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1 Introduction
An indiscernible set of agiven structure is by definition aset Isuch that every
finite subset of the same cardinality has the same type. A sigleton $I=\{a\}$

is trivially an indiscernible set, so it is called a trivial one. A transciendental

$idiscernib1ese^{eraica11closedfieldI\backslash i,god_{A}examp1eofanon- trivia1}t.Inthisexample,ifI\backslash ^{\nearrow^{\nearrow}}isan^{a},b_{n^{asisofana1gys,b’\angle\theta_{nco^{\iota}untab1e,thenithasa1arge}}}$

indiscernible set $I$ , i.e. an indiscernible set $I$ with $|I|=|K|$ . Generally
speaking, if a theory $T$ is $\omega$-stable then every uncountable model of $T$ has
such a large indiscernible set. However, in the structure $R=(R, 0,1, +, \cdot)$ ,
there is no non-trivial indiscernible set, i.e. $tp(a)=tp(b)$ implies $a=b$ .

In this note we show that every L-structure $M$ can be embedded into a
structure $M^{*}$ of an expanded language $L^{*}$ such that any L’-structure $N\equiv$

$M^{*}$ has a large indiscernible set. We also show that if $T$ is stable and non-
$\omega$-stable then there is a model of power $\aleph_{1}$ which has no large indiscernible
sets.

2 Preliminaries
In what follows, $T$ is a complete theory formulated in a countable language
$L$ . We give some necessary definitions and review some basic results.

Definition 1. (1) Let $I$ be a subset of a struture M. $I$ is said to be an
indiscernible set if whenever $F\subset I$ and $G\subset I$ are finite sequences of the
same length then $tp(F)=tp(G)$ .
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(2) We will say that an indiscernible set $I$ in a structure $M$ is large if $I$ has
the same cardinality as $M$ .
Fact 1 (Theorem 2.8 of $[S$ , CH.I, \S 2]). If $T$ is w-s $t$ able, then every

$/tt=\mu_{\vee*}uncountable$ model of $T$ in$clu$des a large indiscernible set.

If $T$ is not $\omega$-stable, then any $(a,\omega)$-model is uncountable. And any
$(a,\kappa(T))$ -prime model does not have indiscernible set of power greater than
$’\sigma(T)$ . So we have:

Fact 2. If $T$ is a $non-\omega$-stable, $su$perstable theory, then ther$e$ is a $m$odel of
power $\aleph_{1}$ without a 1arge indiscernible set.

Let $T$ be the theory of refining equivalence relations. i.e., $T$ is the theory
of the structure $(2^{d}, E_{1}, E_{2}, \ldots)$ , where $E_{i}=\{(\eta_{1}, \eta_{2})\in(2^{\omega})^{2} : \eta_{1}|i=\eta_{2}|i\}$ .
Then $T$ is a superstable theory with $|S(T)|=2^{N_{0}}$ . Let $M$ be any uncountable
elementary submodel of $(2^{\omega}, E_{1}, E_{2}, \ldots)$ . $M$ has no large indiscernible sets.

Definition 2. A model $M\supset A$ is said to be $\ell$-atomic over $A$ if for every
$\overline{a}\in M$ , and every finite set $\triangle$ of formulas, $tp_{\Delta}(\overline{a}/A)$ is a principal type.

Fact 3. Let $T$ be stable.
(1) For every set $A$ , th$eIe$ is an $\ell$-atomi$c$ model over $A$ .
(2) Let $a_{1}$ and $a_{2}$ be independent over M. Let $M_{i}$ be an l-atomic model over
$M\cup\{a_{i}\}$ . Then $M_{1}$ and $M_{2}$ are independen$t$ over $M$ .

3 Main Result
We want to extend fact 2 to a $non-\omega$-stable, stable theory $T$ . The following
lemma will play a crucial role.

Lemma. Let $T$ be a $non-\omega$ -stable, stable theory and $\kappa\leq 2^{\aleph_{0}}$ an uncounta$ble$

cardinal. Then there is a set $R$ of types over a se$tA,$ $|A|<\kappa$ such that
whenever $B\supset A$ is a set with $|B|<\kappa$ and $S$ is a set of $sta$tionary types
over $Bwi$ th $|S|<\kappa$ then there is a non-algebraic type $r\in R$ which is almost
orthogonal to $an_{j^{r}}$ type in $S$ .

Proof. This lemma remains true for a superstable theory, but we concentrate
on an unsuperstable theory. (Superstable case is easier.) Since $T$ is not
superstable, there are infinitely long continuous sequence $\{p_{i} : i\leq\alpha\}$ of
types such that
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(1) domp; is a countable set;

(2) $p$ ; is a forking extension of $p_{j}$ , if $i>j$ ;

(3) $\alpha<\omega_{1}$ is a countable limit ordinal;

(4) $U(p_{\alpha})<\infty$ .

By choosing a subsequence of $\{p_{i} : i\leq\alpha\}$ , we can assume that $\alpha=\omega$ .
Now by the definition of forking, we can easily find a countable set $A_{0}$ , and
continuously many types $\{q_{t} : i<2^{\aleph_{0}}\}$ over $A_{0}$ such that each $q_{t}$ is U-ranked
$(U(q_{i})<\infty)$ . We can assume that each type $q_{i}$ is stationary.

Suppose that our lemma does not hold. By induction on $j<\omega$ , we define
a set $A_{j}$ of cardinality $<\kappa$ and types $q_{i,j}\in S(A_{j})(i<2^{\aleph_{0}})$ such that for any
$i<2^{\aleph_{0}},$ $k<j$ ,

$q,,k$ is algebraic or $q_{i,j}$ is a forking extension of $q_{i,k}$ .

For each $i<2^{N_{0}}$ , let $q_{i,0}=q_{i}$ . Suppose we have defined $q_{i,k}\in S(A_{k})$ for
$i<2^{\aleph_{0}}$ and $k<j$ . Let $\Lambda=$ { $i<2^{\aleph_{0}}$ : $q_{i,j-1}$ is non-algebraic}. Sinc.e we
are assuming the negation of the statement in our lemma, there are a set
$B\supset A_{j-1)}|B|<\kappa$ and a set $S\subset S(B),$ $|S|<\kappa$ such that every $q_{i,j-1}(i\in\Lambda)$

is not almost orthogonal to some $s;\in S$ . For $i\in\Lambda$ , choose $a_{i}\models q_{i,j-1}|B$

and $b_{i}\models s_{t}$ such that $a_{1}$ and $b_{i}$ are dependent over $B$ . We can assume that
if $s;=s_{j}$ then $b_{i}=b_{j}$ . Now let

$A_{j}=ac1(A_{j-1}\cup\{b_{t} : i\in\Lambda\})$ ;

$q_{i_{J}},=\{tp(a/A)arbit^{i}rar^{J}y$

extension of $q_{i,j-1}$

$i\not\in i\in\Lambda\Lambda$

Finally let $A_{\omega}= \bigcup_{j<\omega}A_{j}$ . Note that I $A_{\omega}|<2^{\aleph_{0}}$ . (If $\kappa=2^{\aleph_{0}}$ , then $cf(\kappa)>\omega$ ,
so I $A_{\omega}$ I $<\kappa=2^{\omega}$ . If $\kappa<2^{\aleph_{0}}$ , then $|A_{\omega}$ I $\leq\kappa<2^{N_{0}}.$ ) Since $q_{1}$

. is U-ranked by
(4), $q_{i^{*}}= \bigcup_{j<\omega}q_{i,j}\in S(A_{\omega})$ must be an algebraic type. (Otherwise there is
an infinitely long forking sequence starting from $q_{i}.$ ) So we have constructed
continuously many distinct algebraic types over a fixed set $A_{(p},$ $|A_{\omega}|<2^{\omega}$ .
However this is a contradiction, since we are assuming that $L$ is countable.
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Theorem A. Let $T$ be a $non-\omega$ -stable, stable theory. Then for any un-
counta$ble$ cardi$nal\kappa\leq 2^{N_{0}}$ , there is a model of power $\kappa$ without a large
indiscern$ible$ set.

Proof. Choose a set $A$ and types $R\subset S(A)$ which satisfy the condition in the
above lemma. Let $\lambda=|A|$ . Clearly $\lambda<\kappa$ . We construct an elementary chain
of models $\{M_{i} : i\leq\kappa\}$ such that each model $M_{i}$ has cardinality $\leq|i|+\lambda$ .
Without loss of generality, $A$ is a model. Let $M_{0}=A$ , and $M_{1}$ an arbitrary
proper extension of $M_{0}$ with the same cardinality. Suppose that we have
constructed $\{M_{i} : i<\alpha\}$ . If $\alpha$ is a limit ordinal, then let $M_{\alpha}= \bigcup_{i<\alpha}AI;$ . So
we assume that $\alpha=\beta+1$ , and let

$S_{\beta}= \bigcup_{:<\beta}${ $q(x)\in S(M_{\beta})$ : $q$ is based on $M_{i},$ $q|M$; is realized in $J\prime I_{\beta}$ }

Clearly $|S_{\beta}|\leq|\beta|+\lambda<\kappa$ . By the property of $R$ , there is a type $r\in R$

which is almost orthogonal to each type in $S_{\beta}$ . Let $iM_{\beta+1}$ be an $\ell$-atomic
model over $M_{\beta}\cup\{e_{\beta}\}$ , where $e_{\beta}$ is a realization of $r|iM_{\beta}$ . Of course we can
assume $|M_{\beta+1}|<|\beta+1|+\lambda$ .

Claim. Tliere is no large indiscernible set in $M_{\kappa}$ .
Suppose that there was a large indiscernible set $I\subset M_{\kappa}$ . By stability, there
is a countable set $I_{0}\subset I$ such that $J=I-I_{0}$ is a Morley sequence over $I_{0}$ .
Choose $M_{i}(i<\kappa)$ which includes $I_{0}$ . Since $M;<\kappa$ , we may assume that $J$

is a Morley sequence over $M;$ , by choosing a subset of $J$ if necessary. Choose
$M_{j}(j<\kappa)$ which intersects with $J$ . Let $a\in J\cap M_{j}$ . Since $|J|=\kappa$ , there
is $b\in J$ which is indepent from $M_{j}$ over $M;$ . Choose the least $k$ such that $b$

and $Jf_{k}$ are dependent over $M_{i}$ . Then $k$ is a successor ordinal greater than
$j$ , and

(1) $b$ and $M_{k}$ are dependent over $JM_{k-1}$ ;

(2) $b$ and $M_{k-1}$ are independent over $M_{i}$ .

Remember that $M_{k}$ is l-atomic over $M_{k-1}\cup\{e_{k-1}\}$ . From (1), using fa,ct $3_{\rangle}$

we know that $b$ and $e_{k-1}$ are dependent over $M_{k-1}$ . By our choice of $e_{k-1}\rangle$

$tp(e_{k-1}/J/f_{k-1})$ is almost orthogonal to every type in $S_{k-1}$ , hence $tp(b/M_{k-1})$

does not belong to $S_{k-1}$ . Note that $tp(b/M_{i})$ is realized by $a\in M_{k-1}$ . Then
we must have



138

(3) $tp(b/M_{k-1})$ is a forking extension of $tp(a/M_{i})$ .

(2) and (3) yield a contradiction.

Next theorem shows that theorem A cannot be extended to an unstable
theory.

Theorem B. Let $M$ be an infinite L-structu$re$ . Then there is a structure
$M^{*}for$ an $e$xpanded language $L^{*}\supset L$ with the following properties:

(i) $M$ is $\emptyset- d$efinable in $M$“;

(ii) In any $L^{*}$ -structure $N\equiv M^{*}$ , ther$e$ is a large indiscerni $ble$ set in $N$ .

Proof. For $i<\omega$ , let $L;=L\cup\{F_{J}(*) : j=0, \ldots, i\}\cup\{U(*)\}\cup\{R_{J}(*, *, *)$ : $j=$

$1,$
$\ldots,$

$i$ }, where $F_{i}’ s$ and $U$ are unary predicate symbols, and $R_{\mathcal{J}}’ s$ are 3-ary
predicate symbols. Let $L”= \bigcup_{i<\omega}L,$ . We construct inductively countable
$L_{j}$ -structures $M_{j}$ and countable subgroups $S_{j}$ of $Aut(M_{\gamma})(j<\omega)$ with the
following properties:

(1)
$M=F_{0_{M_{0}}}^{Mo}.\cup fr^{0}omF_{0}U^{M_{0}}$

, where $F_{0}^{M_{0}}=M$ , and $U^{Mo}$ is an infinite set disjoint

(2) $S_{0}$ is a countable subgroup of $Aut(M_{0})$ such that for given finite se-
quences $\overline{a}\in U^{M_{0}}$ and $\overline{b}\in U^{M_{0}}$ of the same length, there is a $\sigma\in S_{0}$

with $\sigma(\overline{a})=\overline{b}$ . Any two automorphisms $f\in S_{0}$ and $g\in S_{0}^{\sim}$ differ at
finitely many points.

(3) $M_{j+1}=M_{j}\cup F_{j+1}^{M_{j+1}}$ ,

(4) $S_{j}=\{\sigma\lceil M_{j} : \sigma\in S_{g+1}\}$ .

Assume that we have already constructed $M_{j}$ and $S_{j}$ for $j<i$ . Choose a
bijective function $f_{0}$ : $F_{i-1}^{M_{i-1}}arrow U^{M_{i-1}}$ arbitrarily and let

$F_{i}^{M_{i}}=$ {a $of_{0}o\sigma^{-1}$ : a $\in S_{t-1}$ }.

$F_{i}^{M;}$ is a countable set of functions from $F_{i-1}^{M_{i-1}}$ to $U^{M_{i-1}}$ . Define $R_{t}^{M_{i}}\subset$

$F_{i}^{M_{1}}\cross F_{i-1^{-1}}^{M_{j}}\cross U^{M_{i-1}}$ by

$(f)a,$ $b$ ) $\in R^{M;}\Leftrightarrow f(a)=b$ .
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Now let $M_{i}=M_{i-1}\cup F_{i}^{M_{i}}$ . We can extend each $\tau\in S_{i-1}$ to an automorphism
$\tau^{*}$ of $Jf;$ . Let $f=\sigma of_{0}o\sigma^{-1}\in S_{i-1}$ . Then define

$\tau^{*}(f)=\tau ofo\tau^{-1}=(\tau\sigma)of_{0}o(\tau\sigma)^{-1}\in S_{i-1}$ .

The following equivalence shows that $\tau^{*}$ is really an automorphism:

$M_{i}\models R(f, a, b)$ $\Leftrightarrow$ $f(a)=b$
$\Leftrightarrow$ $\tau^{*}(f(\tau^{*-1}(\tau^{*}(a)))=\tau^{*}(b)$

$\Leftrightarrow$ $M;\models R(\tau^{*}(f), \tau^{*}(a),$ $\tau^{*}(b))$ .

Finally we set $M^{*}= \bigcup_{1<\omega}M_{i},$ $\tau*=Th_{L^{*}}(M)$ . Now it is sufficient to prove
the following two claims.

Claim 1. In any model $N$ of $T$“, $U^{N}$ is an indiscernible set.

It is suffinient to prove the statement for the case $N=M^{*}$ . Let $\overline{a},$

$\overline{b}\in U^{M^{*}}$

be given. By the assumption on $S_{0}$ , there is a $\sigma\in S_{0}$ such that $\sigma(\overline{a})=\overline{b}$ . $\sigma$

can be extended to an automorphism of $M^{*}$ . So $\overline{a}\equiv\overline{b}$ .
Claim 2. If $N\models\tau*$ , then there is a large indiscernible set.

Clearly $U^{N} \cup\bigcup_{i}F_{1}^{N}$ has the same cardinality as $N$ , or the complement $N-$
$(U^{N} \cup\bigcup_{i}F_{i^{N}})$ has the same cardinality as $N$ . The second case clearly implies
that $N-(U^{N} \cup\bigcup_{i}F_{i}^{N})$ is a large indiscernible set. Let the second case hold.
Note that an element in $F_{i+1}$ gives a bijection between $F_{i}^{N}$ and $U^{N}$ . Then
we see that $U^{N}$ has the same cardinality as $N$ . By claim 1, $U^{N}$ is a large
indiscernible set in this case.

Remark. (i) Any model of $T=Th(Z, <)$ has a large indiscernible sequence.
(ii) The construction of $M^{*}$ was inspired by [F], in which Fuhrken showed
the existence of an uncountable complete theory without the omitting types
property. Note that our $\tau*$ is not stable: By our choice of $S_{0}$ and $F_{1}$ ,
there is a sequence $\{(f_{i}, g_{i}) : i<\omega\}\subset F_{1}^{M^{*}}\cross F_{1}^{M^{*}}$ such that the formulas
$\forall y\in F_{0}(R(f_{i}, x, y)rightarrow R(g_{i}, x, y))(i<\omega)$ define a strictly decreasing subsets
of $F_{0}$ .
Question. Does theorem A remain true, if we we replace ‘large indiscernible
set’ by ‘uncountable indiscernible set’?
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