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In 1924 Rolf Nevanlinna {10] proved his famous defect relation

(1) | > 6(fra)<2

a€EG

for a transcendental meromorphic function f on C and a finite subset G of ;. Here
0 < é6(f,a) < 1. If f~1(a) is finite, then §(f,a) = 1. Thus Picard’s theorem [7] follows. In
1933 Henri Cartan extended this defect relation to linearly non-degenerated, holomorphic
maps f : C — P(V). Here V is a complex vector space of dimension n+1. Put V,, = V—-{0}.
Then P(V) = V,/C, is the complex projective space defined by V. Let P: V, — P(V)
be the quotient map. The dual complex vector space V* consists of all C-linear functions
a:V — C. Write also < r,a >=a(z)ifr € V. If a € P(V*) then a = P(a) and
P(a=1(0)).) = Ela] is a hyperplane in P(V). The map ¢ — E[a] parameterizes the set of
all hyperplanes in P(V') bijectively. Now f is said to be linearly non-degenerated if f(C)
is not contained in any hyperplane. If so, the defect §(f,a) is defined for all a € P(V*)
with 0 < §(f,a) < 1. The subset G of P(V) with n+1 < #G < oo is said to be in general
position if #G N E[b] < n for all b € P(V). Under these assumptions Cartan [1] proved

(2) | > 6(fia)<n+1.

a€eG

In 1973 Philipp Griffiths and James King[2] proved a defect relation for dominant,
holomorphic maps f : M — N. Here dominant means that f(M) contains a non-empty
open subset of N. Thus dimM = m > rank f = n = dimN. They assume that M is a
connected, affine algebraic manifold spread over C™ by a proper, surjective holomorphic
map m : M — C™. Later Stoll [13] extended the theory to parabolic manifolds M.
Griffiths and King assume, that N is a connected, compact complex manifold with a
positive holomorphic line bundle L on N. Thus N is projective algebraic. Let K be the
canonical bundle on N and let K}, be its dual bundle. Define

[Ky:L]= inf{-§|L”®K;’V positive ,0 < p € Z, and 0 < q € Z}.

The set I'(IV, L) of all global holomorphic sections of L is a finite dimensional complex
vector space. We assume that dimI'(N,L) > 2. If a € P(I'(NV, L)), then a = P(a) with
0 # a € I'(N,L). The divisor of the section a depends on a only and is denoted by u,.
The assignment a — p, is injective. Hence we identify a = p,. Let G # 0 a finite subset
of P(I'(L, N)) with strictly normal crossings. If f has sufficient growth Griffiths and King
show that :

(3) > 6(f,a) < [Kx: L.
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Here again 0 < §(f,a) < 1. For instance if N = P(V') and if L = O(p) = HP is the ptt
power of the hyperplane section bundle, then

@ 3 6(f,0) < 2L
a€G p ‘

In 1929, Rolf Nevanlinna [4] asked if (1) remains valid if G is a finite set of meromorphic
functions growing slower than f. In 1986 Norbert Steinmetz [12] proved this conjecture.
Min Ru and myself [8], [9] obtained the corresponding result for Cartan’s defect relation
(2). The proofs for (1) and (2) require the construction of auxiliary Steinmetz maps
hy : C — Py(,) where ¢(p) — oo for p — oco. Even if we would find analogous Steinmetz
maps h, : C — Ny,) with dimNy,) = ¢(p) — oo for p — oo, the map hp could not
possibly be dominant as soon as ¢g(p) > m. If (3) can be saved for non-dominant maps is
one of the most difficult unsolved problems in value distribution theory. -

Thus Ann O’Shea used an older, but more restrictive method of Bernard Shiffman
[10], [11], which Stoll employed to study slowly growing associated target maps by the
Ta-operator [14]. In 1983, he gave a lengthy report about this theory at a RIMS confer-
ence. Because (4) is explicit, O’Shea considers only this situation. The main difficulty is
to construct a parameterized Carlson-Griffiths form and to measure the deterioration of
strictly normal crossings. This task is made more difficult than the corresponding problem
of general position for hyperplanes. k

First some basic concepts have to be explained before the result can be stated.

Divisors. Let N be a connected complex manifold of dimension n. A functionv: N —
Z is said to be an (effective) divisor if and only if every point p € N has an open, connected
neighborhood U with a holomorphic function ¢ # 0 on U such that for each z € U the
number v(z) is the zero multiplicity of g at z. Here g is called a defining function of v on
U. The set

supp v = {z € N|v(z) > 0}

is called the support of v. If v # 0, then supp v is a pure (n — 1)-dimensional analytic
subset of N. If v = 0, then supp v = 0. If f # 0is a holomorphic function or a holomorphic
section of a holomorphic line bundle on N, the zero divisor py of f is defined.

Let vy,...,v, be divisors on N. Put §; = supp vj and S = S;U---US,. Take any
a € S. Define I(a) = {j € N[1,¢]la € S;}. Then I(a) # 0. Thus j, € N[1, g] exist uniquely
for A = 1,...,k such that I(a) = {j1,...,7%} and j; < --- < jg. Then there is an open,
connected neighborhood U of a and for each A € N[1, k] a defining function g, of v;,. Then
v1,...,V are said to have strictly normal crossings at a if and only if

dgi(a) A--- A dgi(a) # 0.

The condition is independent of the choice of the defining functions g;. Trivially k¥ < n.
Here v,,...,v, are said to have strictly normal crdssings, if they have strictly normal
crossingsat everya € S. If f{ #0,..., f; Z 0 are holomorphic functions on NV, respectively
holomorphic sections in a holomorphic line bundle on N they are said to have strictly
normal crossings (at a) if this is the case for their divisors.



Symmetric Tensor Product. Let V be a complex vector space of dimension n+1 > 1
with a hermitian metric attached. Then V is called a hermitian vector space. Take

p € N. The p-fold symmetric tensor product ®V is a hermitian vector space of dimension
P

"TP) HreV,Thens? =10 -0z € OV with || 27 ||=| £ |7 Hence i £ # 0, then
i #£0. If £ € P(V), then z = P(z) with 0 # ? € OV and z? = P(z?) € P(OV) is well
defined. The Veronese map ¢, : P(V) — P(OV) deﬁ;ed by p(z) = 2P embed: P(V) into
POV). ’

}”I‘he dual vector space V* of V carries the dual hermitian metric. If y € V*, then

y:V — Cis a a-linear function. We define the inner product <, > between V and V* by
<ry>=y(r)ifr € Vandye V*. Then

l<no>I<lzllvll.
Thus if z = P(z) € P(V) and y = P(y) € P(V*), then

|<&9>1

Izl toll =

is well defined. The hermitian metric on V induces a hermitian metric A along the fibers

of the hyperplane section bundle H = ©(1) whose Chern form ¢(h,A) = Q > 0 is called

the Fubini Study form on P(V). If p € N, then ¢(H?,AP) = pQ is the Chern form of

H? = O(p). As hermitian vector spaces. We have the identity (OV)* = ®(V*) and as
» P

0<L0z,y0O =

complex vector spaces

QV* = [(P(V), H?).

Thus each § € OV™* can be regarded as a holomorphic section in H? and if § # 0, this
P

section defines a divisor py = p, which in fact depends only on the projective value

y = P(p). The assignment y — p, is injective and we can identify y = p,. As such each

element y € P(OV™*) is said to be a hypersurface of degree p on P(V'), which is not to be
P

mixed up with its support
supp y = supp py = {zr € P(V)|0z?,y0 = 0}.

How does ) € OV* become a holomorphic section in H?P? In order of explanation, we
P

will also denote 1 as §j in its section capacity and we have to calculate f)(z) for any given
z € P(V). Observe (H?), = ((9(—1),)?)*. Take any ¢ € V, with z = P(z). Then 7 is
a base of O(—1);. Thus ¢? is a base of (O(—1);)? and §(z) : (O(-1);)? — C a C-linear
function. Hence if 3 € (O(—1);)?, then z € C exist uniquely such that 3 = 2r? and the
assignment 3 — z is C-linear. Then §(z)(3) = z < 1%,y >.

A holomorphic function f : V — C is said to be a homogeneous polynomial of degree p
if and only if f(2r) = 2P f(z) for all (z,zr) € C x V. The vector space of all homogeneous



polynomials of degree p is C-linear isomorphic to @V‘ Thus I)‘ € @V* in its capacity

as homogeneous polynomial on V is denoted by fj. If r € V, then !)(;) =< P,9 >. The
distinction is important:

dij(z,0) =p<*'Ouv,9> ifreVyandbeV
dy(3,w) =< w,p > if3€ OV and w e OV
P 1 4

and dij does not make sense.

Parabolic manifolds (M, 7) is said to be a parabolic manifold of dimension m if and
only if : :

1: M is a connected, complex manifold of dimension m.
2: T > 0 is a non-negative, unbounded function of class C* on M.
3: T0<re€eRand S C M, abbreviate

S[r] = {z € S|7(z) £r*} S(r) = {z € S|r(z) < r?}
S<r>={zreS|r(z)=r*} S, ={z € S|r(z) > 0}
v = dd°rT w = ddlogt o =dlogr Aw™ L.
4: M|r] is compact for all r > 0.
5 wm=0Zv™ and w > 0.

Then v > 0. Define M+ = {z € M|v(z) > 0}. A positive constant ¢ > 0 exists such
that for all r > 0 we have

/ p ___'c / vm — g,,,2111.
M<r> M1}

Let 1 > 0 be a positive form of degree 2m and of class C® on M. A non-negative
function u on M is defined by v™ = u%¢. For 0 < s < r the Ricci function of 7 is defined

by
RiCT(T, 3) =/ logu o _/ Iogu o +/ / TiC'(/) A vm—ltl—Zmdt
M<r> M<s> s JM[i]

and does not depend on the choice of .
Let v be a divisor on M with S = supp v. For 0 < s < r, the valence function N, of v

is defined by
Ny(r,s) = / / vu™ 1=t gy
s JS[

The First Main Theorem Let f : M — P(V) be a meromorphic map with indeterminacy
Is. Let U # @ be an open connected subset of M. A holomorphic map v : u — V is said



to be a reduced representation of f, if U NIy = v=1(0) and f|(U — If) = Pouv. Every point
of M has an open, connected neighborhood admitting a reduced representation of f.
For 0 < s < r the characteristic function T of f is defined by

Ty(r,s) = / . YA v™ 1172 > 0.

Then Ty = 0 if and only if f is constant. If f is not constant, T¢(r,s) — oo for r — oo.
Actually Ty is the characteristic in respect to H. Thus for H? we have the characteristic

pTy.
Let g : M — P(@V*) be a meromorphic map. Then (f,g) are said to be free if

Ofr,g0#£ 0. If so, the compensation function my,g is defined for r > 0 by

1
= ! >0
m,e(7) /M«) log 5 5T° 2

Here (f, g) is free, if < v?,10 >% 0 for one and therefore every choice of reduced represen-
tations v : U - V of fand w: U — QV™* of g. If so, there exists one and only one divisor
P

pf,g such that s |U is the zero divisor of the holomorphic function < v?,10 >Z 0 on U
for each possible choice of U, b,1v. Abbreviate N,, . = Ny ,. For o < s < r we have the
First Main Theorem

PT(r, ) + Ty(r,8) = Nyg(ry8) + myg(r) = m, ().

Assume that f or g or both are not constant. Then the defect of (f,g) is defined by

my ¢(r) _ Ny,g(rss)
0<é(f,9)= Hoopr(r S)i T - rli,Igopr(r 3)9+ o S

If g moves slower than f, that is, if Ty(r,s)/Ts(r,s) — 0 for r — oo, then we can omit the
term T in the definition of the defect.
Ta.ke a€ OV and b € (@V) Put b = P(b). Assume that (b,g) is free. Then there

exist a unique meromorphw funct1on gab on M, called a coordinate function of g such that

for each reduced representation w : U — QV* of g we have
P

<a,n>

U= .
gﬂbl <b,m>

If so, there is a constant C, for each s > 0, such that
Tgos(r:8) < Ty(r,8) + Cs

forallr > s.



The Second Main Theorem More definitions are needed.
Let g; : M — P(OV*) be holomorphic maps for j = 1,...,¢9. Then g;,...,g, are
, P

said to have strictly normal crossings if there exists at least one point o € M such that
gi(zo) # g1(zo) for 1 < j <t < ¢ and if g1(z0),...,g4(z0) have strictly normal crossings.
Let P, be the set of all bijective maps « : N[1, g] — N[1,¢]. A function

T B(V) x F(OV*)* — R[0, 1]

shall by defined. Take z € P(V) and y = (y1,...,y,) € P(OV*)?. Take ¢ € V, with
3
P(y) =z and 0 # y; € OV* with P(y;) = y; for j = 1,...,q. Put 9 = (91,...,94). For
P R |
(a,s) € Py x N[1, g] define W,,(z,p) € /‘\V* by

q
Was(x, 0) = ( I < ;p, Da(r) >)dﬁa(1)(p) AeeeA dﬁa(s)(?)
A=s+1
- | Was(x,9) |l
Tas(z,y) =
@) = o - To
1 q
0<T(@) = o) D Taslmy) <1
g: s=1a€P,

Then
q
Ii= 1 [) (Wa,)~'(0) is analytic in V x (QV*)".
S = 1aEP, 4
HO#£reVand0#y; €OV*for j=1,...,q and if y = (91,...,9,), then (z,9) € I, if
P

q
andonlyifre U f)j_l(O) and the zero divisors of fj,...,f; do not have strictly normal
j=1
crossings at r. Similar

iy = {@v) € BV) x P@V*YID(z,) = 0)

is an analytic subset of P(V) x P(OV*)%. If z € P(V') and y; € P(OV*) for j =1,...,q are
P »

: : , . : g
given, if y = (y1,...,y,), then (z,y) € I;ifandonlyif z € |J supp y; and if the divisors
i=1
Y1,...Yq do not have strictly normal crossings at z. Let f : M — P(V)and g; : M — QV*
P
be holomorphic maps. Put A =(f,g1,...,9,) and g =(g3,...,9,)- Thus if g,...,g, have
strictly normal crossings, then I"o h # 0 and

1
I'(r =/ log 020
) M<r> Toh




is defined for r > 0.

Let M and N be connected, complex manifolds of dimensions m and n respectively with
k=m—n>0. Let f: M —» N be a holomorphic map. Let B be a holomorphic form
of bidegree (k,0) on N. Then B is said to be effective for f if for every open connected
subset U of N with U = f~!(U) # @ and for every holomorphic form x of bidegree (n,0)
on U without zeroes B A f*(x) % 0 on each component of U. If so, then there is one and
only one divisor p on M called the ramification divisor for B, f on M such that p|U is the
zero divisor of B A f "‘(x) for each choice of U and .

Define
i=(5) o

Then B is said to be majorized by a function ¥ : R; — R[1, +00) if

sz/\B<< ())

on M(r] for every r > 0. If so, Y can be taken optimal.
If ro € R and if u and v are real valued functions on R[rg,+00). Then u < v means

that there is some subset E of finite measure in R such that « < v on R[ro, +oo) E.
Second Main Theorem (O’Shea [6]). We assume

(Al) Let V be a hermitian vector space of dimension n+1 > 1.

(A2) Let (M, 7) be a parabolic manifold of dimension m with k =m —n > 0.

(A3) Let p and g be positive integers with pg > n + 1.

(A4) Let f: M - P(V)and g; : M - P(OV*) for j = 1,...¢ be holomorphic maps.
P

(A5) Let (f,gj) befreefor j=1,...,q

(A6) Let gy,...,9, have strictly normal crossings.

(A7) Let B be a holomorphic form of bidegree (s,0) on M. Assume that B is effective
for f with ramification divisor p and that B is majorized by Y such that

F(Q")ABAB 0.

(A8) dgjae A B =0 for every coordinate function of everygy,...,gq-
Now, take any € > 0; then

g
N,(r,s) + Z my g.(r) S(n +1)Ty(r, s) + Ric,(r,s) + I'(r) + elogr

i=1
—c(l + €)(log*Ty(r,s) + logY (r) + log* Z i (r58)).
j=1
For the proof Julann O’Shea constructs a ”Griffiths” form £ on P(V) x P(QV*)? = X
such that there is a constant v > 0 and a form © on X such that ’

(Rict)™ > 4(Q" +T%) + ©.



If h=(f,91,---,9q) : M — X, then © is constructed such that A*(©) A BA B = 0.
Theorem of O’Shea ([6]) Assume that (Al) - (A8) hold. then there are integers
aj >0forj=1,...,gand b > 0, and for each s > 0 a constant C,, such that r > s implies

g
I'(r) < Z ba;T,;(r,s) + C,.

=1
The proof shall be sketched. Abbreviate
Z=V x(0V*) Zo = V. x ((@V*).)8
P P
Z' =(eVY)* Z. = ((OV*).)*
P P

X =P(V)xP(OV*)! X!=POV*)".
) 4 P

Let ¥ :Z — Z¢0: Z, —» Z}, 7 : X — X! be the projections and define P: Z, — X
and P: Z! - X! by ’
P(F: 91,.. 3Uq) = (P(;)JP(Ul)a s )P(Uq))
P(91,..-,94) = (B(91), .-, P(y))

ifre V,and y; € (OV*), for j =1,...,9. Then Po 1)y = 7 o P. The analytic subsets I,
P

of Z and I, of X where defined above. Then I, # Z and I, # X and fq = P(I, N Z,).
Also the projections I = 3(I,) and Iq1 = n(I,) are analytic in Z! respectively X! with
P(IiN2ZL) =1} Hy=(y1,...,9,) € Z} then y € I} if and only if the divisor of f1,.. .,
do not have strictly normal crossings. Also if y = (y1,...,¥y4) € X!, then y € Iql if and
only if y;,...,y, do not have strictly normal crossings.

There is a polynomial@ # 0 of multidegree (a,,...,a,) € Z9 witha; > 0forj=1,...,q
on Z?! such that

Q(z191,---,2¢0¢) = 27" .. .zg"Q(t)l,. .-y q)

for all z; € C and y; € ©V* for j = 1,...,¢ and such that Q|I} = 0. Moreover if we take
P
reduced representations ; : U — @V* for j = 1,...,q, put 0 = (3,...,10,) : U = Z1,
P

then Qotv # 0 on u. Let R be the ring of all holomorphic polynomials on Z. Let a be the
ideal generated by the coordinate functions in respect to a fixed base of all the W, within
R. Then a is finitely generated and loc a = I,. Also (Q o %)|I; = 0. By the Hilbertsche

Nullstellensatz b € N exists such that (Q 0%)® € a. A function ' : X! — R[0,1] is defined

by
: Q)
r =
W)= o1 o T

for all y = (y1,..-,y4) € X! with y = (91,...,9,) € Z} such that P(y;) = y; for j =

1,...,9. Wlo.g. we can assume 0 < I' < 1 by multiplying @ by a constant. Since
(Q o 9)® € a, we obtain a constant ¢ > 0 such that

I'(y)® < cI'(z,y)




for all z € P(V) and y € X'. According to Stoll [14] Q can be regarded as projective
operation homogenous of degree (ai, ..., a,) (see page 58) which is free for g = (g1,...,9¢) :
M — X! (page 60). We abbreviate the symbol ngng ... ng to Qg, Then Theorem
3.4[14] page 141 yields the First Main Theorem '

9

> 45T (r,8) = Ny (ry8) +mgy(r) = mgy(s)

where N o, >0 and
1

mg, (1) = log——o0.
@o(") ./M<r> I'(y)

Thus

1 ‘
= < . .
I(r) /M<r> logr - h?’ < megJ(r) + ¢loge

Take s > 0. Define C, = bmg,(s) + clogc. Take any r > s. Then

q .
I(r) < ba;Ty(r,s) + Ch.

=1

If,in addition we make the standard assumptions

(A9) Ty;(r,s)/Ty(r,s) = 0 forr wooforj=1,...,q
(A10) Ric.(r,s)/T¢(r,s) =0  forr — oo
(A11) logY (r)/T¢(r,s) = 0  for r — oo.

O’Shea’s Defect Relation [6]

n+1

r

q
D 6(f,95) <
j=1

follows. Observe that we have to divide by pTY.

If M is a connected, complex manifold of dimension m and if * = (7y,...,mm) : M —
C™ is a proper surjective holomorphic map, defined 7 =|| « ||2. Then (M, 7) is a parabolic
manifold of dimension m called a parabolic covering manifold of C™. The zero divisor §
of dmy A -+ A dmp, is called the branching divisor. Then Ric,(r,s) = Ng(r,s) > 0. In this
case we can replace (A10) by
(A10") j € N [1,q] exists such that g; separates the fibers of .

If so, then N(r. )

. » B r,S
hr?—f:png (r, s) S2%-2

by a theorem of Junjiro Noguchi [5]. Thus (A9) implies (A10).
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