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Large indiscernible sets of a structure
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1 Introduction

An indiscernible set of a given structure is by definition a set I such that every
finite subset of the same cardinality has the same type. A sigleton I = {a}
is trivially an indiscernible set, so it is called a trivial one. A transciendental
basis of an algeraically closed field K is a good example of a non-trivial
indiscernible set. In this example, if K is a,/rzf s&‘ﬁ'z(;)untable then it has a large
indiscernible set I, i.e. an indiscernible set I with |[I| = |K|. Generally
speaking, if a theory T is w-stable then every uncountable model of T' has
such a large indiscernible set. However, in the structure R = (R, 0, 1, +, -),
there is no non-trivial indiscernible set, i.e. tp(a) = tp(b) implies a = b.

In this note we show that every L-structure M can be embedded into a
structure M™ of an expanded language L* such that any L*-structure N =
M™ has a large indiscernible set. We also show that if T is stable and non-

w-stable then there is a model of power RX; which has no large indiscernible
sets.

2 Preliminaries

In what follows, T' is a complete theory formulated in a countable language
L. We give some necessary definitions and review some basic results.

Definition 1. (1) Let I be a subset of a struture M. [ is said to be an

indiscernible set if whenever F' C I and G C I are finite sequences of the
same length then tp(F) = tp(G).
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(2) We will say that an indiscernible set I in a structure M is large if [ has
the same cardinality as M.

~,Fact 1 (Theorem 2.8 of [S, CH.L, §2]). If T is w-stable, then every
regukin, “uncountable model of T includes a large indiscernible set.

If T is not w-stable, then any (a,w)-model is uncountable. And any

(a,x(T))-prime model does not have indiscernible set of power greater than
k(T). So we have:

Fact 2. If T is a non-w-stable, superstable theory, then there is a model of
power R without a large indiscernible set.

Let T be the theory of refining equivalence relations. i.e., T' is the theory
of the structure (2¢, Ey, Es,...), where E; = {(m,n2) € (29)? : m|i = e}
Then T is a superstable theory with |S(T')| = 2%. Let M be any uncountable
elementary submodel of (2, Fy, F,,...). M has no large indiscernible sets.

Definition 2. A model M D A is said to be f-atomic over A if for every
a € M, and every finite set A of formulas, tp,(@/A) is a principal type.

Fact 3. Let T be stable.
(1) For every set A, there is an {-atomic model over A.

(2) Let a; and a, be independent over M. Let M; be an {-atomic model over
M U{a;}. Then M, and M; are independent over M.

3 Main Result

We want to extend fact 2 to a non-w-stable, stable theory T. The following
lemma will play a crucial role.

Lemma. Let T be a non-w-stable, stable theory and x < 2% an uncountable
cardinal. Then there is a set R of types over a set A, |A| < k such that
whenever B D A is a set with |B| < k and S is a set of stationary types
over B with |S| < k then there is a non-algebraic type r € R which is almost
orthogonal to any type in S.

Proof. This lemma remains true for a superstable theory, but we concentrate
on an unsuperstable theory. (Superstable case is easier.) Since T is not

superstable, there are infinitely long continuous sequence {p; : i < a} of
types such that
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1) domp; is a countable set;

(1)

(2) p; is a forking extension of p;, if ¢ > j;
(3) @ < w; is a countable limit ordinal;

(4)

U(pa) < o0.

By choosing a subsequence of {p; : ¢ < a}, we can assume that o = w.
Now by the definition of forking, we can easily find a countable set Ag, and
continuously many types {g; : 1 < 2%} over A, such that each ¢; is U-ranked
(U(g;) < o©). We can assume that each type ¢; is stationary.

Suppose that our lemma does not hold. By induction on j < w, we define
a set A; of cardinality <  and types g; ; € S(A;) (¢ < 2%) such that for any
i< 2N k< g,

gi x is algebraic or g¢;; is a forking extension of g x.

For each i < 2% let ¢;o = ¢;. Suppose we have defined ¢;; € S(Ax) for
i < 2% and k < j. Let A = {7 < 2% : ¢;;_; is non-algebraic}. Since we
are assuming the negation of the statement in our lemma, there are a set
B D Aj_1,|B| < k and a set S C S(B), |S| < k such that every ¢; j_1 (1 € A)
is not almost orthogonal to some s; € S. For ¢ € A, choose a; = ¢;;-1|B
and b; |= s; such that a; and b; are dependent over B. We can assume that
if s; = s; then b; = b;. Now let

AJ' = acl(AJ-_l U {b, 11 E A}),

o tp(a,‘/AJ’) 1 €A
9iy arbitrary extension of ¢; ;1 1 ¢ A

Finally let A, = U;<, 4;. Note that |4,| < 2%. (If k = 2%, then cf(x) > w,
so |A,| < k =2“ I k < 2% then |[A,| < k < 2%.) Since ¢; is U-ranked by
(4), ¢ = U,co 4i; € S(A,) must be an algebraic type. (Otherwise there is
an infinitely long forking sequence starting from ¢;.) So we have constructed
continuously many distinct algebraic types over a fixed set 4,, |A,| < 2.
However this is a contradiction, since we are assuming that L is countable.
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Theorem A. Let T' be a non-w-stable, stable theory. Then for any un-
countable cardinal k < 2% there is a model of power k without a large
indiscernible set.

Proof. Choose a set A and types R C S(A) which satisfy the condition in the
above lemma. Let A = |A|. Clearly A < k. We construct an elementary chain
of models {M; : i < k} such that each model M; has cardinality < |i| + A.
Without loss of generality, A is a model. Let My = A, and M; an arbitrary
proper extension of My with the same cardinality. Suppose that we have
constructed {M; : 1 < a}. If o is a limit ordinal, then let M, = ;<o M;. So
we assume that « = §+ 1, and let

Sg = U {q(z) € S(Mpg) : ¢ is based on M;, q|M; is realized in Mg}

1<

Clearly |Ss| < || + A < k. By the property of R, there is a type r € R
which is almost orthogonal to each type in Sg. Let Mgy, be an f-atomic
model over Mg U {eg}, where ez is a realization of r|Mjz. Of course we can
assume |Mpy| < |6+ 1| + A.

Claim. There is no large indiscernible set in M,.

Suppose that there was a large indiscernible set I C M,. By stability, there
is a countable set Iy C I such that J = I — I is a Morley sequence over I,.
Choose M; (i < k) which includes Iy. Since M; < k, we may assume that J
is a Morley sequence over M;, by choosing a subset of J if necessary. Choose
M; (j < &) which intersects with J. Let a € J N M;. Since |J| = «, there
is b € J which is indepent from M; over M;. Choose the least k such that b

and My are dependent over M;. Then k is a successor ordinal greater than
7, and

(1) b and M, are dependent over Mj_;
(2) b and M,_, are independent over M;.

Remember that My is ¢-atomic over My_; U {ex—1}. From (1), using fact 3,
we know that b and e;_; are dependent over M;_;. By our choice of e;_;,
tp(ex—1/Mx-1) is almost orthogonal to every type in Si_;, hence tp(b/M;_;)
does not belong to Sx_;. Note that tp(b/M;) is realized by a € M;_;. Then
we must have
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(3) tp(b/My-1) is a forking extension of tp(a/M;).
(2) and (3) yield a contradiction.

Next theorem shows that theorem A cannot be extended to an unstable
theory.

Theorem B. Let M be an infinite L-structure. Then there is a structure
M* for an expanded language L* O L with the following properties:

(i) M is O-definable in M*;
(ii) In any L*-structure N = M™, there is a large indiscernible set in N.

Proof. Fori < w,let Ly = LU{Fj(*): 5 = 0,...,i}U{U (*)JU{R;(*,%,%) : j =
1,...,i}, where F;’s and U are unary predicate symbols, and R,’s are 3-ary’
predicate symbols. Let L* = J;., L;. We construct inductively countable
L;-structures M; and countable subgroups S; of Aut(M;) (7 < w) with the
following properties:

(1) My = FM u UM where F** = M, and UM is an infinite set disjoint
from F. ’

(2) Sp is a countable subgroup of Aut(M;) such that for given finite se-
quences @ € UM and b € UM of the same length, there is a ¢ € S
with ¢(a) = b. Any two automorphisms f € Sy and g € S differ at
finitely many points.

(3) Mj+1 = Mj U Ffijl“)
(4) SJ = {U[MJ 10 € Sj+1}.

Assume that we have already constructed M; and S; for j < i. Choose a
bijective function fo : FMi=' — UMi-1 arbitrarily and let

FMi = {oofooot:0€ 51}

FMi is a countable set of functions from FMi~' to UMi-1. Define RM' C

FMi x Ff{“ x UMi-1 by

(f,a,b) € RM & f(a) = b.
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Now let M; = M;_,4 UF,-M‘. We can extend each 7 € S;_; to an automorphism
7 of M;. Let f =00 fooo™! € S;_;. Then define

™(f)=1ofor t=(ra)o foo(ro)™t € S;_1.
The following equivalence shows that 7* is really an automorphism:

Mi ‘: R(f)“’)b) « f(a):b
& (f(r7H(r"(a))) = 7(b)
& M E R (), (@), 7 (b)),

Finally we set M* = U;¢, M;i, T* = Thr.(M). Now it is sufficient to prove
the following two claims. ‘

Claim 1. In any model N of T*, U¥ is an indiscernible set.

It is suffinient to prove the statement for the case N = M*. Let a,b € [{'M'
be given. By the assumption on S, there is a o € Sy such that o(a) =b. ¢
can be extended to an automorphism of M*. So a = b.

Claim 2. If N | T* , then there is a large indiscernible set.

Clearly UY UJ; FN has the same cardinality as N, or the complement N —
(UNUU; FN) has the same cardinality as N. The second case clearly implies
that N — (UY UU; FY) is a large indiscernible set. Let the second case hold.
Note that an element in Fi4; gives a bijection between F¥ and U¥. Then

we see that UY has the same cardinality as N. By claim 1, UY is a large
indiscernible set in this case.

Remark. (i) Any model of T' = Th(Z, <) has a large indiscernible sequence.
(i) The construction of M* was inspired by [F], in which Fuhrken showed
the existence of an uncountable complete theory without the omitting types
property. Note that our 7™ is not stable: By our choice of Sy and Fj,
there is a sequence {(fi, ;) : i < w} C F¥" x FM" such that the formulas

Yy € Fo(R(fi,z,y) < R(gi,7,y)) (1 < w) define a strictly decreasing subsets
of Fo.

Question. Does theorem A remain true, if we we replace ‘large indiscernible
set’ by ‘uncountable indiscernible set’?
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