Is.,x, and 1.5 of the identitf
I. These homomorphisms are faithfully flat (cf. [Matl,§7,§8).
Hence they are injective and can be considered as inclusions:
Ox, eCOxs. :C O, . Sincé X, 1x1 is canonically isomorphic to X,
GS is a full subcategory of FGCS.

Let & ,:X,.— Y, (n =& (£)) denote the germ of morphism
P €eFCS at & . Then the canonical homomorphism ("composition
with ® ") between the 1local rings by the corresponding small
Greek letter as o (:0¢. ,—> O, . If F is a sheaf on Xe F@S
(with some algebraic structure), F(A) denotes the set of
sections of F over a subset A€ |X| (with the corresponding
structure). If |X| is Hausdorff, A has a foundamental system of

paracompact neighborhoods of A and F(A)=1lip F(U) where U runs

over such a system (cf.([(Gol, I, 3.3).

This is a rearrangementt o f the basic part of my speechs at
sympos lums held in Nagoya Unlv. (Dec. 1991), RIMS Kyvyoto Univ. (June

1992) and Nagano Nat. College of Tech. (Aug. 1992).
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1. Curve selection lemma

We call an element f of a local ring A active if f mod N, is a
nonzerodivisor of A,.a=A/N., where N.={0 denotes the
nilradical of A. A product of active elements is active. A ring
of finite Krull dimension is equidimensional if dim A/p==dim A
for any minimal prime ideal p of A. Let I be an ideal of an
équidimensional local ring A. Then I contains an active element
if and only if dim A/I<dim A. (Reduce to the case A is
integral.5 We call a subspace Y of an FCS X thin at & (or Y, is
thin) if the ideal Iy, .C Ox.: of Y. contains an active element.
The points where Y is not thin form an analytic subsét. (We may
assume that X is reduced. Apply the coherence [GR,], (A.4.5) of
the annihilator ideal sheaf of the ideal sheaf that defines Y.)
Note that the underlying topological space of a thin subspace of
an FCS is not always topologically thin: The reduced one point
({0},€) is a thin subspace of G, ,= ({0},c¢ltl) but their share

the same underlying topological space{

1.1. Lemma. Let A and B be equidimensional local rings and

¢ :A—> B a finite injective homomorphism. Then, f€ B is active

if and only if ¢ ~ ' (fB) includes an active element.

Proof. Since ¢ is finite and injective, dim A=dim B by
Cohen—-Seidenberg theorem. The induced homomorphism

A/ "' (£B)—> B/fB is also finite and injective. Hence
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dim A/¢ ! (£fB) =dim B/fB. Thus dim B/fB<dim B if and only if
dim A/¢ "' (fB) <dim A. Since A- and B are equidimensional, this

completes the proof. 1|

When we treat an FCS X, we have no point outside the core |X]|.
Hence we need‘some antennae to feel outside. For this purpose we
choose formal curves on X. A formal curve on X (expressed as
K CX) is simply a morphism K € FCS:C (o) = ({0},C[t]l)—> X. This
is determined by the initial point § €S and the induced
C-homomorphism & :0«, . —> C[t]. Note that we do not assume that
K is adic (in contrast to many papers that deal with
formal modifications). Hence the image of X does not always

bear a structure of a subspace of X.

1.2. Lemma. (Curve selection lemma.) Let Y be a subspace of an
FCS X which is thin at & € |X|, there exists a formal curve

K CX with initial point & such that K ¢ Y.

Proof. We may assume that X is irreducible at' £ . Let
X=%X,:= ({£ },0«, :) be the full completion of X at & . Every
formal curve on X naturally yields one on X. Since 0x,  is flat
over O :, the image of an active element is also active. This
means that the inverse image of Y in X is also thin. Then we
have only to work with X instead of ¥X. Thus we may assume that

A= O¢, . is integral and fully formal i.e. A is an integral
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residue class algebra of F,=C[x;,...,X,]. It is well-known that
there exists a finitev injective homomorphism A :F,—> A
(r=dim A=< n). Let I,CA be the ideal of Y. By (1.1), A ~ ! (Iy)
includes an active element and defines a thin subspace HC C",,.
There exists a formal curve I' C€", oy which is included neither
’in ¥ nor in the discriminant locus of +the projection A
corresponding to A (an easy case of the lemma). Replacing the
parameter of I by its radical *{t if necessary, we have a

lifting KCX of I' (cf. [Tol, (1.6)). I’ ¢ implies K ¢ ¥. &
This lemma Yyields a variant of Rickert Nullsteliensatz in
analytic geometry (cf.([Mo], (I.5.3.1)). (We do not use (1.3)

later.)

1.3. Theorem. (Nullstellensatz.) Let X be an FCS CC|X| a

compact set and YC X a subspace thin at all point of C. Then
fe€ O (C) is nilpotent, if and only if g (£f)=0 for any formal

curve K C X with the initial point in C such that K ¢ Y.

Proof. We have only to prove the case C= {£ } (one point). Since
nilpotent elements in C[t]l] are zero, the necessity is obvious.
Suppose that f is not nilpotent. Then f is active on some
irreducible component 7%, of the'reduction of X,. Let Z be a
representative of 7%, in a small neighborhood U. We may assume

that £ has a representative f~ in U. Then the subspace WCU
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defined by £~ is thin at £. YUW is also thin in % and there
exists a formal curve KC 7zZCX such that K YUW by (1.2).

Hence &x (f)+ 0 and K¢ Y. This proves the sufficiency. |

2. Minimality condition

The exceptional space of a blowing vﬁp of a CS satisfies the
minimality condition as observed by Hironaka ([H,]1, p. 127,
[H; 1, (2.7)). Minimality of YC Xe€ CS is the following.

(x) If Z is a subspace of X that coincides with X outside |Y],

then Z=X.

This is a neat expressioﬁ but in formal case this does not suit
our purpose. Indeed, if |X|=]Y| (*) means nothing. Thus we
adopt the following paraphrases (using the idea of gapksheaves

of Thimm, cf.[T], [ST])

2.1. Proposition. Let Y be a subspace of Xe GS defined by

coherent ideal sheaf I. The condition (x) is equivalent to each
of the following:
(xx) If JC O« is a coherent ideal sheaf such that I*J=0 for
some KEN locally, then J==0.
(xxx) If JC Ok is a coherent ideal sheaf such that I*N J=0

for some K€ N locally, then J=0.

Proof. Suppose (xx) and that Z coincides with X outside |Y|. If
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JC Ox denotes the ideal sheaf of Z, it is obvious that J=0 on
| Y. Then, if we apply the version of the Rickert
Nullstellensatz py Grauert-Remmert (IGR;], (3.2.2)) to local
sections which generate I, we see that I*J=0 for sufficiently
large KkK&EN locally. Hence J==0 by (xx) and (x) holds. (x)
trivially implies (xx).

Since the ring of sections O,(S) is Noetherian for any
semianalytic Stein compact set S by the theorem of Frisch,
Grothendieck and Siu, we have the Artin-Rees equality
I*** J=I15(1"N J) for some PEN for any ke N locally
(cf. [Mat], (8.5)). Hence I***JC I***N JC I*J (k€& N) holds locally

and (xx) and (xxx) are equivalent. 1

Bingener has proved that O; (S) is Noetherian for any
semianalytic Stein compact set in the formal-analytic case also
([B:1, (1.4)). Thus we have the following in just the same way as

the last part of Proof above.

2.2. Proposition. (xx) and (xxx) are equivalent for FCSs YCX

also.

Let ¥ be a subspace of X€ FCS defined by a coherent ideal
sheaf I. We say that (X, Y) satisfies the minimality condition if

it satisfies one of equivalent condition (xx) and (xxx).
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2.3. Theoren. (cf.[H:], (2.7.4)) Let YC X€ FCS be a subspace

defined by a coherent ideal sheaf I. Then we have the following:

(i) J=U 2z, Ann I*C Oy is 1locally stationary and coherent;

(ii) J is the largest ideal sheaf that satisfies I*J=0 for
-some K€ N locally;

(iii) 'J is t.he‘ largest ideal sheaf that satisfies I*N J¥—=0 for
some K& N locally;

(iv) J defines the subspace ZC X such that (%Z,YN zZ) satisfies
the minimality condition. (i‘.e. % is the formal—-analytic

closure of X||Y|® in X.)

Proof. (i) Ann I* is a coherent ideal sheaf (cf.[IGR:]1, (A.4.5)).
The assertions follow from the Noetherian property ([B;1, (1.5)).
(ii) Then J=Ann I* for some k and I*J=0 1locally. The
maximality follows from- the definition of J.
(iii) _ Obvious from (ii) and the local inclusion
I**» JC I***N J=TI1*(I"N J)C I*J.
(iv) We may work at a point £ . Let ¢ (:0x, e —> 0O, . denote the
canonical epimorphism. L ¢ (I.)C O, : is the ideal of (YN %)..
Suppose that K,.C 0,, ; is an ideal such that ¢ . (I.)'K.=0 for
some 1e N. Then It"¢ . " (K)C J:. Since Js=Ann I.*,
I.**'4 "' (K,))=0. Then, by tﬂe definition of J., we have
Lt (K )C J, i.e. K. =0. This verifies the minimality

condition. |1
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2.4. Corollary. Let YC Xe€ FCS be a subspace defined by a
coherent ideal sheaf I. (X,Y) satisfies the minimality condition

if and only if Ann I*=0 for all k€ N.
An ideal sheaf I on an FGS X is called invertible if I is
locally isomorphic to Oy as an Oy-module i.e. I is generated by

a nonzerodivisor locally. Then the following is obvious.

2.5. Corollary. Let I#+0 be a locally principal ideal sheaf on

an FCS X and Y its subspace defined by I. Then the following
conditions are equivalent:
(i) (X,Y) satisfies the minimality condition.

(ii) I is invertible i.e. Y is a hypersurface of X.
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3. Formal blowing up

Let X be a Stein formal complex space (i.e. 3 or VX. is
Stein). Bingener has constructed a formal complex space Z7Z*"
corresponding to every C&(IXI);scheme Z locally of finite
presentation ([B;]) such that Z°" satisfies nice functorial
properties. This enables us (1) to construct the (formal)
analytic projective spectrum Projan G for a sheaf G of graded
algebras ovef an FCS which is locally generated by sections of
degree 1 and of finite presentation and then (2) to define
blowing up in FCS. These constructions are quite similar to G§$
case (cf. [Hol,[B,1,§5,[Mo],Il,§1) as follows.

Let IC O be a coherent ideal sheaf on an FCS X. Let wus
consider the graded Ox-algebra G, =@  zoI*. For any £ € |Xx]|,
take its small ne;ghborhood U and sections go,j..,g,e I(U) which
generate I|U. If we substitute T,,...,T, by germs of g,,...,&,
respectively, we have a degree-preserving Ox|U-epimorphism

L v:0|ULTo, ..., T, 1— G U= P 2o (I|U)*.
Here O«[To,...,T,1 is graded by deg T, =1 (i=0,...,p).
Obviously the kernel K|U is homogeneous. It is just the ideal
sheaf of homogeneous polynomial relations among g,,...,8p,. NOwW
that we have defined the sheaf K|U, we can transfer the
coefficient of the algebras from the sheaf to the ring of their
local sections as follows. If U is sufficiently small, K|U is
known to be generated by a finite number of homogeneous elements

of K(U) by Noetherian property of ideals ([B.], (1.5), cf.
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[Mo], (1.2.7) for how to apply). Thus we have a local exact

sequence:

0— K(U)— 0 (W I[Te,...,T,1" Y G =P 20T — 0
such that ¢ (U) is degree preserving, K(U) is finitely generated
and G (V) ;=@ vz0lc* for any £ €U (thus G, satisfies the
condition described in (1) above). Lé£ F,,...,F,€ K(U) be a
‘system of homogeneous generétors of K| U and

C; (X|]U)= Specan G,|UC X|UX ¢**! the subspace defined by the

equations F,=::..=F,=0. C:(X|Uu)y is a family of cones
parametrized by U. Its projectivization is  denoted by
B; (X|U)= Projan G;|UC X|UX wp*, The natural morphism
O (U)— O (U)I[Ty,...,T,]1 induces 1lI°|UE KCS:C,; (X|U)—> X|U and

Il |Ue ¥C8:B; (X|U)—> X|U. B;(X|]U) and Il |U can be glued to an
FCS B; (X)=Projan G;, and a global morphism ] € FCS:B; (X)— X.
We call the FCS B;(X) or the morphism [i the blowing up with
center I. The subspace defined by I is also called the center of
. If YCX is an open subspace, B; (Y) is‘isomorphic to an open
subspace of B; (X) and their IiI are compatible. If the underlying
topological spaces of FCSs are Hausdorff, we can easily show
that B; (X) is also so. We use the notations above repeatedly.
Let & :X— Y be a morphism between ringed spaces. For an
ideal sheaf JC Oy, let & ~'J denotes the ideal sheaf generated
by the pullbacks of elements of J by . (To be precise,

remember that a morphism P consists of continuous map
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|®|:|X|— |Y] between underlying topological spaces and a
homomorphism &’ :0,—> | ® |, O between sheaves of rings on |Y]|,
where | ® |.0x denotes the direct image sheaf. &’ canonically
induces a homomorphi sm ‘P :|D | 'Oy—> O, where "
|® | 'Oy=XX yO denotes the topological inverse image sheaf. If
JC Oy is an ideal sheaf, ® ~'J denotes the ideal sheaf generated
by the image ‘@ (|® | 'J)C Ok.) We call & ~'J the inverse image
ideal shéaf of J. Indeed, if J is the ideal sheaf that defines a
closed subspéce zCy, ® 'J is the right object by which we
should define the inverse image (space) ® ~'ZC X.

% is proper if it is adic and the map | ® | between'underlying

topological spaces is proper.

3.1. Theorem. Let [l € FCS:%X' — X be a blowing up with center I.

Then we have the following.

(i) Il is proper;

(ii) J=N"'I is invertible;

(iii) If B denotes the exceptional space (=the subspace defined
by J), then (X' ,R) satisfies the minimality condition.

(iv) If I is invertible on an open subset VC |X|, Il is an

isomorphism on |l |~' (V).

Proof. (i) Obvious from the construction. (The canonical
projection in the Specan construction ([B;1,§4) is always adic.)

(ii) Let wus put g =t y(T,)E I(U) and G =7xm (8 )€ O (U).
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Obviously G, are generators of J. If we put
W?= Specan G; (U)N {T,#* 0}, we have G, =G, T, /T, (i* j) on W°.
Then J is generated by G, on the image WC Projan G; (U) of W°.
Suppose that G, is a zerodivisor at 7 € W. Then G,°= 7 °(g,) is
also so at a point 7 °€ W'\ (X|]UX {0}) on the generatrix
corresponding to N and there exists a homogeneous
HE Ok, ¢ [To,...,T, 1\ (K|U), such that Hg, € (K|U).. Hence we have
HT,=0 mod(K|U), and T, is a zerodivisor in the local ring at
n °. This contradicts the fact that T, has nonzero evaluation at
n°. This proves that G, is not a zerodivisor and J is
invertible.

(iii) Immediate from (2.5).

(iv) Shrinking V, we may assume that I|V is generated by g€ I(V)
and gg is not a zerodivisor for any £ €V. Then the
degree—-preserving epimorphism L v: (O |V)ITol— G|V with
t v(To)=ge€ I(V) 1is an isomorphism. This proves that II is an

isomorphism on |1l |~' (V). §

Blowing up in FCS can be characterized by universality by the
following (as in CS or algebraic case, cf. [H;], [HR] for the CS$

case).

3.2. Theoren. (Universality of ’blowing up.) Let I€e O be a
coherent ideal sheaf on an FCS. If % € FCS:Y—= X is a morphism

such that & ~'I is invertible, there exists a unique lifting
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W :Y—> B; (X) of & .

Proof. Since the problem is local on X by the uniqueness, we may
work on such U as takén in the construction above and assume
that I|U is generated by 8,...,8 € O« (U). Since & ~'I is
invertible, we may assume that, for any n € |® |~ ! (U), there
exists its neighborhood WC |&® |-'(U) such that &-'I is
generated by & (g0) and ¢ (g,) is not a zerodivisor on W. Then
there exist h, € O (W) such that & (g.) =6 (g)h,. Substituting
Te,..., T, by he(=1),...,h, respectively, we have a 1lifting
Wy :Y|W— X|WX C® of @ |W. The homogeneous .polynomial’
relations among o, ..., & (over Oy (U)) are also satisfied by
hy,...,h, so that ¥ %° induces a lifting ¥ y:Y|W— B; (X) of
@ |W. We can glue_such local liftings to a global ¥ :Y— B; (X)
in a standard way. |
"Any other local 1lifting & y of ® determines a ratio
@ w(To):»:0 w(T,). This ratio satisfies the reiations
® (2,)0 w(T;,)=¢ (g,)0 w(T,) which originate from G, T, =G;T, .
Since @ (go)bis a'nonzerodivisor, the ratio é (o) :*"*: 0 (g,) is
definite. Hence 0O w(To):' " :0 w(T,)=W 4w (Ty) !+ :¥W 4w (T,) and V¥

and @& coincide. 1

Now, as an extension of - Hironaka's definition of the category
of coherent ideal sheaves on CSs (see [H,],0,§2), let us define

the category ®CSI® of coherent ideal sheaves on FCSs. An objects



150

of ¥CSI® is a pair (X, I) of an FCS X and an coherent ideal sheaf
I on X. A morphism‘ ®» e FCSI®: (X, N—> (Y, J) 1is a morphism
‘«3@ € w¥ecs with & 'J=1. Let ®¥CSI* denote the catégory of
invertible sheaves on FCSs, which is .the full subcat,egory of

FCSI°®.

3.3. Corollary. Let & ~:(X, I)— (Y, J) be a morphism in FCSI®

and Il : X' — X and @® :Y —> Y blowings up of X and Y with
centers I and J respectively. Then we have the following.

(i) There exists a unique lifting & ' :X'— Y of & and &'

defines a morphism & ' ~: (X', " 'IDD— (Y ,® " 'J) in FCSI'.
x,un T, e m

. ‘i l @ -
WD = (1D

(ii) The correspondence @& ~—> & '~ defines an idempotent
covariant functor from KCSI® into RFCSI® and the image is
KFGS X YC rcsiec.

(iii) If & is a closed embedding, @ 'is also so.

If X is a subspace of Y in (iii), X is a subspace of Y . We
call X' the strict transform of X. If the center I is nilpotent,

the strict transform is vacuous.
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Proof. (i) The first assertion follows from (3.2) and the fact
.that I'=n-'I=m"'® 'J is invertible. The second from
' 'J ="' 'J=U""'® 'd=I (J=6 'J.

(ii) Functoriality follows from the universality in (3.2). It is
idempotent by (3.1), (iii), (iv).

(iii) If ® is a closed embedding, we may consider X as a closed
subspace of Y. Let L be the ideal sheaf defining XC Y. Since
the canonical homomorphism (J+L)/L— I is an isomorphism,
there is a surjective ¢ —homomorphism from G, onto G;. This

induces an embedding from X =B, (X) into Y =B, (. |

If X is reduced, it has the normalization X~ ([B;], §3) and we
can define the (global) irreducible components of X as the
images of the connected components of X~ with the reduced
structure. If U is a sufficiently small neighborhood of & , the
irreducible components of X|U (or germs of them at &)
correspond to the minimal primes of Of . bijectively. We call a

reduced and irreducible FCS integral.

3.4. Proposition. Let 1Ii € ¥C$:X' — X be a blowing up with

center I..

(i) If X 1is reduced, then X is élso so and X', is the germ
of the union of the strict transforms of the irreducible
components of X, (&£ = || (n)).

(ii) The canonically induced morphism 1l ,.qd€ FCS:X ;eda— Xieca
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is isomorphic to the blowing up whose center is the inverse

image ideal sheaf of 1I.

Proof. (i) If X' is not reduced on |lI|"'(U) and if U is small,
there exists a homogeneous polynomial F(T,,...,T,)€ {K{U)\ K(U).
By the definition of K(U), F(g,...,8)%0 (8 = ¢ v (T\)) belongs

to the nilradical. This contradicts the assumption that X is
reduced and proves that X’ is reduced; If X' is not the union,
there exists a formal curve K ' CX' which is. not contained in
the union and the exceptional space by (1.2). Its image K is
included in an irreducible component of X and not in fhe center.
Then K ' must be included in the strict transform of the
component. by the uniqueness of lifting (3.2), a contradiction.

(ii) This follows from the universalities of blowing up and

reduction. 1
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4. Dimension of a germ of an FCS

We define the dimension of an FCS X at ¢ (or dimension of the
germ Xe) Dby the Krull dimehsion of | the local ring:
dim X,=dim O, ..

Suppose that A is an integral domain. We define the rank of an
A-module M as the maximal number r such that there exists an
injective A-homomorphism A'—> M. If A denote the fields of
fractions the rank is equal to the dimension of the A-vector
space AQ .M. This rank is denoted by rank,M.

Let A be a formal analytic algebra and Q (A) the space of
Pféffjan forms on A (=the universally finite differential’
module). This can be defined in the same way as in the case of
analytic algebras and has similar properties ([B;1, (1.8)).

Nagaﬁa has proved that integral analytic algebras are formally
integral i.e. its maximaléideal—adic completion is also
integral. This can be generalized to formal analytic algebras by

(iii) of the following.

4.1. Theorem. Let A be a formal analytic algebra A and A its

completion With respect to the maximal ideal. Then we have the

following.

(i) A is excellent and Henselian;

(ii) A bhas the approximation property for algebraic equations
(cf. [P], [Ro] for this property);

(iii) If p is a prime ideal, p=pA is also so.
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Proof. (i) The first assertion was proved by Bingener
[B:1, (1.10). (Using the fact that excellence is equivalent to
the existence of the universally finite differential module
(cf. [SS]1, (8.10).) Suppose that A is the completion of an
analytic algebra B with respect to the I-adic topology (I: an
ideal of B). Since analytic algebras are known to be Henselian
([N],(45.6)), A/IA= B/1 1is also so. Then A is Henselian by
[R],p.B,Exercise.‘ General formal analytic algebras are
homomorphic images of completions of analytic algebras. It is
easy to see that homomorphic images of Henselian ringé are again
Henselian.
(ii) It is Kknown that a Henselian excellent ring has the
approximation property (see Rotthaus [Rol, (4.2), Popescu [P]).
(iii) p is not prime

=> 3J f,Ige (A/p)” s.t. £=0, g=0 and fg+ 0

= df,dge A/p s.t. £f=0, g=0 and fg+ 0

—> p is not prime
(We have applied '(ii) to the algebraic equation XY=0 to show
the third arrow. We could have proven (iii) directly from (i) in

EGA style, cf. [R]1,XI,Proof of Th.3) 1§

4.2. Theoren. (cf.[SS]1,(4.1)) If A is an integral formal

analytic algebra, rank,Q (A)=dim A.
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Proof. Let A denote the full completion of A. It is known that
Q A)=AQ .Q (A) (ISS], (1.8)). Since A is A-flat and integral
by (4.1), rank,Q (A)=rankiQ (A). Completion preserves Krull

dimension also (cf. [N], (17.12)). Therefore we may assume that A

is fully formal i.e. A is a residue class algebra of
¢Ilx,,...,%x,]. Then it is well-known that, if r=dim A, there
exists a finite monomorphism B=C[x,,...,x,]— A with (an

application of the Weierstra8 preparation theorem). Since
X;,...,X, form a .system of parameters of A, dx,,...,dx, are
linearly independent over A ([SS], (8.12)). Any element f€ A
satisfies a monic polynomial relation over B. Taking the total
"~ derivative of this relation, we see that df 1is linearly

dependent on dx,,...,dx, over A. Hence rank,Q (A)=r=dim A. |

4.3. Theorem. If X€ ¥CS is integral, dim X, is constant on |X|.

For general Xe€ FCS, dim X. is upper semicontinuous with respect

to & .

Proof. The second assertion easily follows from the first. Since
normalization preserves dimensions of local irreducible
components, we may assume that X is normal (cf.[B,1,§3 for
normalization, [Mat], Exercise 9.2 for invariance of dimension).
Then X. is integral at all £ € |X|. Q (O, ) (& € |X]|) form a
coherent sheaf Q (0y) ([B;],§1). Hence there exists a local

exact sequence:
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0 )P 2 o (W) — 2 (0 W— 0
Let F,C Or(U) denote +the ideal sheaf (Fitting ideal sheaf)
generated by the (q—n) X (@q—n) minorants of the métrix
representing the left arrow. (This does not depend upon the
choice of the exact sequence.) Let Y,C X denote the subspace
defined by F, (¢ C Y-, C ¥,-C...CYyCX). Obviously

rank Q (Og, ()2r+1<> rank A £q—r—1
<> (F, ) =0<> (Y, )¢ =X,.

Since X is integral, if we put

s=max{rank Q (O, .): & € |X]|}—1,
we have |¥%|=]|Y,| (r<s). Then dim X.,=rank Q (O ) =s-+1 every

where by (4.2). §

5. Dimensions of images of blowings up

Let ¢ :B— A be a homomorphism between ihtegral formal
analytic algebras. By the universality of Q (B), ¢ naturally
induces a homomorphism ¢ ':Q (B)—/ Q (A) compatible with ¢
(cf. [SS]). we define the generic rank of ¢ by
grk ¢ = rank,A¢ ' (Q (B)). Obviously grk ¢ = min{(dim A, dim B).
If ¢ :X— Y is a morphism between VFCSs and if £ € |X|, the
generic rank grk &, of & at ¢ is, by definition, equal to
that of the induced homomorphism @ ¢:0p, ,—> Ox, .

(n=]®|(£)). This is a generalization of Gabrielov's generic
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rank in analytic geometry (cf. [G]).

5.1. Lemma. Let A be an integral formal aﬁalytic algebfa and
Hi,...,H, (h=dim A) a system of parameters of A. If G is a
nonzero element of A, d(G°H,),...,d(G'H,) form a basis for the
the A-vector space AQ® xQ (A) for any q€.%Z possibly except one

value.

Proof. Since A is an integral domain, dH,,...,dH. generate a
submodule with the full rank of Q (A) ([SS], (8.12)). Hence there
exists an expression 1® dG=G,®dH, +'+'++G,®dH, in AR .Q (A)"
and we have

1® d(G*°H, ) =qG* " 'H, (G;® dH, ++ "+ +G, Q@ dH, ) +G*® dH, .
By a calculation, we see that these are independent unless

nG+q(G,H, +:+++G,H,)=0. 1

5.2. Theorem. Let [l € FCS:X' —> X be a blowing up of an FCS and

Y, be an irreducible component of X',. Then we have the
following:

(i) If |U|(n)=¢, dim ¥,=grk I |¥Y,=dim X..

(ii) If X, is equidimensional, then dim Y,=grk II |Y,=dim X,

and X', is equidimensional as well as X..

Proof. (i) Let U be a small neighborhood of & such that there

exists a degree-preserving Oy (U)-epimorphism
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t (W0 W ITo,..., T, 1— G U= 20 I(U)*
with finitely generated kernel K(U) and G, W :=Przol:*. X' |V
(V= |1 |-'(@)) 1is the formal complex space associated to the
algebraic scheme %= Proj G, (U). We put

gi=tL (v (THe IWN), Gi=n (g8 )€ O (U).
Let H,,...,Hy (d=dim X' ,) be a system of parameters of the
algebraic local ring A: ,. We may assumé that T+ 0 at n . Then

H, can be expressed as (U,I(IZ h!, (T*/Te*)) (T=(T,...T,),
a =q

h', € 0z (U)), where L is naturally extended to
O (W I[Ty,...,T,,1/Ty). G, and H, can be considered as elements
of the analytic 1local ring Oy ,. H,,...,Hy include a system

parameters of Oy, ,. Since . ¢ (uy (80 (T, /To)) =g,, Go®H, belong to
Tt (Ox, ¢) and
d(Go*H,)E A(m (O, ¢))=m ' (dOx, ¢)

Since G, is a nonzerodivisor even in O, ,, d(Ge*H,),...,d(Gy*Hy)
Cxm'(Q (O, ¢)) generate O, ,®@ Q (0. ,), except one bad value of
qQ by (5.1). Thus we have dim ¥Y,=grk I |¥,=<dim X..

(ii) By (3.4) we may assume that X is reduced and 1I; is not
included in a minimal prime ideal of O, .. (Otherwise, the
blowing up of the corresponding component is vacuous.) The
completion of a' local ring preserves the dimension (cf. [N],
(17.12)) and the decomposition into the irreducible components
by (4.1). Hence, if X, (or O, () 1is equidimensional, it is

formally soO (=quasi-unmixed i.e. the completion is
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equidimensional). All the properties of the germ of X'élong B is
reflected by those of the germ C; (X); of the cone C, (X) along
F=|I1°|-'(&£). All the properties of C, (X); are reflected by
those of the graded ring A=iz20I:* or by Proj A. (These are
intuitive observations. See (5.3) for a correct argument.) Since
Oy, ¢ is equidimensional and since I, is not included in a
minimal prime ideal, A is also formally, and hence plainly,
equidimensional of dimension r+1 (r=dim X.)
([HIO], (18.23), (9.7)). Let pCA be hogeneous prime ideal of
coheight 1 corresponding to n and qC A the minimal homogeneous
prime ideal corresponding to ¥,. Of course, qCp. Since a
" formally equidimensional 1local ring is universally catenary
(cf. [Mat], (31.6), [HIO], (18.17)), the coheight of q is r+1 and
there exists a chain of prime ideals of length r (maximal) which
connects q and p (consider the localization A,). Then there
exists a chain of homogeneous prime ideals in A/q which connects
0 and p/q (cf.[Mat], (13.7)). Its inverse image in A form a chain
of homogeneous prime ideals of A which connects q and p. This
proves that dim Y,2r, first algebraically and then
formal—-analytically. Then X'; is obviously equidimensional of

"dimension r. 1

5.3. Remark. Let X be a ringed space, GOH(X) the category of

sheaves of Oy—-module of finite presentation whose morphisms are

defined to be Oy-homomorphisms and COHI(X) the category of ideal
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sheaves of finite presentation on X whose morphisms are
inclusions. COWHI (X) can be seen as the category of subobjects of
Ox € COMI(X). (Then an object of GCOHI(X) 1is a monomorphism
0 € COH(X): F— Ox. A morphism of GCOHI(X) comes from a
monomorphism in COi(X). By the terms of [M],p.122, COHI(X) is
the category of equivalence classes of monics with codomain Ox.)

Let X be a Stein FCS and % an A-scheme (A= Oz (|X|)) locally of
finite presentation. Bingener ([B:1, (4.5): The existence
theorem) has proved the following: 1If % is proper over Spec A
and if CC|X| is a semianalytic Stein compact subset, there
exists a canonical equivalence

E:COH (S)—> lip com(z*"|U) (S= 15X aASpec 0z (C)),

Spec
of categories, where the limit is taken over the directed system
of ail Stein neighborhoods U of =~ C. Monomorphisms are
characterized by left cancellability: a property defined by the
terms of the categories. Then f€ Hom(F,F ) is a monomorphism if
and only if E(F) is so. Therefore E induces an isomorphism

E' :COHX(S)—> lip COHI(z*"|U).

In the situation of (5.2), this implies that the lattis
structures of (a) the family of subspaces of Proj @)I:‘and (b)
the family of germs of subspaces of Proj G; (X|U) around F are
isomorphic, where U runs over the directed system of all Stein

neighborhoods of £ .
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’

5.4. Remark. Consider a part of blowing up Il :G3— €3, x =x,

y =xy, 2z =xz. Let t(y) be a transcendental holomorphic
function. Osgood has pointed out that x, xy, xyt(y) have no
formal relation at O (cf.[GR,]). Hence no germ of a thin
subspace of G* at 0 includes the image of the germ of the thin
subspace {z=yt(y)} at 0. Thus we can .not expect that a thin
subspace at a point is not always mapped into a thin subspace by
a blowing up. But we can expect so if the subspace is defined in

a neighborhood of the entire |E| as follows.

5.5. Proposition. Let Il € F@S:X'——> X be a blowing up and Y a

thin subvariety defined in a neighborhood of the exceptional
space E. Then Il | Y factors through an everywhere thin subspace 7%

of an open neighborhood of the center.

Proof. Let Y*C C; (X|U) be the cone subspace corresponding to Y.
Since Y is thin, there exists a homogeneous element
F(To,...,T,)E Ok (ITy,...,T,]1 such that ¢ (U)(F(T,,...,T,)) is
active in G; (U) and vanishes on ¥*. Then F(go,...,8,) € O (U) is
also active by the definition of K(U). We have only to define 7%

by F(gOI"'pgp)- .
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6. Blowing up with an analytic center

The following is a part of a result of Ancona-Tomassini, which

was proved in a sophisticated way.

6.1. Proposition. ([AT], (Il .8)) Let IC Ox be a coherent ideal

sheaf on Xe CS and S its analytic subset such that the subspace
of X corresponding to I is contained in S. Let ® € FC$:Y—> X,
be the blowing up with center IOx;s and I=T..5: X +— X5
the compiet.ion of the blowing up II € ¢$:X' — X with center I,
where T=|TI I;‘ (S). Then ¥ and X' | are canonically isomorphic

and I coincides with @ by this identification.

Proof. Since IOx-,r 1is invertible there exists a lifting
3 :X1+— Y of II by the universality of ®@. By (3.3), the
completion of the identity ® =15, ,x, € ¥C$:X,s—> X has a unique
lifting ® ' € F6S:Y—> X' . Since |¥| is mapped into T by |® |,
we have the completion =% ,¢;.7:¥— X' |1 with

@' =1:,,x-1°*¥%. Thus we obtain the following diagram.

X i TT"’?" > X

- ‘\?\\WY% 1 S
n | - or
xls“AD ® > X
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Since
(E-W)"(@@°@))"‘I=W"~ﬁ"°@@“11
=W "o T, x- I T I=H " T Il T I=(% @ ),
we have % ¥ =Iy by the universality of ®. Then % (*0¢ ,

(n € |Y]|, { =% ,(n)) is the identity. Similarly, by the

universality of [l € GSC ¥GS, we can prove ® '+ =1,;,,x-,. Then
V3 commutes with Tr.01x - This implies
G o°® ¢:0c 11, c—> O 11, ¢ commutes with the canonical

monomorphism T v, x |:0.¢(—> Ox -+, ¢. Hence o ,°#% . is the
identity on the image of T ., ;x' . This imagé is dense in
O« 11,¢ With respect to the maximal-ideal-adic topology. Then we
see thateo ,*#% . is also the identity. Thus Y and X', are

canonically isomorphic. 1§

6.2. Remark. Note that this proposition implies @ is the

completion of an analytic morphism Z— X. If the center is not

contained in the core, there is no canonical way to take Z.

October, 1992
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