goooboooogn
0 8180 19930 99-110

A NOTE ON A POLYNOMIAL TIME REDUCIBILITY

JUICHI SHINODA
BEHE—
(BHEKRKE - ARIEBEHRAR)

§1. INTRODUCTION

In [2], G. L. Miller studied a version of polynomial time reducibility on the
functions which have syntactic polynomial growth, and proved under the Extended
Riemann Hypothesis (ERH) that some number theoretic functions such as the Eu-
ler function and the Carmichael function are equivalent to the prime factorization
with regard to this reducibility.

Let ¥ = {0,1} and £* denote the set of finite strings on X. For an element z of
¥*, |z| denotes the length of z. We sometimes identify the natural numbers with
the elements of X*. A function f : ¥* — X* has syntactic polynomaial growth if
there is a polynomial p(t) such that |f(z)| < p(|z]) for all z € ¥*. Throghout this
note, z,y, z,... will denote elments of ¥* and f, g, h,... functions with syntactic
polynomial growth. Following [2], f is said to be polynomial time reducible (p-
reducible) to g, write f <, g, if there is a polynomial time computable function
® : ¥* x * — X* such that f(z) = ®(z,g(x)) for all z € T*. Tt is easy to see
that this reducibility is reflexive and transitive, and therefore we can define an

equivalence relation =, by
59 [9& 95

The p-degree of f is the equivalence class of f and denoted by deg,(f). f <, g iff
f<pgandg¥, f. _
Suppose n has the prime factorization pf'p5? - - - pp*, which we denote by g(n).

The Euler function ¢(n) and the Carmichael function A(n) are p-reducible to g

100

since they are given by

e(n) =pF pg> ™t T pr — D(p2 — 1) -+ (pe — 1),
A(n) = lem{p?* " (p1 — 1),...,p2* *(px — 1)}.

G. L. Miller [2] has shown that the converse holds if we assume ERH. He defined

an auxilially function X'(n) by
N(n)=lem{p; — 1,...,px — 1},

and proved assuming ERH that if f is a function with syntactic polynomial growth
and for all n X' (n) devides f(n) then g <, f, which implies ¢, A and X’ are all
p-equivalent to g, the prime factorization.

This note is concerned with the structure of the p-degrees of functions with
syntactic polynomial growth. In §2, we shall study the basic properties of the
reducibility <,. In §3, we prove the existence of minimal pairs: given f #, 0,
there is a g such that f and ¢ form a minimal pair. In §4, the density of the
p-degrees of low functions are proved: if f and g are low and f <, g, then there

is an h such that f <, h <, g.

§2. BASIC PROPERTIES

Thoroughout this note, let {®.(z,y)}cen be a fixed recusive enumeration of
the polynomial time computable functions of two variables. Thus, f <, g iff there
is an e such that f(z) = ®.(z, g(z)) for all =.

The p-reducibility is a special case of the polynomial time 1-#f reducibility <7 ,,,
where f <!, g iff there are polynomial time computable functions ®(z,y) and

¢(z) such that
f(z) = ®(z, g(p(z))) forall z € T*.

First we remark that the p-reducibility is strictly stronger than the polynomial

time 1-tf reducibility.

Proposition 2.1. There are recursive functions f and g such that f <7_,, g but

fﬁpg'

Proof. We identify £* with N as usual. Define g by recursion as follows.
9(0) =0,
9(2z +1) =0,
g2z +2) =P (z+1,9(z+1)) + 1.

Define f by f(z) = g(2z). Then, obviously f <}_,, g. However, by definition, for

all z we have

f(z+1) = g(22 +2) # ®z(z + 1,9(z + 1)),

which implies f £, g. O

Definition 2.2. (f® g)(z) = (f(2),9(=)).

The following lemma yields that the p-degrees form an upper semi-lattice.
Lemma 2.3. (1) f<, f®gandg<, fDyg.
(2) ff<,handg<, h,then f®g <, h.

Proof. (1) f(z) = ((f @ 9)(2))o and g(z) = ((f ® g)(2))1. (2) Suppose f(z) =
®(z, h(z)) and g(z) = ¥(z, h(z)) where ®(z,y) and ¥(z,y) are polynomial time
computable functions. Define ©(z,y) by

O(z,y) = (®(z,y), ¥(=, 3))-

Then, O(z, y) is also polynomial computable, and (f ® g)(z) = O(z, h(z)). O

Proposition 2.4. For every f, there is a funclion g recursive in f such that
F<p9.

Proof. Define h(z) = ®,(z, f(z))+ 1. Then, h £, f. Let g = f ® h. It is easy to
see that g has the desired property. [

Proposition 2.5. Given f #, 0, there is a function g recursive in f such that f

and g are incomparable with regard to <,.

Proof. g is constructed by simple diagonalization. We require g to satisfy

(Rze) g(z) # ®c(z, f(z)) for some z,
and
(R2e+1) f(z) # ®c(z,9(z)) for some z.

Now define g by recursion.
Stage 0. Let Iy =0.

101

102

Stage 2e + 1. Suppose [y, and g [[3¢ have been already defined where
gllhe=g [{ZGE* : |Z| <l2e}-

Let lze41 = lge + 1 and g(z) = ®c(z, f(z)) + 1 for all z with |z| = l3.. Then, the
requirement R, 1s obviously satisfied.

Stage 2e + 2. Suppose lyc41 and g [lgeq1 are given. Since f #, 0, there is an
z € X* such that l5e41 < |z| and f(z) # ®.(z,0). Take the least such z and set
lye4s = |z| + 1. Define g on {z : le41 < |2| < lze42} by setting g(z) = 0. Then

the requirement Rg.y; is satisfied. O

Proposition 2.6. Given {fno}nen such that f, #, 0 for all n, there ezisis a
function g such that g #, 0 and f, £, g for alln.

Proof. The proof is similar to that of the preceding proposition. The requirements

for ¢ are

(Rs) 9(z) # ®(2,0) for some z,
and

(Roet1) fn(2) # ®i(2,g(2)) for some z,

where € — (n, i) is a (recursive) bijection between N and N x N.

We construct g in stages.

Stage 0. Set lp =0.

Stage 2¢e +1. Suppose Iy, and g [I3, are given. Set l3e41 = Iz + 1, and define
gon {z:]z| = Iz} by

f(z) = ®c(z,0) + 1.
Then, R;. is met in this stage.

Stage 2¢e+2. Suppose lyo41 and g | lye41 have been already defined. Let (n,1)
be the e-th element of N x N. Since f, #, 0, there is an z such that ly.4; < ||
and f,(z) # ®;(z,0). Take the least such = and set lscy2 = || + 1. We extend ¢
to {z : |z| < laet2} by setting g(z) = 0 for all z with lpe4q < |2| < lyey2. Then,

the requirement Rgey; is satisfied. O

Corollary 2.7. There exisis a non-recursive g such that for every recursive f if

f#,0 then f £, 9.

$§3. MINIMAL PAIRS

Definition 3.1. -f and g form a minimal pair if

(1) f#p 0and g #, 0,
(ii) for every h,if h <, f and h <, g, then h =, 0.

Theorem 3.2. For every f with f £, 0, there is a function g recursive in f such

that f and g form a minimal pair.
Proof. The following are the requirements for g.

(Rze) g9(z) # ®.(z,0) for some z,

(Rae+1) (Vz)[h(z) = Pe, (2, f(2)) = Pe,(2,9(2)] = h =, 0,

where e — (e, e2) is a recursive bijection between N and N x N.

The requirement Ry, will be met by simple diagonalization. We only define
g(z) to be different from ®.(z,0). For the requirement Rje41, first we try to in-
validate the equality ®.,(z, f(z)) = ®.,(z,g(z)), and if it fails then the function
®.,(z, f(z)) will be computed in polynomial time. To accomplish the construc-
tion consistently, however, we need a simple priority argument. We say that the
requirement R, is given priority over R,,, or that R, has higher priority than R,,,

if n < m.

Definition 3.3.

(1) R is satisfied before stage s + 1 iff there is an z such that |z| < s and
9(z) # @e(z,0).

(2) Rges 1s satisfied before stage s + 1 iff there is an z such that |z| < s and
P, (2, f(z)) # Pes(z, 9(2)).
It is easy to see that if R; is satisfied before stage s+1 then it is met, furthermore

in the case of i = 2e¢ + 1 it is met by invalidating the premise of the requirement.

Definition 3.4. R, requires attention at stage s + 1 iff e < s and 1t is not

satisfied before s + 1.

Definition 3.5. Rj.4; requires attention at stage s+ 1 iff e < s and

(i) it is not satisfied before stage s + 1,
(ii) there are z, y such that |z| = |y| = s and that ®.,(z, f(z)) # P.,(z, y).

103

104

With these definitions we give a detail of the construction of g.

Stage 0. Do nothing.

Stage s +1. Suppose g | {z : |z| < s} has been already defined. At this stage,
we extend g on {z: |z| < s}. If no requirement requires attention, then we simply
set g(z) = 0 for all z with |z] = s. Otherwise take the requirement R; (i < s)
with highest priority which requires attention. We attack the requirement R; in
this stage. If i = 2¢, then for all z with |z] = s we define g(2) to be different
from the value ®.(z,0). Then, it is easy to see that R,. is met at this stage.
Suppose ¢ = 2¢ + 1. Let zo, yo be the least z, y such that |z| = |y| = s and
@, (2, f(z)) # Pe,(z,y). Then, we extend g on {z : |z] < s} by setting g(z) = yo
for all z with |z| = s. Thus, the requirement Rs.4, is satisfied. This completes

the construction.
Lemma 3.6. FEach requirement requires attention only finitely often.

Proof. Suppose lemma is proved for all j < i. Take a sufficiently large so so that
any of R; (j < i) does not require attention at any stage after so. If R; requires
attention at some stage s + 1 > sg, then it must be attacked and does not require

attention any more. [
Lemman 3.7. Every requirement 1s mel.

Proof. By the previous lemma, there is an sg such that any of the requirements
R; (j < 1) does not require attention after so. If R; is satisfied at some stage, then
it must be met. So, suppose it is never satisfied. Since any even requirement 1is
eventually satisfied, ¢ must be 2e + 1 for some e. Suppose s +1 > sg. Since Rae41

does not require attention at s + 1, we have
(Vz,9)llz| = |yl = 5 — ®ei (2, f(2)) = Pea(2,9)].
Therefore, we see that
(Vz)[l2| > s0 — @, (2, f(2)) = e, (2, 01,

which implies that the function z — @, (z, f(z)) is computable in polynomial
time. 0O

§4. DENsITY

Ladner [1] applied delayed diagonalizations first in the proofs of the density and
splitting theorems for the polynomial time Turing degrees (p-T degrees). It is not
difficult to apply his method to the p-degrees of recursive functions.

Theorem 4.1. Given recursive f, g such that f <, g, there s an h such that
F<,h<,yg.

Proof. We require h to satisfy the following.

(Rze) h(z) # ®c(z, f(z)) for some z,
and
(R2e+1) g(z) # ®.(z, h(z)) for some z.

We will construct h so that h(z) agrees with (f(z),g(z)) on some long interval
{z : l3¢ < |2| < lye41} in which there is an 2 witnessing the requirement Rj., and
likewise agrees with {f(z),0) on the next long interval {z : lye41 < |2| < lyeq2}, In

which there is an z witnessing the requirement Ry.41. To ensure that f <, h <, g,

some delay will be put before changing stages. Now we give the detail of the

construction.

Stage 0. We set lg = 0.

Stage 2¢ + 1. Suppose Iz, is given. Since f @ g £, f, there is an z such
that Iy < |z| and (f(z),9(z)) # Pe(z, f(z)). We find the least such z by
successively computing f(0'2¢), g(0'2¢), ®.(0'2¢, f(0'2¢)); fF(0'2~11), g(0'2e~11),
®,(02¢=11, £(0'2¢=11)); ... until we encounter the first z such that

{f(2),9(2)) # Pe(, f(2)).

Let m be the number of steps needed to accomplish these computations. We set
lzeq1 = lae + m.

Stage 2e + 2. Suppose lyc41 has been already defined. We search for the first
z such that ly.41 < |z| and g(z) # Pe(z, (f(z),0)). Since g %, f®0, such an

z exists. The definition of ly.42 is similar to the previous stage. Namely, lye4o

is ly¢41 plus the number of steps needed to find the first 2 which satisfies the
inequality g(z) # ®.(z, (f(z),0)).

105

106

We define h by

_ [f(=2),9(z)) iflze < 2| < le4r,
e = | F@,0 i bers < o < loesa.

Then, h satisfies all the requirements R, and Rz.41, and therefore we obtain
h £, f and g £, h. It is clear that f <, h since f(z) = (h(z))o for all z. To see
that h <, f ® g, suppose z is given. We can find an n such that I, < |z| < I, 41
by performing the construction of the sequence {l,}, in |z| steps. If n = 2e for
some e, then h(z) = (f(z), g(z)); if n = 2¢ + 1 for some e, then h(z) = (f(=),0).
Thus, h(z) is calculated from z and (f @ g)(z) in polynomial time of |z|. O

For the non-recursive functions, it is not known whether the density theorem
holds or not. At present, we can prove that if f and g are low then Theorem 4.1
holds, where f is said to be low if the Turing jump of f has the same Turing degree

as 0/, i.e., f' =7 0.

Lemma 4.2. (Limit Lemma [3]). If f is recursive in 0', then there is a recursive

sequence {fs}sen such that
lim f,(z) = f(z) for all z.

Theorem 4.3. If f and g are low and f <, g, then there 1s an h such that
f<;h<pg.

Proof. Suppose f and g are low. By the limit lemma, there are recursive sequences
{fs}s and {g,}s such that

lim fi(2)=f(z) and lim g,(z) = g(2).

Let U = {e : (I(z,y,2) € We)[f(z) =y & g(z) = z]} where W, is the e-th
recusively enumerable set. Then, U is recursively enumerable in g, and hence is
recursive in 0’ since g is low. By the limit lemma, there is a recursive sequence

{us}s such that u,(e) <1 and lim, u,(e) = U(e) for all e. We define h as in the
proof of Theorem 4.1:

h(a:) — { (f(:c),g(a:)) if loe < |x| < l2e+1.’
(f(=),0) if lze41 < |2} < loeya.

107

The increasing sequence {l,}, will be so constructed that h satisfies the same
requirements Ry, and Rgey41 In the proof of Theorem 4.1. Further, we will build a
recursive sequence {V;,}i ,en during the construction. Let V; = |J, V;,,. Then, V;
is recursive enumerable. By the recursion theorem we may assume that we have

in advance an index of V; with some recursive function 8, i.e., V; = Wy(,.

Definition 4.4. Suppose i and s are given. The requirement R; is U-certified at
s if u,(6(7)) = 1 and there is a (z,y, z) € V; , such that f,(z) = y and g,(z) = z.

Now, we give the construction of {l,},. In the construction, no elements are
enumerated in V; unless explicitly mentioned.

Stage 0. Set lp:=0.

Stage 2e+1. Take the least ¢ < e such tha Rs; is not U-certified at lo.. We say
that Ry; 1s aftacked. Our construction in this stage consists of one main routine

with 3 subroutines.

Main routine. We set s := [5.. Go to Subroutine 1.

Subroutine 1. Suppose the construction enters this routine with s.

While true do
If there exists an z such that
(i) le<|z[<sand
(i) (fs(2), 9:(2)) # ®i(2, fs()),
Then take the least such z and
y = fi(z),
z:= g,(2),
Vai,s41 = Vai s U{(2,y,2)},
s:=s+1,
Exit from Subroutine 1 and go to Subroutine 2;
Else s := s+ 1;
End if
End while;
End Subroutine 1.

The following claim ensures that we eventually exit from the while-loop and

enters into Subroutine 2.

108

Claim. Given s, there isat > s and « such that Iy, < |z| <t and (fi(2), g:(2)) #
®;(z, fi(<))- |

Proof. Since f @ g £, f, there exists an z such that I, < |z| and (f(z), g(z)) #
®;(z, f(z)). Take a sufficiently large ¢ so that ¢ > max{s, |z|}, fi(z) = f(z) and
g:(x) = g(z). O

Subroutine 2. Suppose the construction enters this routine with s.
‘While true do
If Ry; is U-certified at s,

Then exit from Subroutine 2 and go to Subroutine 3;

Else
If u,(0(2¢)) = 0 and for all (z,y, z) € Va; ,, either
fu(#) £y or gu(2) #
Then exit from Subroutine 2 and go to
Subroutine 1;
Else s := s+ 1;
End if;
End else
End if;
End while;

End Subroutine 2;

Claim. Given s, suppose Vo; , = Va; s for allt > s. Then, there 1s a t > s such
that either

(1) Ry; is U-certified att or

(2) u¢(6(2¢)) =0, and for all (z,y,z) € Va; s either fi(z) £y or gi(z) # 2.

Proof. Take a sufficiently large sg > s so that

w(8(2)) = U(9(2i)) and
(Vt > s0) .
(V(z,y, 2) € Vai,o)[fe(2) = f(z) & g:(2) = g(2)]

Such an sq exists since V5; , is finite. If U(6(2:)) = 1, then (1) holds for all ¢ > s;.
If U(6(21)) =0, then (2) holds for all t > so. O

Subroutine 3. Suppose the construction enters this routine with s. Let lg.41

be Iy, plus the number of steps performed so far, and exit from the main routine.

Claim. ly. 1 is defined.

Proof. Suppose not. Then we always exit from Subroutine 2 with

(*) (V(z,9,2) € Va2i,0)[fs(2) #y V gu(2) # 7]

and enters Subroutine 1. Since f @ g £, f, there is an z with l5. < |z| such that
(f(z), 9(z)) # ®i(z, f(z)). Let y = f(z) and z = g(z). Take a sufficiently large sg
so that

(Vs > s0)[fa(2) = f(z) & gs(z) = g(=)].

We may assume that |z| < sg. If (2, y, z) is not enumerated into Va; up to sg, then
(z,y, z) is witnessed each time Subroutine 1 is executed after so. Therefore, if we

enter Subroutine 1 infinitly often, then (z,y, z) must be enumerated into V»;, and
thus U(6(2i)) = 1 by definition, which contradicts (*). O

Stage 2e + 2. Similar to Stage 2e + 1. Take the least ¢ < e such that Rg;41
is not U-certified at ly.41. The requirement Ry;; is attacked in this'stage. In
Subroutine 1, we search for s > ly.41 and z such that lp.4; < |2| < s and
gs(z) # ®;(z, (fs(z),0)), and enumerate (z,y, z) into Vy;4; where y = f,(z) and
z = g,(z), then goto Subroutine 2. Other subroutines are defined similarly. We
leave the detail to the reader.

This completes the construction. We will show that {/,,}, and h so constructed

satisfy the conditions of the theorem.
Lemma 4.5. For each i, the requirement R; is attacked only finitely often.

Proof. We show the lemma for Rj;. Suppose Ro; is attacked infinitely often. Let
e be arbitrary and suppose Rj; is attacked at stage 2e + 1. Then, since Ry;
is U-certified during stage 2e + 1, there is an s such that Iy, < s < lyc4; and
us(0(21)) = 1. Therefore, {5 : u,(f(2¢)) = 1} is infinite and hence we must have
U(6(2i)) = 1. Thus, by the definition of U, there is a (z,y,z) € Vo; such that
f(z) = y and g(z) = z. Take a sufficiently large sg so that

(Vs > 50)[us (6(20)) =1 & (2,9,2) € Vais & fi(2) = f(2) & g4(2) = 9(2)].

Then, Rs; is U-certified at any s after sg, which is a contradiction. [

109

110

Lemma 4.6. FEvery requirement R; s satisfied.

Proof. We prove this for Ry;. Take a sufficiently large no so that no requirements
Ry (j < i) are attacked after any stage after ng. First we show that U(8(2i)) = 1.
If U(6(2i)) = 0, then there is an sg such that for all s > sq,

(V(.’B,y, z> € V2i,s)[fs(z) 7& yvga(z) # z];

which implies the requirement R,; is not U-certified at any s with s > sg, and
therefore Ry; must be attacked at any stage 2¢ + 1 > no with Iy > so, a con-
tradiction. Since U(6(2i)) = 1, there is a (z,y,z) € Va; such that f(z) = y
and g(z) = z. Suppose (z,y,z) € Vai,4+1 — Vais. Then, by the construction,
we have y = f,(z), z = g,(2) and (f,(z), g:(2)) # ®i(z, fs(z)). It follows that
h(z) = (f(z), g(z)) # ®i(z, f(z)), and thus the requirement Ro; is satisfied. O

Given z, performing the construction of {l,}, in |z| steps, we can calculate
the unique n such that I, < |z| < l,4+1. Then, we can calculate h(z) from z and
(f @ g)(z) as before in polynomial time of |z|, and we obtain h <, f @ g. The
requirements Rg. and Rg.4; ensures that h £, f and g £, h. This completes the
proof of Theorem 4.3. O

REFERENCES

1. R. E. Ladner, On the structure of polynomial time reducibilities, J. Assoc. Comput. Mech.
22 (1975), 155-171.

2. G. L. Miller, Riemann’s hypothesis and tests for primarity, J. Computer and System Sciences
13 (1976), 300-317.

3. R. L. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag, New York, 1987.

