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Introduction and main results.

Let g be a finite-dimensional complex Lie algebra, and U(g) be. the universal en-
veloping algebra of g. The natural increasing filtration (Ux(g))k=>,1,. of U(g) defines
a commutative graded ring grU(g) = @ Ux(9)/Us-1(g), which is isomorphic to the
symmetric algebra S(g) of g by the Poincaré-Birkhoff-Witt theorem. The identification
S(g) = grU(g) allows us to relate various objects in (non-commutative) enveloping al-
gebra theory with those in commutative algebra and algebraic georietry for S(g) and
g* = Spec S(g), the dual space of g (see [2], [4], [14], [17, 18]).

For instance, if H is a U(g)-module generated by a finite-dimensional subspace Hy,
we can associate to the pair (H, Hy) a graded S(g)-module of finite type by gr(H; Ho) :=
@y Hi/Hi—y with Hy = Ui(g)Ho. The annihilator J(H; Ho) of gr(H; Ho) in S(g) defines
the associated variety V(g; H) C g* of H, independent of Hp, as ‘he set of common
zeros of all the elements of J(H; Hy). The celebrated Hilbert-Serre theorem in commu-
tative ring theory says that this variety V(g; H) supports well the graded S(g)-module
gr(H; Hy) (see Theorem 1.1).

In this paper, we give useful criteria for finitely generated U(g)-modules H to remain
finite under the restriction to subalgebras of U(g), by means of the associated varieties
V(g; H). Applying the criteria, we specify among other things, a large class of Lie
subalgebras of a semisimple Lie algebra on which all the Harish-Chandra modules are
of finite type. This extends a result of Casselmann-Osborne [8] and Joseph [13] on the
restriciton of admissible modules to nilpotent Lie subalgebras appearing in the Iwasawa
decomposition. Moreover we develop, with the help of Frobenius reciprocity, the finite
multiplicity theorems for induced representations of a semisimple Lie group, obtained in
our earlier work [20].

Let us now explain our basic ideas and the principal results of this article.
A. For a subalgebra A of U(g) containing the identity element, let /' denote the asso-
ciated graded subalgebra gr A := @50 Ar/As—1 of S(g) with Ay = LN Uk(g). We say
that a finitely generated U(g)-module H has the good restriction to A if there exists a
generating subspace Hy of H for which the S(g)-module M := gr(H: Hy) is of finite type
over R. It is standard to verify that the original H is finitely gererated over A if its
restriction to A is good .

We can characterize the U(g)-modules H having the good res riction to a given
A, by using the associated varieties. To be specific, we first obsei7e that the graded



S(g)-module M = gr(H; Hy) is finitely generated over R if and only if the quotient S(g)-
module M/R,M is of finite-dimension, where R, denotes the maimal graded ideal
of R. Secondly, the Hilbert-Serre theorem (or Hilbert’s Nullstellersatz) tells us that
~dimM/R M < oo whenever

(VHRO) V(g; H) N RE = (0)

holds, where Rf denotes the algebraic variety of g* determined by R, as the set of
common zero points. Furthermore, it is shown that the converse is also true provided
that R is Noetherian. (See Proposition 2.1.)

Summing up the above discussion, we obtain the first main result of this paper, as
follows.

Theorem I. (see Theorems 2.1 and 2.2(1)) (1) A finitely generated i/ (g)-module H has
the good restriction to a subalgebra A whenever (VHRO) is fulfilled for R = gr A. The

converse is also true if the ring R is Noetherian.
(2) The condition (VHRO) guarantees that H is of finite type over A.

If A= U(n) for a Lie subalgebra n of g, then the corresponding gr;.ded ring R = S(n)
is Noetherian and Rf equals the orthogonal nt of n in g*. Accordi.igly, one sees from
Theorem I that H has the good restriction to U(n) if and only if V(g; H) Nnt = (0). In
this case, we find that, besides the finiteness, H preserves some otner invariants under
the restriction to U(n):

Theorem II. (see Theorem 2.2(2)) Ifthe restriction of an H to U(n is good, the Gelfand-
Kirillov dimension d(n; H) := dimV(n; H) and the Bernstein degree ~(n; H) (see 1.2 for
the definition) of H as a U(n)-module coincide respectively with those {(g; H) and c(g; H)
as a U(g)-module. Furthermore, the variety V(g; H) is carried into V(n; H) by the re-
striction of linear forms on g to n.

B. The general results given in A, have remarkable applications ;o Harish-Chandra
modules of a semisimple Lie algebra.

Now let g, be a real semisimple Lie algebra, and g, = & & p, be i Cartan decompo-
sition of g,. We denote by g the complexified Lie algebra of gy, and the complexification
of a real vector subspace b, of g, will be denoted by §h(C g), corventionally. By a
Harish-Chandra (g, #)-module is meant a finitely generated U(g)-m:-dule H on which
the subalgebra U(€)Z(g) acts locally finitely, where Z(g) denotes the center of U(g). We
regard the variety V(g; H) as a subset of g by identifying g* with g through the Killing
form of g.

The following two facts are essential for our applications to Harish-Chandra modules.

(1) The associated variety V(g; H) of a Harish-Chandra (g, €)-module H is contained
in the set M (p) of all the nilpotent elements in p (Lemma 3.1).

(2) There exists a Harish-Chandra module H for which V(g; H) coincides with the
whole NV (p) (Proposition 3.2).

These facts together with Theorem I yield the following



Theorem III. (see Theorem 3.1) All the Harish-Chandra (g,€)-modules have the good
restriction to a subalgebra A of U(g) if N(p) N R¥ = (0) holds for R = gr A. The

converse ts also true when R is Noetherian.

C. Suggested by this theorem, we say that a Lie subalgebra ng is large in g, if there
exists an inner automorphism z of g, such that

(z-n)t NN (p) = (0),

or equivalently, each Harish-Chandra (g, £)-module has the good restriction to U(z-n).

We can specify many of large Lie subalgebras of g,. At first, the maximal nilpotent
Lie subalgebras and also the symmetrizing Lie subalgebras of g, are proved to be large
in gy (Propositions 4.1 and 4.2). Theorems I and II applied to the former example cover
results of Casselmann-Osborne [8, Th.2.3] and Joseph [13, II, 5.6]. Secondly, it is shown
that the largeness of a Lie subalgebra is preserved by the parabolic induction (see 4.2).
This means that, if , is a large Lie subalgebra of the Levi component [ of a parabolic
subalgebra q, = lp + U, the semidirect product Lie subalgebra b, -+ ug is large in g,.
Here ug is the nilradical of qy.

Thirdly, we say that a Lie subalgebra ng of g, is quasi-spherical if there exists a
minimal parabolic subalgebra g, , of g, such that gy = no + q,,, 5. Such Lie subalgebras
give rise to the homogeneous spaces of a semisimple Lie group on which each minimal
parabolic subgroup admits an open orbit (see e.g., [3], [5, 6], [15], [16]).

Theorem IV. (see Theorem 4.1) Any quasi-spherical Lie subalgebra is large in g,.

D. Let G be a connected semisimple Lie group with finite center, ar.d K be a maximal
compact subgroup of G. We denote the corresponding Lie algebras by g, and €, respec-
tively. By Harish-Chandra, the admissible Hilbert space G-representa’ions correspond to
Harish-Chandra (g, K)-modules, i.e., such (g, €)-modules with comp: tible K-action, by
passing to the K-finite part. On the other side, if (7, E) is a smooth Fréchet representa-
tion of a closed subgroup NV of G, the space A(G;n) of real analytic sections of associated
vector bundle G Xy E, has a natural structure of compatible (G, U(g})-module (see 5.1).

With the aid of Frobenius reciprocity (cf. Proposition 5.1), Theorems I and III on
the restriction of U(g)-modules, allow us to give useful finite multiplicity criteria for
analytically induced modules A4(G;n) (Theorems 5.3-5.5).

Among other things, we establish the following

Theorem V. (see Theorem 5.5) Let N be a closed subgroup of G whose Lie algebra ng is
large in gy, and take an x € G for which (Ad(z)n)t NN (p) = (0). Then the intertwining
number dim Homy ) (H, A(G;n)) is finite for every Harish-Chandra (g, K)-module H, if
the restriction of n to compact subgroup N Nz~ 'Kz has the finite multiplicity property.

This theorem extends one of the principal results in our previous werk [20, I, Th.2.12),
where we studied the case of certain semidirect product large Lie suba'gebras ng, through
the theory of (K, N)-spherical functions.



The organization of this paper is as follows. We begin with preparing in §1 the
notions and fundamental facts which we need throughout this article. §2 gives the
theoretical basis of this work. We develop the general theory on 1 3striction of U(g)-
modules to subalgebras by using the associated varieties. The criteria for good restriction
to subalgebras, are established in various situations in 2.1 and 2.2, and we clarify in 2.3
and 2.4 some important properties of U(g)-modules having the good restriction.

In §3, applying the results of §2 to semisimple Lie algebras g, we characterize, in
relation with the nilpotent variety A(p), subalgebras of U(g) to which all the Harish-
Chandra (g, €)-modules have the good restriction. The principal result of §3, Theorem
3.1, is presented in much more general setting. §4 is devoted to the specification of large
Lie subalgebras of a real semisimple Lie algebra. The last §5 develops finite multiplicity
criteria for analytically induced representations of a (semisimple) Lie group, by making
use of the results of §§2-4 and a reciprocity of Frobenius type.

An enlarged version of this article, with complete proofs, will appear elsewhere.

1. Associated varieties for finitely generated U(g)-modules.

At first, we equip ourselves with some fundamental facts in comntitative algebra and
algebraic geometry, and introduce three important invariants: the associated variety, the
Bernstein degree and the Gelfand-Kirillov dimension, of finitely generated modules over
a complex Lie algebra.

1.1. The Hilbert-Serre theorem. Let V be a finite-dimensional complex vector
space. We denote by S(V) = @22, S*(V) the symmetric algebra of V, where S¥(V) is the
subspace of S(V) consisting of all homogeneous elements of degree k. Let M = @2, Mi
be a finitely generated, non-zero, graded S(V')-module, on which S(V) acts in such a
way as S¥(V)My C Myw (k, k' > 0). Then it is easy to see that each homogeneous
component M), is finite-dimensional. Set

(1.1) om(q) :=dim (Mo + My + ...+ M,)
for each integar ¢ > 0.

Theorem 1.1. (Hilbert-Serre, see [22, Ch.VIL, §12]) (1) There exists a unique polyno-

mial @pr(q) in q such that op(q) = ¢m(q) for sufficiently large q.

(2) Let (c(M)/d(M)")q*M) be the leading term of Gpr. Then (M) 1s a positive integer,
and the degree d(M) of this polynomial coincides with the dimension of the associated
algebraic variety

(1.2) V(M) :={reV” | f(A\) =0 for all f € AnngyM}.

Here, AnngvyM denotes the annihilator of M in S(V), V* the dual space of V, and
S(V) is identified with the polynomial ring over V* in the canonical way.



Since the annihilator Anng(v)M is a graded ideal contained in S(V)4 1= @50 5*(V),
the variety V(M) is an algebraic cone in V*. This combined with (2) of the above theorem
gives in particular the following corollary, which is one of the keys for studying in §2 the
restriction of U(g)-modules to subalgebras.

Corollary 1.1. A finitely generated, non-zero, graded S(V')-module M is finite-dimensional
if and only if its associated variety V(M) equals (0).

Remark. It is not difficult to deduce this corollary directly from Hilbe t’s Nullstellensatz.

1.2. Associated varieties for U(g)-modules. Let g be a finite-dimensional complex
Lie algebra, and U(g) be the enveloping algebra of g. For each integer k¥ > 0, we
denote by Ui(g) the subspace of U(g) generated by elements X; ... X, with m < k and
X; € g (1 <j<m). One gets a natural increasing filtration (Ux(g))r>0 of U(g) such
that

(o]

U(g) = U Uk(9), Uk(@)Un(g) = Urtm(9), [Uk(8), Un(8)] C Uksm-1(g)-

k=0

The associated graded commutative algebra gr U(g) := @r>o Ur(g)/Vik-1(g) (U-1(g) :=
(0)) is isomorphic to the symmetric algebra S(g) = @xso.5*(g) of g in the canonical way.
We will identify these two algebras with each other.

Now let H be a finitely generated, non-zero U(g)-module. Take & finite-dimensional
generating subspace Hq of H: H = U(g)Hp. Setting Hy = Ui(g)Ho for k = 1,2,..;
H_; = (0), one obtains an increasing filtration (Hy)x of H such that

(13) H = U Hk, Um(g)Hk = Hk+m-

k=0
Correspondingly, we have a graded S(g)-module

(14) M= @Mk with Mk — Hk/Hk_l,
k

which will be denoted by gr(H; Hy) because the above filtration of H is determined by
Hy. Since M = S*(g)M,, M is finitely generated over S(g). So we can define for this
M the variety V(M) C g*, the integers ¢(M) and d(M) as in Theorem 1.1. It is easy
to see that these quantities are independent of the choice of a generating subspace Hj.
Hereafter, we will denote these three invariants of H respectively by V(g; H), c(g; H),
and by d(g; H), emphasizing that H is being considered as a U(g)-macdule.

Definition(cf. [4, III}, [17, 18]). For a finitely generated non-zer» U(g)-module H,
V(g; H), c(g; H), and d(g; H) (= dim V(g; H) by Theorem 1.1(2)) are called respectively

the associated variety, the Bernstein degree and the Gelfand-Kirillov dimension of H.



2. Restriction of U(g)-modules to subalgebras.

Let A be a subalgebra of U(g) containing the identitiy element 1 = U(g). Denote by
gr A = @p>0Ai/Ax—1 with Ay = AN Uy(g), the graded subalgebra of S(g) = gr U(g)
associated to A. We say that a finitely generated U(g)-module H has the good restriction
to A if there exists a finite-dimensional generating subspace Hy of H for which the
associated graded S(g)-module gr(H; Hp) is finitely generated over gr A. ,

This section characterizes, by means of the associated varieties, U(g)-modules H
having the good restriction to A (Theorem 2.1). We show that such H’s are finitely
generated over A (Theorem 2.2(1)). Some more properties of these modules H are
specified in 2.3.

2.1. Restriction of S(V)-modules to graded subalgebras. We first discuss the
restriction of graded S(V)-modules, where V is any complex vector space of finite di-
mension. Let R = @sq Rk, Bi C SF(V), be a graded subalgebra of S(V) containing
the identity element 1 € § (V). Ry = @50 Ri denotes the maximal homogeneous ideal
of R without constant term. We set for any subset ) of S(V),

(2.1) Q¥ :={ eV*| fA)=0 forall feQ@Q}.

Let M be, as in 1.1, a finitely generated, non-zero, graded S(V')-rnodule. We consider
the following four conditions on M in relation with R:

(a) V(M) N R* = (0), where R* := (R,)#, and V(M) = (Anngv)yM)# is the
associated variety of M defined in (1.2). '

(b) The ideal Anngw )M + R,S(V) is of finite codimension in S(V).

(¢) The S(V)-submodule R, M is of finite codimension in M.

(d) M is finitely generated as an R-module.

Then we get the following proposition on the relation among these conditions.

Proposition 2.1. (1) The condition (a) (resp. (c)) is equivalent to (b) (resp. (d)).
Moreover, (a) (& (b)) implies (c) (& (d)).

(2) If the ring R is Noetherian, the four conditions (a)-(d) are ¢ juivalent with each
other.

Corollary 2.1. For a vector subspace W of V, set Wt = {A € V* | < \w >=
0 for all we W}. A finitely generated graded S(V')-module M, # (0), is of finite type
over the subalgebra S(W) if and only if V(M) N WL = (0).

2.2. Good restriction of U(g)-modules. Now, let g be any complex Lie algebra,
and H be a finitely generated, non-zero U(g)-module. Proposition 2.1 gives the following
criterion for H to have the good restriction to a subalgebra of U(g).



Theorem 2.1. Let A be a subalgebra of U(g) containing the identity element 1 € U(g).
(1) The restriction of H to A is good whenever the condition

(2.2) V(g; H) N RY = (0)

on algebraic varieties in g* is satisfied. Here V(g; H) is the associated variety of H
defined in 1.2, and R = gr A denotes the graded subalgebra of S(g) assoctated to A.

(2) Conversely, if R is Noetherian and if H admits the good restriction to A, one
necessarily has (2.2). ,

Remark. The condition (2.2) guarantees that the graded S(g)-module gr(H; Hp) is
finitely generated over R = gr A for every generating subspace Hy of H. -

Let nbe a Lie subalgebra of g. Applying Theorem 2.1 to the case A = U(n) (R = S(n)
is obviously Noetherian), we obtain immediately the following

Corollary 2.2. A finitely generated U(g)-module H, # (0), has the good restriction to
U(n) if and only if V(g; H) N nt = (0) holds.

For later applications in §3, we give here another consequence of Theorem 2.1. Let
B, 31, be a subalgebra of U(g), and let C(B) denote the category of finitely generated
U(g)-modules H on which B acts locally finitely:

dim Bv < oo for all v € H.

We can (and do) take, for such an H, a finite-dimensional B-stable generating subspace
Hy C H. Set @ = gr B. Then it is easily verified that the corresponding graded S(g)-
module M = gr(H; Hp) is annihilated by the maximal graded ideal ¢+ of (). Hence one
gets ' ‘

(2:3) | V(g H) C QF.

Definition. We say that a subalgebra A of U(g) is large relative to B if all the U(g)-
module H in the category C(B) have the good restriction to A.

From (2.3) combined with Theorem 2.1, we conclude

Proposition 2.2. Let B, @ = gr B be as above, and A, > 1, be « subalgebra of U(g)
for which R = gr A is Noetherian. Then A is large relative to B if and only if

(2.4) Ve N RY = (0)

holds for the subset Vg := UgV(g; H) of Qf, where H runs over the U(g)-modules in
C(B). In particular, so is the case if Q% N R* = (0).



Remark. It can be interesting to describe the subvariety Vg of Qf We will show that
Ve = Q¥ holds for the category C(B) of Harish-Chandra modules of a semisimple Lie
algebra g (see Corollary 3.1).

Now define the double regular representation of U(g) ® U(g) on !{ := U(g) by
(Dl ® Dg)’U = Dl’Uth for D17 D2 & U(g) and v €.

Here D —*' D denotes the principal anti-automorphism of U(g), characterized by ‘X =
—X for X € g. Identifying U(g) ® U(g) with U(g @ g) by the Poincaré-Birkhoff-Witt
theorem, we regard U as a U(g @ g)-module generated by the identity element 1 € U.

The condition Q% N R* = (0) in Proposition 2.2 can be relaied with the good
restriction property of this module U, as follows.

Proposition 2.3. Let A, B (3 1) be two subalgebras of U(g). The restriction of U(g @
g)-module U to the subalgebra A®Q B is good zfoﬁRf = (0) is satisfied, where R = gr A
and Q) = gr B. The converse is also true if R ® ) is Noetherian.

2.3. Properties of U(g)-modules with good restriction. The 7/(g)-modules ad-
mitting the good restriction enjoy some nice properties as follows.

Theorem 2.2. Let H be a finitely generated, non-zero U(g)-module having the good
restriction to a subalgebra A C U(g). Then,

(1) H is finitely generated as an A-module.

(2) Assume that A = U(n) for some Lie subalgebra n of g (see Corollary 2.2). By
(1), H is of finite type over U(n), and so one can define the associated variety V(n; H),
Bernstein degree c(n; H), and Gelfand-Kirillov dimension d(n; H) of H as a U(n)-module

as well as those as a U(g)-module. These two kinds of invariants have the relations

(2.5) cg; H) = c(my H), d(g; H) = d(n; H),
and hence

(2.6) dimV(g; H) = dim V(n; H).
Moreover one has

(2.7) pV(g; H) C V(n; H),

where p* : g* — n* denotes the restriction map of linear forms.

The following is a direct consequence of Theorem 2.2(2).

Corollary 2.3. If a finitely generated U(g)-modu.le H has the good restriction to U(n),
the Gelfand-Kirillov dimension d(g; H) does not exceed dimn.

We now give two more consequences of Theorems 2.1 and 2.2:



Corollary 2.4. Let I be a right ideal of U(g) such that I # U(g). For a finitely generated
U(g)-module H, the factor space H/IH is finite-dimensional if V(g; H) N (gr )* = (0),
where gr I = @y, I/ -1 with I, = Up(g) N I.

Corollary 2.5. Letn be a Lie subalgebra of g, and H be a finitely generated U(g)-module
satisfying the condition V(g; H)Nnt = (0). Then, the n-homology groups Hi(n, H) (k =
0,1,...) of H (see e.g., (7] for the definition) are all finite-dimensional.

Let I be a non-trivial right ideal of U(g). We denote by Ny the left normalizer of I
in U(g):
(2.8) Ny={DeU(g)| DICI}.

For any U(g)-module H, the factor space H/IH becomes an Ny-module.
We conclude this section with an interesting generalization of Corollary 2.4, as follows.

Proposition 2.4. Let B be a subalgebra of Ny containing the identity element. Denote
by gr I (resp. gr B) the graded ideal (resp. graded subalgebra) of S(g) associated to
I (resp. B). For a finitely generated U(g)-module H, H/IH is of finite type over B
whenever the variety V(g; H) 0 (gr I)* N (gr B)¥ reduces to (0). Here (gr B)y denotes
the mazimal graded ideal of gr B.

This proposition actually includes Corollary 2.4 as a special case B = C1.
An application of the proposition will be given in §3 for semisimple Lie algebras g.

3. Nilpotent varieties in p and good restriction of Harish-Chandra modules.

Until the end of §4, let g be a complex semisimple Lie algebria. In this section,
applying the results of §2 we characterize, in relation with nilpotent varieties in p, subal-
gebras of U(g) to which all the Harish-Chandra (g, )-modules have the good restriction,
where g = £ + p is a symmetric decomposition of g. The main result: here are stated in
Theorems 3.1 and 3.2. '

Although our principal interest lies in the applications to Harish-Chandra modules,
we proceed here in more general situation as much as possible.

3.1. Associated varieties for U(g)-modules in C(¢, Z). Let £ be any Lie subalge-
bra of g, and Z = Z(g) denotes the center of U(g). Set B(t, Z) = U(£)Z(g), and we
consider as in 2.2 the category C(t, Z) := C(B(%, 2)) of locally B(t, Z)-finite, finitely
generated U(g)-modules.

A Lie subalgebra £ of g is said to be symmetrizing if it is the set of fixed points of an
involutive automorphism of g. In this case, the U(g)-modules in C(¢, Z) will be called
Harish-Chandra (g, €)-modules. This category of Harish-Chandra modules is enjoying an
essential role in representation theory of real semisimple Lie groups (see e.g., [9, 19]).

On the other hand, the category C(¥, Z) for a Borel subalgebra £, includes the highest
weight modules (cf. [10, Chap.7]).
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We now study the associated varieties V(g; H) of U(g)-modules H in C (&, Z). Iden-
tifying g* with g through the Killing form of g, we regard V(g; H) as a variety in g. For
a subset s of g, let A'(s) denote the set of nilpotent elements of g contained in s.

Lemma 3.1. (cf. [18, Cor.5.13]) Let Q(8,2Z) = gr B(§, Z) be the graded subalgebra of
S(g) corresponding to B(¢,2) = U(8)Z(g). Then the variety Q(&, Z)¥ (see (2.1)) is
contained in N(p), and hence, by (2.3), it holds that

(3.1) V(g H) C Qe 2) C N(p)

for every U(g)-module H in the category C(€,Z). Here p := ¥ denotes the orthogonal
complement of & in g with respect to the Killing form of g.

It shoud be noted that p is an (ad £)-stable subspace of g.

For symmetrizing € we can construct a Harish-Chandra (g, £)-module H whose asso-
ciated variety V(g; H) is exactly the whole nilpotent variety A/(p). For this, we need the
following

Proposition 3.1. Let € be a Lie subalgebra of g such that €N p = (0) for p = &*.
(1) One has g =t D p as (ad €)-modules.
(2) The U(g)-module

(3.2) H:=U(g)/U(g)(t+ U(9)¥)
lies in the category C(¥, Z), and its associated variety is described a:
(3.3) V(g H) = (S(p)*)Enyp.

Here U(g)X (resp. S(p)*) denotes the set of elements D in gU(g) (resp. in S(p)) such
that (ad X)D =0 for all X € t.

A nilpotent element X € p is called normal if there exists an element T' € & and
a non-zero complex number B such that [T, X] = BX. Let N,.(p) denote the set of
normal nilpotent elements in p.

We now arrive at

Proposition 3.2. (1) Let &, p = ¢+, and H be as in Proposition 3.1. Then it holds that
(3.4) Naor(p) C V(g; H) C N (p).

(2) Assume € be symmetrizing. Then one has €N p = (0), and the equalities hold in
(3.4). Hence H is a Harish-Chandra (g,%)-module such that V(g; H) = N(p).

The following is an immediate consequence of Lemma 3.1 and Proposition 3.2(2).

Corollary 3.1. (see Remark to Proposition 2.2) Assume that € is symmetrizing, and
let V(e z) be the subset of Q(E, Z)f defined in Proposition 2.2, where B(¢,2) = U(¢)Z(g)
and Q(¢, 2) = gr B(¢, Z) as before. Then one has

(3.5) Va(e,z) = Q& 2) = N(p).
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Remark. It is interesting to describe the associated varieties V(g; H) for important
Harish-Chandra (g,€)-modules H. We can achieve this for the discrete series of a
semisimple Lie group by an elementary method based on Hotta-Parthasarathy’s work
[11] (see also [21]). The details will be discussed elsewhere. ‘

3.2. Characterization of large subalgebras relative to B(¢, Z). Let A, 5 1,bea
subalgebra of U(g), and & be a Lie subalgebra of g. Consider the follov/ing two conditions
on A in relation to &. ,

(NPRO) N (p) N R* = (0), where p = ¢+ and R = gr A.

(ALKZ) A is large relative to B(, Z), i.e., all the U(g)-modules H in the category
C(%, Z) have the good restriction to A. So, in this case, these modules H have the prop-
erties specified in 2.3.

Getting together the results in 2.2 and 3.1, we find a close relation between these
conditions as follows, which is one of the most important results of this article.

Theorem 3.1. For A and ¥ as above, the condition (NPRO) always implies (ALKZ).
Moreover, these two conditions are equivalent with each other if R = gr A is Noetherian
and if € is symmetrizing.

As a special case, we obtain the following criterion.

Theorem 3.2. (¢ : symmetrizing, A = U(n)) All the Harish-Chandra (g, €)-module have
the good restriction to a Lie subalgebra n of g if and only if there docs not exist any non-
zero nilpotent element of g orthogonal to € + n with respect to the Ki'ling form:

(3.6) N((E+n)t) =nt nN(p) = (0)..

By applying Proposition 2.4, one gets another consequence of the condition (NPRO)
as in '

Proposition 3.3. Let €, A be as in Theorem 3.1, and let I be a proper, right ideal of
U(g) such that AJAN I is finite-dimensional. If (NPRO) is satisfied, the factor space
H/IH is finitely generated as a Z(g)-module for every locally €-finite, finitely generated
U(g)-module H.

4. Large Lie subalgebras of a real semisimple Lie algebra.

Let gy be, throughout this section, a real semisimple Lie algebra, and g, = & @ p,
be the Cartan decomposition of g, determined by an involution §. We write § (C g) for
the complexification of a real vector subspace f, of g, by dropping the subscript ‘0’.
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A Lie subalgebra n, of g, is said to be large in g, if there exists an element z € Int(g,)
for which the subalgebra U(z-n) is large in U(g) relative to B(¢,Z) = U(€)Z(g) (see
(ALKZ) in 3.2). This amounts to, thanks to Theorem 3.2, a simple geometric condition:

(4.1) (z-n)* NN (p) = (0) for some z € Int(g,).

Here Int(g,) denotes the group of inner automorphisms of g,. Notice that the largeness
of a Lie subalgebra does not depend on the choice of a &, since suct #y’s are conjugate
with each other by inner automorphisms.

This section specifies many of large Lie subalgebras of gy, and we find that every

~ quasi-spherical Lie subalgebra (cf. [3], [15]) is large in g,.

4.1. Two kinds of typical large Lie subalgebras. Let g, = &, + a,0 4+ un 0 be an
Iwasawa decomposition of g,. Here is the first important example of large Lie subalgebras
of g,.

Proposition 4.1. The mazimal nilpotent Lie subalgebra u,, o ts large in g,.

The above proposition, together with Theorem 2.2, covers the results of Casselman-
Osborne[8, Th.2.3] and Joseph[13, II, 5.6} on the restriction of Harist.-Cahndra modules
to u,,.

Secondly, let i, be any symmetrizing Lie subalgebra of g, defined by an involutive
automorphism o of g,. Then there exists an inner automorphism y of g, such that
o, := yo ooy~ ! commutes with the Cartan involution §. Let g, :- y-b, P so be the
eigenspace decomposition of gy by ¢,. Take a maximal abelian subspace aps.0 of Py N 50,
and an element X’ € a,;0 which is regular in the sense: dim Ker(ad X’) is minimal
among the elements of a,;9. Then one has a Cartan decomposition o’ g, with respect to
y-ho as
(4.2) 8o = (ko + 2"y ho) © aps0,
where z’ = exp(ad X’), and a,; ¢ is orthogonal to & + z'y- h, with respect to the Killing
form. See [20, I, Lemma 1.9] for the proof of (4.2). We thus deduce

(43) (&'y D) N N (B) = N (@) = (0),

because the elements of a,; are semisimple, and so this gives the second typical example
of large Lie subalgebras.

Proposition 4.2. Any symmetrizing subalgebra b is large in g,.

This allows us to deduce the finite multiplicity theorem [1] fo. the quasi-regular
representation on L?(G/H), associated to a semisimple symmetric space G/H.
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4.2. Inheritance of the largeness by parabolic induction. Let g, be any parabolic
subalgebra of gy, and qy = lo +ug with [y = q,N8q,, be its Levi decomposition. Since the
Levi component lp = (€N [y) + (p N [p) is reductive, one can.define large Lie subalgebras
of [y just in the same way.

The largeness of Lie subalgebras is preserved by parabolic induction.

Lemma 4.1. If b, is a large Lie subalgebra of ly, the semidirect product Lie subalgebra
bo + Uo is large in g,.

Thanks to this lemma, we can generalize Proposition 4.2 to

Proposition 4.3. (cf. [20]) Let b, be a symmetrizing subalgebra of the Levi factor Iy of
a parabolic subalgebra q, = Iy + uy. Then by + g is large in g;.

This proposition actually contains Proposition 4.2 as a special case g, = go.
Using this proposition, we can recover our finite multiplicity theorems for induced
representations of semisimple Lie groups, given in [20, I]. See 5.4 for the details.

4.3. Quasi-spherical Lie subalgebras. Let q,,, = mo + ap0 + Ump be a minimal
parabolic subalgebra of g,, where mg denotes the centralizer of a, ¢ in €,. We say that a Lie
subalgebra ng of g is quasi-spherical if there exists a z € Int(g,) such that zno+q,, o = go-
This is equivalent to saying that, if G is a connected Lie group with Lie algebra g, the
analytic subgroup of G corresponding to ng has an open orbit on the maximal flag variety
G/Q@m, where @),, denotes a minimal parabolic subgroup of G.

It is easy to verify that the large Lie subalgebras specified in 4.1-4.2 are all quasi-
spherical.

The following theorem is the principal result of this section.

Theorem 4.1. Quasi-spherical Lie subalgebras are always large in g,.

Remark. One can see from Theorem 3.2, coupled with a recent result of Bien-Oshima,
that the converse is also true in the above theorem if ng is algebraic ir g, i.e., ng is the
Lie algebra of an algebraic subgroup N of G, where GG is a semisim 'le algebraic group
with Lie algebra g,

In fact, it is easy to deduce from our Theorem 3.2 that, if ng is large in g,, the induced
representations Ind$(n) have the finite multiplicity property for all finite-dimensional
N-representations 7 (see 5.4; for this, ng need not to be algebraic). A result of Bien-
Oshima assures that, under the above assumption, these representat ons Ind§(n) are of
multiplicity finite only when ng is quasi-spherical.
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5. Finite multiplicity theorems for induced representations.

Let G be any connected Lie group with Lie algebra g, (not necessarily semisimple),
and A, > 1, be a subalgebra of U(g) with g = g, ®r C. Following the idea of induced
representations, we can associate, to any given Fréchet A-module E, an analytically
induced G- and U(g)-module I'(G 1 A; E) (see 5.1).

This section makes clear what we can know about these modules T'(G T A; E) by
applying our results in §§2-4 (see Theorems 5.1 and 5.2). Moreover, for semisimple G,
we largely develop and simplify our previous work [20] on the finiteness of multiplicities
in induced representations, by making use of the associated varieties of Harish-Chandra
modules (see Theorems 5.3-5.5).

5.1. Analytically induced modules T'(GT A; E) and A(G;7n). We begin with the

precise definition of our induced modules. Let A be as above, and E be an A-module with

Fréchet space structure on which the elements of A act as continuous linear operators.
We then define I' = I'(G T A; E) to be the space of all E-valued, real analytic functions

f on G satistying :

(5.1) | Bpf(z) = D-f(x)

for D € 'A and = € G. Here D — 'D is the principal anti-automorphism of U(g) (see
2.2), and D — Rp identifies U(g) with the algebra of left invariant differential operators
on G. The group G acts on I' by left translation L:

(5.2) Lyf(z)= f(g7'z) (9€@).

The U(g)-action on I', gained by differentiation, will be denoted again by L. We call
(L,T'(G1 A; E)) the G-representation or U(g)-module analytically inc uced from E.

If (g, F) is a smooth Fréchet representation (cf. [20, I, 2.1]) of a closed subgroup N
of G, the real analytic functions f : G — FE such that

f(gn) = n(n)" f(g) for (n,g) € N x G,

form a G-submodule, say A(G;n), of I'(G T U(n); E). Here n is tke complexified Lie
algebra of N, and E is viewed as a U(n)-module through differentiation. In this sense
our I'(G1A; E)’s include the group theorical (analytically) induced modules A(G; 7).

Now let H be a U(g)-module. We discuss U(g)-homomorphisms from H toT' =T'(GT
A; E) and especially the intertwining number

(53) ' Iu(g)(H,F) := dim HomU(g)(H, F)

When H is irreducible, Iy (H,T') gives the multiplicity of H in I' as U(g)-submodules.
Fix an element = € G. If T is a U(g)-homomorphism from H to T,

(5.4) t(T)(v) := (Tv)(z) (v € H)



gives rise to a linear map ¢(T') from H to E. It is easily verified that tz(T) commutes
with the actions of A := Ad(z)A C U(g) as

(5.5) t(T)o D = (z7'D) o ¢,(T)
for all D € zA, where z~'D = Ad(z)~'D. Moreover, t,(T) = 0 implies T = 0, since

Tv (v € H) are real analytic functions on connected G.
We have thus obtained a half part of the Frobenius reciprocity for induced modules,
as follows.

Proposition 5.1. Let H, ' = T(G 1 A; E) and = € G be as above. The assignment
T — ,(T) defined in (5.4) gives an injective linear map

(5.6) 1+ Homyq)(H,T) «— Homg4(H, E.),

where E, stands for the Fréchet space E viewed as an (zA)-module oy D -e = (z7'D)e
(e € E).

This proposition allows us to give in the succeeding subsections criteria for the finite-
ness of intertwining numbers Iy (H,I') by means of the associated varieties of H and

A.
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5.2. Finite multiplicity criteria, I. First, observe that the vector spéce Homg4(H, E,)

in (5.6) is finite-dimensional if so are both A-module F and factor space H/I.H with
I, := (Anng4FE,)U(g). Corollary 2.4 together with Proposition 5.1 gives the following
finiteness criterion, which is the first important result of this section.

Theorem 5.1. Let H be a finitely generated U(g)-module. The irtertwining number
Iye)(H,T) from H to an analytically induced U(g)-module ' = T(G T A; E) is finite
whenever two conditions:

(5.7) dim E < oo,
and
(5.8) V(g;H)Nnz™'-R¥ = (0) for some z € G,

are satisfied. Here V(g; H) is the associated variety of H, Rf with R = gr A, s the alge-
braic variety of g* defined in 2.1, and G acts on g* through the coadjoint representation.

For a subalgebra B, 3 1, of U(g), let C(B) be as in 2.2 the category of locally B-finite,
finitely generated U(g)-modules. The above theorem together with (2.6) immediately
gives

Corollary 5.1. Let R = gr A, Q = gr B be the graded subalgebras of S(g) associated
to subalgebras A, B C U(g) respectively. If there exists an element x € G such that
Rt nz.Q% = (0), the intertwining number Iyg(H,T(G 1 A; E)) is finite for every
U(g)-module H in C(B) and for every A-module E of finite dimension.
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5.3. Estimation of the multiplicities. Let & be a Lie subalgebra of g, and H be a
U(g)-module in the category C(B) with B = U(¥). Take a finite-dimensional, B-stable,
generating subspace Hy. By noting that B is generated by 1 and & as algebra, it is
easy to see that the subspaces Hy, = Ui(g)Hy (k= 0,1,...) are all B-stable. Hence the
corresponding graded S(g)-module M = gr(H; Hy) = @pyo My with My = Hy/Hp,

admits a natural B-module structure. Write this B-action on M by
BxM> (D,v) > DoveM,

in order to distinguish it from the original S(g)-action. One finds from the definition,

(5.9) X oDv—D(Xov)=((ad X)D)v

for X € tand D € S(g).
With (5.6) in mind, we can give, by using this (S(g) B)-module 1, an upper bound
of the intertwining number I4(H, E) = dimHom,(H, E) as in

Proposifion 5.2. Let H, B = U(%) be as above, and A, 3 1, be a subalgebra of U(g).
One has for any A-module F,

(5.10) 1s(H,B) < 3 Lins(My/(AN B) o (R, M),), E).

where R =gr A and (Ry M), := Ry M N M.
This together with (5.6) immediately gives the following theorem.

Theorem 5.2. The intertwining number Iyq)(H,T') from H in C(B). B = U(¥), to an
analytically induced U(g)-module T' = T'(G T A; E) is bounded by

(5.11) mineeo{ Toans(Me/ (AN B) o (zRe)M)1), E»)}.

k=0

Remarks. (1) By setting € = (0), or B = CI1, one finds that this theorem recovers
Theorem 5.1. In fact, in this case (5.11) turns to be

dim E x {min,eq(dim (M/(zRy)M))},

which is finite under the assumptions (5.7) and (5.8) (see Proposition 2.1).
(2) If A = U(n) for a Lie subalgebra n of g, one finds from the Poincaré- Birkhoff-Witt
theorem that 2zAN B = U(z-nN &) with z-n = Ad(z)n. Hence, in view of (5.9) we have

(zAN B) o ((zR4)M); = (xR )M = ((z-n)M);

in (5.11).



5.4. Finite multiplicity criteria, II: case of semisimple Lie groups. Now as-
sume G be a connected semisimple Lie group with finite center, and let K be a maximal
compact subgroup of G. In this subsection we apply the results of 5.2 and 5.3 to Harish-
Chandra modules for G.

By keeping the notation in §4, g, = & @ p, with & = Lie(K), denotes a Cartan
decomposition of g, = Lie(G). Let H be a Harish-Chandra (g,¥ -module (see 3.1).
Assume that the compact group K acts on H in such a way as

dim{Kv} < oo,

and
(d/dt)i=o(exptX)v = Xv

for v € H and X € ¥, where {Kv} stands for the K-submodule of H generated by
v. Such an H is called a Harish-Chandra (g, K)-module. Observe that, since our K is
connected, the above two conditions assure the compatibility of g and K actions:

k-Xv=(k-X) kv

for k € K and X € g, where k- X = Ad(k)X.

We note that, if a Harish-Chandra (g,€)-module H appears in some I' = I'(G 1
A; E) as a U(g)-submodule, H necessarily has the (g, K )-module structure inherited
from I'. A fundamental theorem of Harish-Chandra says that the (irreducible) Harish-
Chandra (g, K )-modules correspond to the (irreducible) admissible representations of
G, by passing to the K-finite part (see e.g., [19, Chap.8]). From these two reasons we
concentrate on the (g, K')-modules from now on.

Definition. Let I' = I'(G 1 A;E) and A = A(G;n) be the induced G- and U(g)-
modules defined in 5.1. We say that I' (resp. A) has the finite multiplicity propertyif the
intertwining number Iy ) (H,T') (vesp. Iy (H,.A)) is finite for every Harish-Chandra
(g9, K)-module H.

Remarks. (1) Any U(g)-homomorphism from H to I' or to A commutes with the
K-actions by virtue of the connectedness of K.

(2) When 7 is a finite-dimensional unitary representation of a closed subgroup N,
the assignment H — Iy (H, A) gives an upper bound of the multiplicity function for
G-representation L2-Indjy(n) unitarily induced from 7. Here H rurs over the Harish-
Chandra (g, K )-modules associated with irreducible unitary representations of G. See

[20, 1, §3] for the details.

Here is our first application to semisimple group G, of the general results in 5.2-5.3,
which follows immediately from Corollaries 3.1 and 5.1.

Proposition 5.3. The induced module IT'(G T A; E) has the finite multiplicity property
for any finite-dimensional A-module E, if there exists an x € G for which N(p) N z-
(gr A)¥ = (0) (cf. (NPRO) in 3.2). Here N'(p) is the totality of nilpctent elements in p.

17
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As a special case, we gain

Corollary 5.2. Ifny is a large Lie subalgebra of g, (see §4), the conclusion of Proposi-
tion 5.3 s true for A = U(n) with n=1n,QrC.

In view of the large Lie subalgebras specified in §4, one may realize that this corollary
has numbers of applications.

Remark. For quasi-spherical Lie subalgebras ng (see 4.3), Bien-Osl ima recently got a
result similar to the above corollary. But our method here is completely different from
theirs. |

Now let (n, E) be a smooth Fréchet representation of a closed subgroup N of G, and
consider the induced module A(G;n). For a Harish-Chandra (g, K')-module H, take a
finite-dimensional, K -stable generating subspace Hg of H. Then the associated graded
S(g)-module M = gr(H; Hy) = Py My, has a natural K-module structure.

We can estimate the intertwining number Iy ) (H, A(G; 7)) from H to A(G;7n):

Theorem 5.3. For each x € GG, one has the inequality

(512) IU(g)(Hv 'A(G7 "7)) < Z II\"ﬁ:L'N:c‘l (Mk/((.Tﬂ)M)k, Ex)a

k=0
where ((z-n)M) = My N (z-n)M, and (9, E;) is the representation of eNz™! on E
defined by ny(znz™') = n(n) (n € N).

This theorem enables us to deduce useful criteria for the finiteness of intertwining
numbers Iy q)(H, A(G; 7)), which are applicable even to infinite-dimensional (7, E)’s.

To be specific, fix an ¢ € G, and let II denote the set of equivalence classes of
irreducible finite-dimensional representations of K N zNz~!. Then the locally finite
(KNzNz™')-module M/(z-n)M = &, Mi/((z-n)M) is decomposed into a direct sum
of the irreducibles as '

M/(z-n)M =~ @yen[m,]V,,

where V, is an itreducible (KNzNz~!)-module of class v, and m,, denc tes the multiplicity
of vy in M/(z-n)M.

One finds that (5.12) is rewritten as

(513) IU(E)(H? -A(G»U)) S Z m’YII\"ﬁa:N:L'"l (V‘/aEx)
~ell

The sum in the right hand side is finite if and only if there exists a fnite subset F of II
for which

(5.14) | my =0 or Igmene—1(Vy, Bz) =0 fory & F,
and '
(515) IKQINI—I(VW,EQL-) < oo for v E F.

The above discussion coupled with Corollary 2.2 leads us to the following
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Theorem 5.4. Under the above notation, the intertwining number Iy (H, A(G;n))
from a Harish-Chandra module H to an induced U(g)-module A(G;7) takes finite value
if there exists an ¢ € G such that

(5.16) V(g H) 0 (a-n)* = (0),
and that
(517) ]]{nx]\]’x—l (V’\/,Ex) < o0 hOldS

for every irreducible constituent V., of M/(z-n)M. Here M = gr(H;H,), and V(g; H)
denotes the associated variety of H.

From this theorem, we immediately deduce an interesting criterion for A(G;n) to be
of multiplicity finite, as follows.

Theorem 5.5. Let N be a closed subgroup of G whose Lie algebrec ng is large in g,
and take an element x € G such that (z-n)* NN (p) = (0). Then, for a smooth Fréchet
representation (1, E) of N, the induced module A(G;n) has the finite multiplicity property
if so is the restriction of  to the compact subgroup z 'Kz N N.

This theorem extends one of the principal results in our previous work, [20, I, Th.2.12],
where we studied the case of semidirect product large Lie subalgetras ng = by + uo
specified in Proposition 4.3, through the theory of (K, N)-spherical fus ctions. Interesting
applications are found in [20, II] for reduced generalized Gelfand-Gra:v representations.

5.5. Relation with K-harmonic polynomials on p. We conciude this article by
relating the (K Nz Nz~')-module M/(z-n)M in Theorems 5.3 and 5.4, with K-harmonic
polynomials on p.

As in §3, regard the elements of S(p) as polynomial functions on p through the Killing
form of g. An element f € S(p) is called K-harmonicif f is annihilated by every Ad(K)-
invariant, constant coefficient differential operator on p without constant term. Let H(p)
denote the totality of K-harmonic polynomials on p. It is easily observed that H(p) is
a graded K-submodule of S(p): H(p) = Dr>oM*(p), where H*(p) := H(p) N S*(p) is
K-stable.

A result of Kostant and Rallis (cf. [12, p.381]) says that the multiplication (h,j) —
hj (h € H(p), j € S(p)¥) gives a K-isomorphism

(5.18) H(p) @ S(p)™ ~ S(p),
where S(p)¥ is the algebra of Ad(K )-fixed elements of S(p). This inplies
(5.19) S(p) = H(p) ® (H(p) ® S(0))

as K-modules, with S(p)¥ = S(p)X NpS(p) as before. The linear projection from S(p)
to H(p) along this decomposition will be denoted by a.
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For any Harish-Chandra (g, K )-module H, we can and do take & finite-dimensional
generating subspace Hy C H of the form

(5.20) Hy = ®scaH(6)

for a finite subset ® of K (= the unitary dual of K'), where H(§) deunotes the é-isotypic
component of H. Noting that Hy is stable under K and U(g)¥X, one sees that the
associated graded (S(g), K)-module M = gr(H; Hy) = @, My is annihilated by € and
S(p)X. Hence it follows from (5.19) that M = H(p)Mo and that

(5.21) B:HP)®My>h®v—hveM

gives a surjective K-homomorphism (cf. [17, Proof of Prop.5.5]). Note that Ho ~ My as
K-modules.
Now let N be any closed subgroup of G’ with complexified Lie algebra n. We set

(5.22) H(p;n) = H(p)/ap[n]S(p)),

where p[n] denotes thebimage of n by the projection g — p along g := € d p. Note that
H(p;n) is a (K N N)-module.
We can relate (K N N)-module M/nM with H(p;n) as follows.

Proposition 5.4. (1) The K-homomorphism f in (5.21) naturally induces a surjective
(K N N)-module map ’ v
(5.23) H(p;n) @ Mg — M /nM.

(2) If N(p) N nt = (0), the space H(p;n) is finite-dimensional.

This proposition, combined with Theorem 5.3, allows us to estimate the intertwining

number Iy (H, A(G;7)) in (5.12) by means of H(p;n) and Ho >~ M, as in

Corollary 5.3. Let H be a Harish-Chandra (g, K)-module and A(G;n) be the G- and
U(g)-module analytically induced from a smooth N -representation (n 7). Then one has

(5.24) : Ty (H, A(G; 1)) < Ixrane— (H(p; 2-n) @ Ho, E:)
for each x € G. Here M = gr(H; Hy) with Ho in (5.20), and e Nz~ acts on E, = E by
znz™! — p(n) (n € N).
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