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A NOTE ON A POLYNOMIAL TIME REDUCIBILITY

JUICHI SHINODA
篠田寿一

(名古屋大学・人間情報学研究科)

\S 1. INTRODUCTION

In [2], G. L. Miller studied a version of polynomial time reducibility on the
functions which have syntactic polynomial growth, and proved under the Extended
Riemann Hypothesis (ERH) that some number theoretic functions such as the Eu-

ler function and the Carmichael function are equivalent to the prime factorization
with regard to this reducibility.

Let $\Sigma=\{0,1\}$ and $\Sigma^{*}$ denote the set of finite strings on $\Sigma$ . For an element $x$ of
$\Sigma^{*},$ $|x|$ denotes the length of $x$ . We sometimes identify the natural numbers with

the elements of $\Sigma^{*}$ . A function $f$ : $\Sigma^{*}arrow\Sigma^{*}$ has syntactic polynomial growth if

there is a polynomial $p(t)$ such that $|f(x)|\leq p(|x|)$ for all $x\in\Sigma^{*}$ . Throghout this
note, $x,$ $y,$ $z,$ $\ldots$ will denote elments of $\Sigma^{*}$ and $f,g,$ $h,$

$\ldots$ functions with syntactic

polynomial growth. Following [2], $f$ is said to be polynomial time reducible (p-

reducible) to $g$ , write $f\leq_{p}g$ , if there is a polynomial time computable function
$\Phi$ : $\Sigma^{*}\cross\Sigma^{*}arrow\Sigma^{*}$ such that $f(x)=\Phi(x, g(x))$ for all $x\in\Sigma^{*}$ . It is easy to see
that this reducibility is reflexive and transitive, and therefore we can define an
equivalence relation $\equiv p$ by

$f\equiv pg\Leftrightarrow f\leq pg$ $\ g\leq_{p}f$ .

The p-degree of $f$ is the equivalence class of $f$ and denoted by $\deg_{p}(f)$ . $f<_{p}g$ iff
$f\leq_{p}g$ and $g\not\leq_{p}f$ .

Suppose $n$ has the prime factorization $p_{1}^{\alpha}$
‘

$p_{2}^{\alpha_{2}}\cdots p_{k}^{\alpha_{k}}$ , which we denote by $g(n)$ .

The Euler function $\varphi(n)$ and the Carmichael function $\lambda(n)$ are p-reducible to $g$
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since they are given by

$\varphi(n)=p_{1}^{\alpha_{1}-1}p_{2}^{\alpha_{2}-1}\cdots p_{k}^{\alpha_{k}-1}(p_{1}-1)(p_{2}-1)\cdots(p_{k}-1)$ ,

$\lambda(n)=1cm\{p_{1}^{\alpha_{1}-1}(p_{1}-1), \ldots p_{k}^{\alpha_{k}-1}(p_{k}-1)\}$ .

G. L. Miller [2] has shown that the converse holds if we assume ERH. He defined
an auxilially function $\lambda’(n)$ by

$\lambda’(n)=1cm\{p_{1}-1, \ldots p_{k}-1\}$ ,

and proved assuming ERH that if $f$ is a function with syntactic polynomial growth
and for all $n\lambda’(n)$ devides $f(n)$ then $g\leq_{p}f$ , which implies $\varphi,$

$\lambda$ and $\lambda’$ are all

p-equivalent to $g$ , the prime factorization.
This note is concerned with the structure of the p-degrees of functions with

syntactic polynomial growth. In \S 2, we shall study the basic properties of the

reducibility $\leq_{p}$ . In \S 3, we prove the existence of minimal pairs: given $f\not\equiv_{p}0$ ,

there is a $g$ such that $f$ and $g$ form a minimal pair. In \S 4, the density of the

p-degrees of low functions are proved: if $f$ and $g$ are low and $f<_{p}g$ , then there

is an $h$ such that $f<_{p}h<_{p}g$ .

\S 2. BASIC PROPERTIES

Thoroughout this note, let $\{\Phi_{e}(x, y)\}_{e\in N}$ be a fixed recusive enumeration of

the polynomial time computable functions of two variables. Thus, $f\leq_{p}g$ iff there
is an $e$ such that $f(x)=\Phi_{e}(x, g(x))$ for all $x$ .

The p-reducibility is a special case of the polynomial time l-tt reducibility $\leq_{1- tt}^{p}$ ,

where $f\leq_{1- tt}^{p}g$ iff there are polynomial time computable functions $\Phi(x, y)$ and
$\varphi(x)$ such that

$f(x)=\Phi(x, g(\varphi(x)))$ for all $x\in\Sigma^{*}$ .
First we remark that the p-reducibility is strictly stronger than the polynomial

time l-tt reducibility.

Proposition 2.1. There are recursive functions $f$ and $g$ such that $f\leq_{1- tt}^{p}g$ but
$f\not\leq pg$ .

Proof. We identify $\Sigma^{*}$ with $N$ as usual. Define $g$ by recursion as follows.

$\{\begin{array}{l}g(0)=0g(2x+1)=0g(2x+2)=\Phi_{x}(x+1,g(x+1))+1\end{array}$
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Define $f$ by $f(x)=g(2x)$ . Then, obviously $f\leq_{1- tt}^{p}g$ . However, by definition, for
all $x$ we have

$f(x+1)=g(2x+2)\neq\Phi_{x}(x+1,g(x+1))$ ,

which implies $f\not\leq_{p}g$ . $\square$

Definition 2.2. $(f\oplus g)(x)=\langle f(x), g(x)\rangle$ .

The following lemma yields that the p-degrees form an upper semi-lattice.

Lemma 2.3. (1) $f\leq_{p}f\oplus g$ and $g\leq_{p}f\oplus g$ .
(2) if $f\leq_{p}h$ and $g\leq_{p}h$ , then $f\oplus g\leq_{p}h$ .

Proof. (1) $f(x)=((f\oplus g)(x))_{0}$ and $g(x)=((f\oplus g)(x))_{1}$ . (2) Suppose $f(x)=$

$\Phi(x, h(x))$ and $g(x)=\Psi(x, h(x))$ where $\Phi(x, y)$ and $\Psi(x, y)$ are polynomial time
computable functions. Define $\Theta(x, y)$ by

$\Theta(x, y)=\langle\Phi(x, y), \Psi(x, y)\rangle$ .

Then, $\Theta(x, y)$ is also polynomial computable, and $(f\oplus g)(x)=\Theta(x, h(x))$ . $\square$

Proposition 2.4. For every $f$ , there is a function $g$ recursive in $f$ such that

$f<pg$ ,

Proof. Define $h(x)=\Phi_{x}(x, f(x))+1$ . Then, $h\not\leq_{p}f$ . Let $g=f\oplus h$ . It is easy to
see that $g$ has the desired property. $\square$

Proposition 2.5. Given $f\not\equiv_{p}0$ , there is a function $g$ recursive in $f$ such that $f$

and $g$ are incomparable with regard $to\leq_{p}$ .

Proof. $g$ is constructed by simple diagonalization. We require $g$ to satisfy

$(R_{2e})$ $g(x)\neq\Phi_{e}(x, f(x))$ for some $x$ ,

and

$(R_{2e+1})$ $f(x)\neq\Phi_{e}(x, g(x))$ for some $x$ .

Now define $g$ by recursion.
Stage $\theta$. Let $l_{0}=0$ .
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Stage $2e+1$ . Suppose $l_{2e}$ and $grl_{2e}$ have been already defined where

$g\lceil l_{2e}=gr\{z\in\Sigma^{*} : |z|<l_{2e}\}$ .

Let $l_{2e+1}=l_{2e}+1$ and $g(x)=\Phi_{e}(x, f(x))+1$ for all $x$ with $|x|=l_{2e}$ . Then, the
requirement $R_{2e}$ is obviously satisfied.

Stage $2e+2$ . Suppose $l_{2e+1}$ and $gr\iota_{2e+1}$ are given. Since $f\not\equiv_{p}0$ , there is an
$x\in\Sigma^{*}$ such that $l_{2e+1}\leq|x|$ and $f(x)\neq\Phi_{e}(x, 0)$ . Take the least such $x$ and set
$l_{2e+2}=|x|+1$ . Define $g$ on $\{z : l_{2e+1}\leq|z|<l_{2e+2}\}$ by setting $g(z)=0$ . Then
the requirement $R_{2e+1}$ is satisfied. $\square$

Proposition 2.6. Given $\{f_{n}\}_{n\in N}$ such that $f_{n}\not\equiv_{p}0$ for all $n$ , there exists a

function $g$ such that $g\not\equiv_{p}0$ and $f_{n}\not\leq_{p}g$ for all $n$ .

Proof. The $pro$of is similar to that of the preceding proposition. The requirements
for $g$ are

$(R_{2e})$ $g(x)\neq\Phi_{e}(x, 0)$ for some $x$ ,

and

$(R_{2e+1})$ $f_{n}(x)\neq\Phi_{i}(x, g(x))$ for some $x$ ,

where $erightarrow(n, i)$ is a (recursive) bijection between $N$ and $N\cross N$ .

We construct $g$ in stages.
Stage $0$ . Set $l_{0}=0$ .
Stage $2e+1$ . Suppose $l_{2e}$ and $gr\iota_{2e}$ are given. Set $l_{2e+1}=l_{2e}+1$ , and define

$g$ on $\{z:|z|=l_{2e}\}$ by
$f(x)=\Phi_{e}(x, 0)+1$ .

Then, $R_{2e}$ is met in this stage.
Stage $2e+2$. Suppose $l_{2e+1}$ and $gr\iota_{2e+1}$ have been already defined. Let $(n, i)$

be the e-th element of $N\cross N$ . Since $f_{n}\not\equiv_{p}0$ , there is an $x$ such that $l_{2e+1}\leq|x|$

and $f_{n}(x)\neq\Phi_{i}(x, 0)$ . Take the least such $x$ and set $l_{2e+2}=|x|+1$ . We extend $g$

to $\{z : |z|<l_{2e+2}\}$ by setting $g(z)=0$ for all $z$ with $l_{2e+1}\leq|z|<l_{2e+2}$ . Then,

the requirement $R_{2e+1}$ is satisfied. $\square$

Corollary 2.7. There exists a non-recursive $g$ such that for every recursive $f$ if
$f\not\equiv_{p}0$ then $f\not\leq_{p}g$ ,
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\S 3. MINIMAL PAIRS

Definition 3.1. $f$ and $g$ form a minimal pair if

(i) $f\not\equiv_{p}0$ and $g\not\equiv_{p}0$ ,
(ii) for every $h$ , if $h\leq_{p}f$ and $h\leq_{p}g$ , then $h\equiv 0p$ .

Theorein 3.2. For every $f$ with $f\not\equiv_{p}0$ , there is a function $g$ recursive in $f$ such
that $f$ and $g$ form a minimal pair.

Proof. The following are the requirements for $g$ .

$(R_{2e})$ $g(x)\neq\Phi_{e}(x, 0)$ for some $x$ ,

$(R_{2e+1})$ $(\forall x)[h(x)=\Phi_{e_{1}}(x, f(x))=\Phi_{e_{2}}(x,g(x)]\Rightarrow h\equiv 0p$

where $erightarrow(e_{1}, e_{2})$ is a recursive bijection between $N$ and $N\cross$ N.

The requirement $R_{2e}$ will be met by simple diagonalization. We only define
$g(x)$ to be different from $\Phi_{e}(x, 0)$ . For the requirement $R_{2e+1}$ , first we try to in-
validate the equality $\Phi_{e_{1}}(x, f(x))=\Phi_{e_{2}}(x, g(x))$ , and if it fails then the function
$\Phi_{e_{1}}(x, f(x))$ will be computed in polynomial time. To accomplish the construc-
tion consistently, however, we need a simple priority argument. We say that the
requirement $R_{n}$ is given priority over $R_{m}$ , or that $R_{n}$ has higher priority than $R_{m}$ ,

if $n<m$ .

Deflnition 3.3.

(1) $R_{2e}$ is satisfied before stage $s+1$ iff there is an $x$ such that $|x|<s$ and
$g(x)\neq\Phi_{e}(x, 0)$ .

(2) $R_{2e+1}$ is satisfied before stage $s+1$ iff there is an $x$ such that $|x|<s$ and
$\Phi_{e_{1}}(x, f(x))\neq\Phi_{e_{2}}(x, g(x))$ .

It is easy to see that if $R_{i}$ is satisfied before stage $s+1$ then it is met, furthermore
in the case of $i=2e+1$ it is met by invalidating the premise of the requirement.

Definition 3.4. $R_{2e}$ requires attention at stage $s+1$ iff $e\leq s$ and it is not

satisfied before $s+1$ .

Definition 3.5. $R_{2e+1}$ requires attention at stage $s+1$ iff $e\leq s$ and

(i) it is not satisfied before stage $s+1$ ,

(ii) there are $x,$ $y$ such that $|x|=|y|=s$ and that $\Phi_{e_{1}}(x, f(x))\neq\Phi_{e_{2}}(x, y)$ .
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With these definitions we give a detail of the construction of $g$ .
$Stage0$ . Do nothing.

Stage $s+1$ . Suppose $gr\{z:|z|<s\}$ has been already defined. At this stage,
we extend $g$ on $\{z : |z|\leq s\}$ . If no requirement requires attention, then we simply

set $g(z)=0$ for all $z$ with $|z|=s$ . Otherwise take the requirement $R_{i}(i\leq s)$

with highest priority which requires attention. We attack the requirement $R$; in
this stage. lf $i=2e$ , then for all $z$ with $|z|=s$ we define $g(z)$ to be different
from the value $\Phi_{e}(z, 0)$ . Then, it is easy to see that $R_{2e}$ is met at this stage.
Suppose $i=2e+1$ . Let $x_{0},$ $y_{0}$ be the least $x,$ $y$ such that $|x|=|y|=s$ and
$\Phi_{e_{1}}(x, f(x))\neq\Phi_{e_{2}}(x, y)$ . Then, we extend $g$ on $\{z:|z|\leq s\}$ by setting $g(z)=y_{0}$

for all $z$ with $|z|=s$ . Thus, the requirement $R_{2e+1}$ is satisfied. This completes

the construction.

Lemma 3.6. Each requirement requires attention only finitely often.

Proof. Suppose lemma is proved for all $j<i$ . Take a sufficiently large $s_{0}$ so that
any of $R_{j}(j<i)$ does not require attention at any stage after $s_{0}$ . If $R_{i}$ requires
attention at some stage $s+1>s_{0}$ , then it must be attacked and does not require
attention any more. $\square$

Lemman 3.7. Every requirement is met.

Proof. By the previous lemma, there is an $s_{0}$ such that any of the requirements
$R_{j}(j\leq i)$ does not require attention after $s_{0}$ . If $R_{i}$ is satisfied at some stage, then
it must be met. So, suppose it is never satisfied. Since any even requirement is
eventually satisfied, $i$ must be $2e+1$ for some $e$ . Suppose $s+1>s_{0}$ . Since $R_{2e+1}$

does not require attention at $s+1$ , we have

$(\forall x, y)[|x|=|y|=sarrow\Phi_{e_{1}}(x, f(x))=\Phi_{e_{2}}(x, y)]$ .

Therefore, we see that

$(\forall x)[|x|\geq s_{0}arrow\Phi_{e_{1}}(x, f(x))=\Phi_{e_{2}}(x, 0^{|x|})]$,

which implies that the function $x\mapsto\Phi_{e_{1}}(x, f(x))$ is computable in polynomial
time. $\square$
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\S 4. DENSITY

Ladner [1] applied delayed diagonalizations first in the proofs of the density and
splitting theorems for the polynomial time Turing degrees (p-T degrees). It is not

difficult to apply his method to the p-degrees of recursive functions.

Theorem 4.1. Given recursive $f,$ $g$ such that $f<_{p}g$ , there is an $h$ such that

$f<ph<pg$ .

Proof. We require $h$ to satisfy the following.

$(R_{2e})$ $h(x)\neq\Phi_{e}(x, f(x))$ for some $x$ ,

and

$(R_{2e+1})$ $g(x)\neq\Phi_{e}(x, h(x))$ for some $x$ .

We will construct $h$ so that $h(x)$ agrees with \langle$f(x),$ $g(x))$ on some long interval
$\{x:l_{2e}\leq|x|<l_{2e+1}\}$ in which there is an $x$ witnessing the requirement $R_{2e}$ , and

hkewise agrees with $\langle f(x), 0\rangle$ on the next long interval $\{x:l_{2e+1}\leq|x|<l_{2e+2}\}$ , in
which there is an $x$ witnessing the requirement $R_{2e+1}$ . To ensure that $f\leq_{p}h\leq_{p}g$ ,

some delay will be put before changing stages. Now we give the detail of the

construction.
Stage $\theta$. We set $l_{0}=0$ .
Stage $2e+1$ . Suppose $l_{2e}$ is given. Since $f\oplus g\not\leq_{p}f$ , there is an $x$ such

that $l_{2e}\leq|x|$ and $\langle f(x), g(x)\rangle\neq\Phi_{e}(x, f(x))$ . We find the least such $x$ by
successively computing $f(0^{l_{2e}}),$ $g(0^{l_{2e}}),$ $\Phi_{e}(0^{l_{2e}}, f(0^{l_{2e}}));f(0^{l_{2e}-1}1),$ $g(0^{l_{2e}-1}1)$ ,
$\Phi_{e}(0^{l_{2e}-1}1, f(0^{l_{2e}-1}1));\ldots$ until we encounter the first $x$ such that

$\langle f(x), g(x)\rangle\neq\Phi_{e}(x, f(x))$ .

Let $m$ be the number of steps needed to accomplish these computations. We set
$l_{2e+1}=l_{2e}+m$ .

Stage $2e+2$ . Suppose $l_{2e+1}$ has been already defined. We search for the first
$x$ such that $l_{2e+1}\leq|x|$ and $g(x)\neq\Phi_{e}(x, \langle f(x), 0\rangle)$ . Since $g\not\leq_{p}f\oplus O$ , such an
$x$ exists. The definition of $l_{2e+2}$ is similar to the previous stage. Namely, $l_{2e+2}$

is $l_{2e+1}$ plus the number of steps needed to find the first $x$ which satisfies the

inequality $g(x)\neq\Phi_{e}(x, \langle f(x), 0\rangle)$ .
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We define $h$ by

$h(x)=\{\{\begin{array}{l}f(x),g(x)\rangle f(x),0)\end{array}$ $ifl_{2e}\leq|x|<l_{2e+1}ifl_{2e+1}\leq|x|<l_{2e+2}$

.

Then, $h$ satisfies all the requirements $R_{2e}$ and $R_{2e+1}$ , and therefore we obtain
$h\not\leq_{p}f$ and $g\not\leq_{p}h$ . It is clear that $f\leq_{p}h$ since $f(x)=(h(x))_{0}$ for all $x$ . To see
that $h\leq_{p}f\oplus g$ , suppose $x$ is given. We can find an $n$ such that $l_{n}\leq|x|<l_{n+1}$

by performing the construction of the sequence $\{l_{n}\}_{n}$ in $|x|$ steps. If $n=2e$ for
some $e$ , then $h(x)=\langle f(x),$ $g(x)$ }; if $n=2e+1$ for some $e$ , then $h(x)=(f(x),$ $0$ }.
Thus, $h(x)$ is calculated from $x$ and $(f\oplus g)(x)$ in polynomial time of $|x|$ . $\square$

For the non-recursive functions, it is not known whether the density theorem
holds or not. At present, we can prove that if $f$ and $g$ are low then Theorem 4.1
holds, where $f$ is said to be low if the Turing jump of $f$ has the same Turing degree
as $0’,$ $i.e.,$ $f’\equiv\tau 0$ ‘.

Lemma 4.2. (Limit Lemma [3]). If $f$ is recursive in $0$ ‘, then there is a recursive
sequence $\{f_{s}\}_{s\in N}$ such that

$\lim_{sarrow\infty}f_{s}(x)=f(x)$ for all $x$ .

Theorem 4.3. If $f$ and $g$ are low and $f<_{p}g$ , then there is an $h$ such that

$f<ph<pg$ .

Proof. Suppose $f$ and $g$ are low. By the limit lemma, there are recursive sequences
$\{f_{s}\}_{s}$ and $\{g_{s}\}_{s}$ such that

$\lim_{sarrow\infty}f_{s}(x)=f(x)$ and $\lim_{sarrow\infty}g_{s}(x)=g(x)$ .

Let $U=\{e : (\exists\langle x, y, z)\in W_{e})[f(x)=y \ g(x)=z]\}$ where $W_{e}$ is the e-th
recusively enumerable set. Then, $U$ is recursively enumerable in $g$ , and hence is
recursive in $0’$ since $g$ is low. By the limit lemma, there is a recursive sequence
$\{u_{s}\}_{s}$ such that $u_{s}(e)\leq 1$ and $\lim$, $u_{s}(e)=U(e)$ for all $e$ . We define $h$ as in the
proof of Theorem 4.1:

$h(x)=\{\{\begin{array}{l}f(x),g(x)\rangle ifl_{2e}\leq|x|<l_{2e+l}f(x),0\rangle ifl_{2e+1}\leq|x|<l_{2e+2}\end{array}$
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The increasing sequence $\{l_{n}\}_{n}$ will be so constructed that $h$ satisfies the same
requirements $R_{2e}$ and $R_{2e+1}$ in the proof of Theorem 4.1. Further, we will build a
recursive sequence $\{V_{i,\iota}\}_{i,\epsilon\in N}$ during the construction. Let $V_{i}= \bigcup_{*}V_{i,s}$ . Then, $V_{i}$

is recursive enumerable. By the recursion theorem we may assume that we have

in advance an index of $V_{:}$ with some recursive function $\theta,$ $i.e.,$ $V:=W_{\theta(i)}$ .

Definition 4.4. Suppose $i$ and $s$ are given. The requirement $R_{\eta}$. is U-certified at
$s$ if $u_{s}(\theta(i))=1$ and there is a ( $x,$ $y,$ $z\rangle$ $\in V_{i,s}$ such that $f_{s}(x)=y$ and $g_{s}(x)=z$ .

Now, we give the construction of $\{l_{n}\}_{n}$ . In the construction, no elements are

enumerated in V unless explicitly mentioned.
Stage $\theta$. Set $l_{0}$ $:=0$ .
Stage $2e+1$ . Take the least $i\leq e$ such tha $R_{2i}$ is not U-certified at $l_{2e}$ . We say

that $R_{2i}$ is attacked. Our construction in this stage consists of one main routine
with 3 subroutines.

Main routine. We set $s:=l_{2e}$ . Go to Subroutine 1.

Subroutine 1. Suppose the construction enters this routine with $s$ .

While true do

If there exists an $x$ such that

(i) $l_{2e}\leq|x|\leq s$ and
(ii) $\langle f_{s}(x),$ $g_{s}(x))\neq\Phi_{i}(x, f_{s}(x))$ ,

Then take the least such $x$ and
$y$ $:=f_{s}(x)$ ,
$z$ $:=g_{s}(x)$ ,
$V_{2i,s+1}$ $:=V_{2i,s}\cup\{\langle x, y, z)\}$ ,
$s$ $:=s+1$ ,

Exit from Subroutine 1 and go to Subroutine 2;

Else $s:=s+1$ ;

End if

End while;

End Subroutine 1.

The following claim ensures that we eventually exit from the while-loop and

enters into Subroutine 2.
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Claim. Given $s_{f}$ there is a $t\geq s$ and $x$ such that $l_{2e}\leq|x|\leq t$ and $\langle f_{t}(x), g_{t}(x)\rangle\neq$

$\Phi_{i}(x, f_{t}(x))$ .

Proof. Since $f\oplus g\not\leq_{p}f$ , there exists an $x$ such that $l_{2e}\leq|x|$ and $\langle f(x), g(x)\rangle\neq$

$\Phi_{i}(x, f(x))$ . Take a sufficiently large $t$ so that $t \geq\max\{s, |x|\},$ $f_{t}(x)=f(x)$ and
$g_{t}(x)=g(x)$ . $\square$

Subroutine 2. Suppose the construction enters this routine with $s$ .

While true do

If $R_{2i}$ is U-certified at $s$ ,

Then exit from Subroutine 2 and go to Subroutine 3;

Else
If $u_{s}(\theta(2i))=0$ and for all $\langle x, y, z\rangle\in V_{2i,\iota}$ , either
$f_{\theta}(x)\neq y$ or $g_{s}(x)\neq z$ ,

Then exit from Subroutine 2 and go to

Subroutine 1;
Else $s:=s+1$ ;

End if;

End else

End if;

End while;

End Subroutine 2;

Claim. Given $s$ , suppose $V_{2i,s}=V_{2i,t}$ for all $t\geq s$ . Then, there is a $t\geq s$ such

that either

(1) $R_{2i}$ is U-certified at $t$ or

(2) $u_{t}(\theta(2i))=0$ , and for all $\langle x, y, z\rangle\in V_{2i,t}$ either $f_{t}(x)\neq y$ or $g_{t}(x)\neq z$ .

Proof. Take a sufficiently large $s_{0}\geq s$ so that

$(\forall t\geq s_{0})\{\begin{array}{lll}u_{t}(\theta(2i))= U(\theta(2i)) and(\forall\langle x,y,z)\in V_{2i,s})[f_{t}(x)=f(x)\ g_{t}(x)=g(x)]\end{array}\}$ .

Such an $s_{0}$ exists since $V_{2i,s}$ is finite. If $U(\theta(2i))=1$ , then (1) holds for all $t\geq s_{0}$ .
If $U(\theta(2i))=0$ , then (2) holds for all $t\geq s_{0}$ . $\square$

Subroutine 3. Suppose the construction enters this routine with $s$ . Let $l_{2e+1}$

be $l_{2e}$ plus the number of steps performed so far, and exit from the main routine.
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Claim. $l_{2e+1}$ is defined.

Proof. Suppose not. Then we always exit from Subroutine 2 with

$(^{*})$ $(\forall\langle x, y, z\rangle\in V_{2i,s})[f_{s}(x)\neq y\vee g_{\delta}(x)\neq z]$

and enters Subroutine 1. Since $f\oplus g\not\leq_{p}f$ , there is an $x$ with $l_{2}$. $\leq|x|$ such that
\langle $f(x),$ $g(x))\neq\Phi_{i}(x, f(x))$ . Let $y=f(x)$ and $z=g(x)$ . Take a sufficiently large $s_{0}$

so that
$(\forall s\geq s_{0})$ [$f_{s}(x)=f(x)$ &g,(x) $=g(x)$].

We may assume that $|x|\leq s_{0}$ . If \langle $x,$ $y,$ $z$ ) is not enumerated into $V_{2i}$ up to $s_{0}$ , then
$\langle x, y, z\rangle$ is witnessed each time Subroutine 1 is executed after $s_{0}$ . Therefore, if we

enter Subroutine 1 infinitly often, then $\langle x, y, z\rangle$ must be enumerated into $V_{2i}$ , and
thus $U(\theta(2i))=1$ by definition, which contradicts $(^{*})$ . 口

Stage $2e+2$ . Similar to Stage $2e+1$ . Take the least $i\leq e$ such that $R_{2i+1}$

is not U-certified at $l_{2e+1}$ . The requirement $R_{2i+1}$ is attacked in this stage. In

Subroutine 1, we search for $s\geq l_{2e+1}$ and $x$ such that $l_{2e+1}\leq|x|\leq s$ and
$g_{\theta}(x)\neq\Phi_{i}(x, \langle f_{s}(x), 0\rangle)$ , and enumerate $\langle x, y, z\rangle$ into $V_{2i+1}$ where $y=f_{s}(x)$ and
$z=g_{s}(x)$ , then goto Subroutine 2. Other subroutines are defined similarly. We
leave the detail to the reader.

This completes the construction. We will show that $\{l_{n}\}_{n}$ and $h$ so constructed
satisfy the conditions of the theorem.

Lemma 4.5. For each $i$ , the requirement $R$; is attacked only finitely oflen.

Proof. We show the lemma for $R_{2i}$ . Suppose $R_{2i}$ is attacked infinitely often. Let
$e$ be arbitrary and suppose $R_{2i}$ is attacked at stage $2e+1$ . Then, since $R_{2i}$

is U-certified during stage $2e+1$ , there is an $s$ such that $1_{2e}\leq s<l_{2e+1}$ and
$u_{s}(\theta(2i))=1$ . Therefore, $\{s : u_{s}(\theta(2i))=1\}$ is infinite and hence we must have
$U(\theta(2i))=1$ . Thus, by the definition of $U$ , there is a $\langle x, y, z\rangle\in V_{2i}$ such that
$f(x)=y$ and $g(x)=z$ . Take a sufficiently large $s_{0}$ so that

$(\forall s\geq s_{0})$ [$u_{s}(\theta(2i))=1$ & $\langle x,$ $y,$ $z\rangle\in V_{2i,s}$ &f\mbox{\boldmath $\theta$}(x) $=f(x)\ g_{s}(x)=g(x)$].

Then, $R_{2i}$ is U-certified at any $s$ after $s_{0}$ , which is a contradiction. $\square$
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Lemma 4.6. Every requirement $R_{\eta}$. is satisfied.

Proof. We prove this for $R_{2i}$ . Take a sufficiently large $n_{0}$ so that no requirements
$R_{2j}(j\leq i)$ are attacked after any stage after $n_{0}$ . First we show that $U(\theta(2i))=1$ .
If $U(\theta(2i))=0$ , then there is an $s_{0}$ such that for all $s\geq s_{0}$ ,

$(\forall\langle x, y, z\rangle\in V_{2i},,)[f_{s}(x)\neq y\vee g_{s}(x)\neq z]$ ,

which implies the requirement $R_{2i}$ is not U-certified at any $s$ with $s\geq s_{0}$ , and
therefore $R_{2i}$ must be attacked at any stage $2e+1\geq n_{0}$ with $l_{2e}\geq s_{0}$ , a con-

tradiction. Since $U(\theta(2i))=1$ , there is a ( $x,$ $y,$ $z\rangle$ $\in V_{2i}$ such that $f(x)=y$
and $g(x)=z$ . Suppose $\langle x, y, z\rangle\in V_{2i,s+1}-V_{2i,s}$ . Then, by the construction,
we have $y=f_{s}(x),$ $z=g_{s}(x)$ and $\langle f_{s}(x), g_{s}(x)\rangle\neq\Phi_{i}(x, f_{s}(x))$ . It follows that
$h(x)=\langle f(x), g(x)\rangle\neq\Phi_{i}(x, f(x))$ , and thus the requirement $R_{2i}$ is satisfied. 口

Given $x$ , performing the construction of $\{l_{n}\}_{n}$ in $|x|$ steps, we can calculate
the unique $n$ such that $l_{n}\leq|x|<l_{n+1}$ . Then, we can calculate $h(x)$ from $x$ and
$(f\oplus g)(x)$ as before in polynomial time of $|x|$ , and we obtain $h\leq_{p}f\oplus g$ . The

requirements $R_{2e}$ and $R_{2e+1}$ ensures that $h\not\leq_{p}f$ and $g\not\leq_{p}h$ . This completes the

proof of Theorem 4.3. 口
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