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A model $M$ is said to be minimal if there is no proper elementary submodel
of $M$ . We consider the size of an indiscernible set in a minimal model. $h[2]$
Shelah showed that if a theory $T$ is $\omega$-stable then there is no infinite indiscernible
set in a minimal model of $T$. On the other hand Marcus [1] constructed a theory
having a minimal (and prime) model with an infinite indiscernible set. The
theory is stable but non-superstable. In this note we show the following theorem:

THEOREM. Let $T$ be superstable and let $A$ be any set. Then there is no minimal
model over A which has an infinite set of indiscernibles over $A$ .

1. Notation

We fix a countable stable theory $T$ . We usually work in a big model $\mathbb{C}$ of
$T$. Our notations are fairly standard. $A,$ $B,$

$\ldots$ are used to denote small subsets
of C. $\overline{a},\overline{b},$

$\ldots$ are used to denote finite sequences of elements in C. $\varphi,$
$\psi,$

$\ldots$ are
used to denote formulas (with parameter). $p,$ $q,$ $\ldots$ are used to denote types (with
parameter). The nonforking extension of a stationary types $p$ to the domain $A$

is denoted by $p|A$ . The type of $a$ over $A$ is denoted by $tp(a/A)$ . $R^{\infty}(p)$ is the
infinity rank of a type $p$ . We simply write $R^{\infty}(a/A)$ instead of $R^{\infty}(tp(a/A))$ .
The set of realizations of a type $p$ (resp. a formula $\varphi$) in a model $M$ is denoted
by $p^{M}$ (resp. $\varphi^{M}$).

2. Theorem and Proof

First we prove the following lemma:

Lemma. Let $T$ be superstable and le$t$ $A$ be any set. Let $I=\{a\}\cup J$ be an
infinite Morley sequence of some $sta$tionary type $p\in S(A)$ . Let $M$ be a model
containing I U A. Suppose that $B$ is a maximal set satisfying $J\subset B\subset M$ and
$B\downarrow_{A}a$ . Then $B$ is an elementary submodel of $M$ .

Proof: For the simplicity of the notation, we may assume that $A=\emptyset$ . Take
any consistent formula $\varphi(x, b_{0}^{-})$ over $B$ . By the Tarski criterion it is enough to
see that $\varphi$ is satisfied by $B$ . By the superstability of $T$ we can pick an element
$b$ of $\varphi^{M}$ such that $R^{\infty}(b/B)$ is minimal.
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CLAIM. $b$ is independent from $a$ over $B$ .

PROOF: Take a formula $\theta(x, b_{1}^{-})\in tp(b/B)$ such that $R^{\infty}(b/B)=R^{\infty}(\theta)$ . With-
out loss of generality, we can assume that $b_{0}^{-}\subset b_{1}^{-}$ . Suppose that $b$ and $a$ are not
independent over $B$ . By the superstability there is a finite sequences $\overline{b}\in B$ such
that $ab\downarrow_{\overline{b}}B$ and $\overline{b}_{1}\subset\overline{b}$ . Then we obtain that $b$ and $a$ are not independent over
$\overline{b}$ . So we can get a formula $\psi(x, \overline{b}, a)$ such that $\models\psi(b,\overline{b}, a)$ , and $if\models\psi(b’, \overline{b}, a)$

then $b’$ Ys $a$ . Let $\Gamma(\overline{b}, a)$ denote $(\exists x)(\varphi(x, b_{0}^{-})\wedge\psi(x,\overline{b}, a)\wedge\theta(x, b_{1}^{-}))$ . On the
other hand there is a finite subset $I’$ of $I$ such that $I-I’$ is the infinite Morley
sequence of $p|\overline{b}$ since $\kappa(T)$ is finite. Moreover we can assume that $a$ E $I-I’$ , since
$\overline{b}$ and $a$ are independent. So we can pick some $a’\in J(\subset B)$ such that $\Gamma(\overline{b}, a’)$

holds. Therefore there is an element $b’\in\varphi^{M}$ such that $R^{\infty}(b’/\overline{b})=R^{\infty}(b/B)$

and $b’$ YS $a’$ . But $R^{\infty}(b’/B)=R^{\infty}(b’/\overline{b}a’)<R^{\infty}(b’/\overline{b})\leq R^{\infty}(b/B)$ . This
contradicts the minimality of $R^{\infty}(b/B)$ . Hence $b$ and $a$ are independent over $B$ .

So we have $b\in B$ by the maximality of $B$ and the above claim. Hence $\varphi$ is
realised by the element $b$ of $B$ . This completes the proof of the claim. 1

Our theorem follows directly from the above lemma:

Theorem. Let $T$ be superstable and let $A$ be any set. Then there is no minimal
model over A which $h$ as an infinite set of indiscernibles over $A$ .

Proof: Suppose that $M$ is a model containing a set $A$ and an infinite set $I$ of
indiscernibles over $A$ . We can assume that $I$ is an infinite Morley sequence over
$A$ because $\kappa(T)$ is finite. By the lemma we get a proper elementary submodel
of $M$ . So $M$ is not minimal over A. 1

3. Example

The following example shows that our theorem can not be extended to a
stable theory. It is a slightly improvement of Marcus’ one (see [1]).

EXAMPLE: We construct a countable structure $M$ with the following conditions:
i) $M$ is minimal, ii) $M$ has an infinite indiscernible set and iii) Th$(M)$ is stable
but non-superstable. Let $L_{0}$ be a language with an equality only. For $i<\omega$ , let
$L_{i+1}=\{P_{i+1}\}\cup\{R_{i+1}^{n} : n<\omega\}\cup L_{i}$ , where $P_{i+1}$ is a unary predicate symbol
and $R_{i+1}^{n}’ s$ are binary predicate symbols. For each $i<\omega$ we define inductively
countable $L_{i}$-structures $M_{i}$ and countable subgroups $H_{i}$ of $Aut(M_{i})$ satisfying
the following properties:
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(1) $P_{i+1}^{M_{i+1}}=M_{i+1}-M_{i}$ .

(2) $R_{i+1}^{n}\subset P_{i}^{M_{i+1}}\cross P_{i+1}^{M_{i+1}}$ . For any $a\in P_{i}^{M}$ and $b\in P_{i+1}^{M_{i+1}}$ there is a
predicate $R_{i+1}^{n}EL_{i+1}$ such that $\models m_{+1}(x, b)$ if and only if $x=a$ .

(3) $M_{0}$ is a countable set. $H_{0}$ is a countable subgroup of permutation of
$M_{0}$ which move only a finite number of elements.

(4) For all $;\in H_{0}$ and $i<\omega$ there is a unique extension of $f$ to an
automorphism $f^{*}\in H_{i}$ .

Now assume that $M_{i}$ and $H_{i}$ are defined as required. Let $M_{i+1}=\{b_{f}$ :
$f\in H_{i}\}UM_{i}$ . Then $M_{i+1}$ is countable (because $H_{i}$ is so). Define a predicate
$P_{i+1}^{M_{i+1}}=M_{i+1}-M_{i}$ . Let $\{a_{n} : n<\omega\}$ be an enumeration of $P_{i}^{M_{1}}$ . For every
$n<\omega$ define a predicate $x_{+1}^{M_{i+1}}=\{(f(a_{n}), b_{f}) : fEH_{i}\}$ . Clearly $R_{i+1}^{n}’ s$

satisfy the condition (2). For $g\in H_{i}$ define a $g^{*}$ as follows:

$\{\begin{array}{l}g^{*}(b_{j})=b_{g\cdot f}g^{*}(a)=g(a)\end{array}$ $foreacha^{f}\in M_{i}foreachb\in M_{i+1}-M_{i}$

,

Then $g^{*}$ is an automorphism of $M_{i+1}$ . In fact we can see that $(f(a), b_{f})\in$

$x_{+1}$ iff $((g\cdot f)(a), b_{g\cdot f})\in R_{i+1}^{n}$ iff $g^{*}((f(a), b_{f}))\in R_{i+1}^{n}$ . Let $H_{i+1}=\{g^{*}$ : $g\in$

$H_{i}\}$ . Then $H_{i+1}$ is a countable subgroup of $Aut(M_{i+1})$ since $H_{i}$ is so. Hence we
can construct $M_{i}’ s$ and $H_{i}’ s$ .

Let $L=\cup L_{i}$ . Let $M$ be an L-structure with $M=\cup M_{i}$ .

(i) $M$ is a minimal model : Let $N$ be any submodel of $M$ . Take any
element $a$ of $M$ . Since $M$ is the union of $P_{i}^{M}’ s$ there is minimum $i<\omega$ such
that $a\in P_{i}^{M}$ . Pick an arbitrary element $b$ of $P_{i+1}^{N}$ . By the condition (2) there
is some predicate R E $L_{i+1}$ such that $R(x, b)$ holds if and only if $x=a$ . Hence
$a\in dcl(b)\subset N$ , so $N=M$. Therefore $M$ is minimal.

(ii) $M_{0}$ is an indiscemible set : Let $\overline{a},$

$\overline{b}$ be any elements of $M_{0}$ with the
same length. By the condition (3) there is an $fEH_{0}$ such that $f(\overline{a})=\overline{b}$ .
Moreover by (4) $f$ can be extended to an automorphism of $M$ . So $tp(\overline{a})=tp(\overline{b})$ .

(iii) Th$(M)$ is not superstable : Let $\{a_{n} : n<\omega\}$ be an enumeration of
$M_{0}$ . For all $n<\omega$ let $\overline{a}_{n}=a0^{-}a_{1^{\wedge-}}\ldots a_{n}$ . For all $n<\omega$ let $\varphi_{n}(x,\overline{a}_{n})$ denote
$R_{1}^{0}(a_{0}, x)\wedge\ldots$ A $R_{1}^{n}(a_{n}, x)$ . Then $(\varphi_{n})_{n<\omega}$ is a infinite chain of forking formulas.
In fact, for each $n<\omega,$ $\{\varphi_{n}(x,\overline{a}_{n-1}^{\wedge}a)^{C} : a\in M_{0}-\{a_{0}, \ldots, a_{n-1}\}\}$ is a pairwise
disjoint set. Hence Th$(M)$ is not superstable.
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