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In 1970 Sh. Kobayashi posed the following problems [Kol]:

Let $D$ be a generic hypersurface of degree $d$ in $P^{n}$ , where $d$ is large enough

with respect to $n$ .
I Is it true that $D$ is hyperbolic?

II Is it true that the complement $P^{n}\backslash D$ is hyperbolic and, moreover,

hyperbolically embedded into $P^{n}$ ? Is it true for $d\geq 2n+1$ ?

For $n=2$ the answer to I is classically known to be positive (starting

with $d=4$), while for $n\geq 3$ the problem is open.

The answer to II is unknown even for $n=2$ . It is positive for $n=1,$ $d\geq 3$ ,

and this is equivalent to the Montel Theorem.

Here we present a survey around the Kobayashi’s Problems. Of course,

it does not pretend neither to be exhausted, nor to be original.

I The compact case

Let $P_{n,d}=P^{N}$ , where $N=(\begin{array}{l}n+dn\end{array})-1$ , be the projective space whose

points parametrize hypersurfaces of degree $d$ in $P^{n}$ (not necessarily reduced).
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Let $H_{n,d}\subset P_{n,d}$ be the subset corresponding to hyperbolic hypersurfaces. To

precise the meaning of”genericity” in I one could ask whether $H_{n,d}$ contains

a Zariski open $su$ bset of $P_{n,d}$ for $d>>n$ ? Or, more generally, whether the

complement $P_{n,d}\backslash H_{n,d}$ is contained in a counta$ble$ union of hypersurfaces in

$P_{n,d}$ for $d>>n$ ?

It is known that $H_{n,d}$ is open (but probably empty) in the classical Haus-

dorff topology of $P_{n,d}$ for any $n,$ $d\in$ N. This follows from the Brody’s

Stability Theorem [Br], or, to be more precise, from the following version of

it [Zal,4]:

Theorem I.l Let $M$ be a complex $m$anifold and $X$ a compact analytic

$su$ bset of M. If $X$ is hyperbolic, then there exists a neighborhood $U$ of $X$

in $M$ , which is hyperbolically embedded into M. Therefore, any compact

analytic $su$ bset $X’$ in $M$ close enough to $X$ is hyperbolic as well.

In particular, if $f$ : $Marrow S$ is a proper holomorphic $s$urjection onto

a complex space $S$ , then the $su$ bset of points in $S$ that correspond to the

hyperbolic fibres of $f$ is open,

We give here a sketch of the proof.

Let $h$ be a fixed Hermitian metric on $M$ . An entire curve $f$ : $Carrow M$ is

called a Brody curve iff $f$ is a contraction with respect to the Euclidean metric

in $C$ and the metric $h$ on $M$ (i.e. $|df(z)|_{h}\leq 1\forall z\in C$), and $|df(O)|_{h}=1$ .
Let the disc $\triangle_{r}$ of radii $r$ in $C$ be endowed with the metric $rh_{r}$ , where $h_{r}$

is the Poincar\’e metric in $A_{f}$ . It is easily seen that the Euclidean metric in $C$

is the limit of the metrics $rh_{f}$ as $rarrow\infty$ . A holomorphic curve $f$ : $\triangle_{r}arrow M$

is called a Bloch-Brody curve iff $f$ is a contraction with respect to the metrics

$rh_{f}$ in $A_{f}$ and $h$ in $M$ , and 1 $df(O)|_{h}=1$ . By the Arzel\‘a-Askoli Theorem any
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sequence $f_{n}$ : $\Delta_{n}arrow M$ of Bloch-Brody curves, whose images are contained

in the same relatively compact subset of $M$ , has a subsequence converged to

a Brody curve $f$ : $Carrow M$ .
Let $\{U_{n}\}$ be a fundamental sequence of (relatively compact) neighbor-

hoods of the hyperbolic compact analytic subset $X\subset M$ . Suppose that

there is no $n\in N$ such that $U_{n}$ is hyperbolically embedded into $M$ . That

means that the inequality $K_{U_{n}}\geq ch$ for the Kobayashi-Royden pseudomet-

ric $K_{U_{n}}$ on $U_{n}$ does not hold for any constant $c>0$ ; in particular, it does

not hold for $c= \frac{1}{n}$ By the definition of the Kobayashi-Royden pseudomet-

ric there exists a sequence $h_{n}$ : $\triangle_{n}arrow U_{n}$ of holomorphic curves such that

$|dh_{n}(0)|>1$ . By the Brody’s Reparametrization Lemma [Br] there exists a

sequence of Bloch-Brody curves $f_{n}$ : $\Delta_{n}arrow U_{n}$ , where $f_{n}(z)=h_{n}o\alpha_{n}(r_{n}z)$

for some $r_{n}<1$ and $\alpha_{n}\in Aut(\Delta_{n})$ . Passing to a converged subsequence,

one can obtain a limiting Brody curve $f$ : $Carrow\cap U_{n}=X$ , that contradicts

to the assumption of hyperbolicity of X. $O$

So, the hyperbolicity of a hypersurface in $P^{n}$ is stable with respect to

small deformations of the coefficients of the defining equation. More gen-

eraly, the set of points of a Hilbert scheme, which correspond to hyperbolic

projective varieties, is open in the usual topology. We do not know when this

set is non-empty; whether, being non-empty, it must contain a Zariski open

$su$bset, or at least an algebraic subvariety of small $enough$ codimension.

For $n=3$ R. Brody and M. Green [BrGre] gave examples of one-parametric

fanilies of hyperbolic surfaces in $P^{3}$ of any even degree $d=2k\geq 50$ . Namely,
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the surfaces

$D_{d,t}=\{x_{0}^{2k}+x_{1}^{2k}+x_{2}^{2k}+x_{3^{2k}}+t(x_{0}x_{1})^{k}+t(x_{0}x_{2})^{k}=0\}$

(deformations of the Fermat surfaces $F_{3,d}=D_{d,0}$ ) are hyperbolic for all but

a finite number of values of $t\in C$ . This means that for $d=2k\geq 50$ the set

$H_{3,d}$ is non-empty and contains a quasi-projective rational curve $C=\{D_{d,t}\}$

(together with some small classical neighborhood of it, as follows from the

Stability Theorem).

It is unknown $whe_{\kappa}ther$ for any $n\geq 4$ there exis$ts$ a hyperbolic hypersur-

face in $P^{n}$ . J. Noguchi (private communication) supposed that the Brody-

Green construction should be available also in some higher dimensions, at

least for $n=4$ .
Notice that the Newton polyhedron of the Fermat hypersurface $F_{n,d}$ of

degree $d$ in $P^{n}$ is the standard simplex in $R^{n+1}$ ; the monomials in the Fermat

equation correspond to its verticies. Additional monomials in the Brody-

Green example correspond to the middle points of some edges of this simplex

(so, the defining polynomials are fewnomials: they contain few monomials

with respect to their degrees).

Definition. Let us say that a hypersurface $D=\{p(x_{0}, \ldots, x_{n})=0\}$ of

degree $d$ in $P^{n}$ is k-almost simplicial if any monomial of $p$ corresponds to

a lattice point in $R^{n+1}$ with one of coordinates $\geq d-k$ (that means that

this point is placed in a k-neighborhood of some vertex of the n-simplex

$\{x_{0}+\ldots+x_{n}=d\}$ in $R_{+}^{n+1}$ ).

The following statement belongs to A. Nadel [Na]; its proof is based on

the Y.-T. Siu’s version of the value distribution theory for holomorphic curves
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in a complex manifold endowed with a meromorphic connection.

Theorem I.2 For arbitrary $e\geq 3$ in the projective space of all k-almost

simplicial surfaces in $P^{3}$ of degree $d=6e+3>4k+10$ there exists a

quasiprojecti$1^{\gamma}e$ subvariety of the dimension 4 $(k +44)-1$ , which consists

of hyperbolic smooth surfaces. In particular, $H_{3,d}$ is non-empty for any $d=$

$6e+3\geq 21$ .

Definition. Let us say that a complex Hermitian manifold (X, h) is Brody

hyperbolic iff it does not contain any Brody curve $Carrow X$ , and Picard

hyperbolic iff it does not contain any non-constant entire curve $Carrow X$ .
The Big Picard Theorem can be reformulated by saying that $P^{1}\backslash$ { $3$ points}

is Picard hyperbolic. The Brody’s Theorem [Br] states that for a compact

manifold $X$ all three notions of hyperbolicity (i.e. Kobayashi hyperbolicity,

Brody hyperbolicity and Picard hyperbolicity) are equivalent.

M. Green [Gre4] remarked that a Brody curve $Carrow T^{n}$ in a complex torus

$T^{n}=C^{n}/\Lambda$ , where $\Lambda$ is a lattice of the maximal rank in $C^{n}=R^{2n}$ , is lifted

to an affine isometric embedding $Carrow C^{n}$ . Therefore, a closed subvariety
$X\subset T^{n}$ is (Brody) hyperbolic iff it does not contain any shifted subtorus.

The same is valid for any compact complex parallelizable manifold $[HuWi]$ .
In more general setting Sh. Kobayashi [Ko2] established the following

fact.

Theorem I.3 Let (X, h) be a Hermitian manifold of nonpositive holo-

morph$ic$ sectional curvat$ure$ and $f$ : $Carrow X$ be $a$ Bro$dy$ curve. Then $f$ is an

isometric immersion, and its image is totally geodesic.

Problem I.1 Let the conditions of the above theorem be fulfilled. $Is$
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it true that th$e$ closure $\overline{f(C)}$ in $X$ contains the image of a complex torus

by a non-constant holomorphic mappin$g$, or at least any compact complex

$su$ bmanifold of positive dimension 2

We remark that the r\‘ational curve $P^{1}$ and the simple complex tori are

the only known examples of compact complex manifolds with totally degen-

erate Kobayashi pseudodistances that are minimal in this class, i.e. that

contain no closed subvarieties, which have this property to be completely

non-hyperbolic. This motivates the following

Definition. A compact complex space is said to be algebraically hyper-

bolic if it contains no image of a complex torus by a non-constant holomorphic

mapping.

In particular, such a variety contains no rational or elliptic curve. It is

clear that a complex space is algebraically hyperbolic if it is hyperbolic.

Problem I.2 Does algebraic hyperbolicity imply (Brody) hyperbolicity,

at least for projective varieties? In other words, is it true that a compact

complex space (a projective variety) which possesses a Brody curve, should

contain the image of a complex torus under a non-constant holomorphic

mapping?

The following recent result of J.-P. Demailly and B. Shiffman [DemSh]

can be considered as an approximation to the positive answer.

Theorem I.3 Let $X$ be a smooth projective variety, $S$ a Stein manifold

such that $\dim S\leq\dim X,$ $f$ : $Sarrow X$ a holomorphic mapping, $T$ a finite

subset of $S$ and $m$ a fixed natural number. Then there exists an exhausted

sequence $\Omega_{1}\subset\ldots\subset\Omega_{k}\subset\ldots$ of $R$unge domains in $S$ and a sequence of
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holomorphic mappings $f_{k}$ : $\Omega_{k}arrow X_{k}$ such that, for any $k\in N,$ $\dim X_{k}=$

$\dim S$ and at each point $s\in T$ the m-jet of $f_{k}$ coinside with th$e$ m-jet of $f$ .
If $S$ is an affrne algebraic manifold, then $f_{k}$ can be chosen to be regular.

As a corollary one has the following ‘more algebraic‘ definition of the

Kobayashi-Royden pseudometric $K_{X}$ of a projective variety $X$ :

$K_{X}(v)= \inf\{K_{C}(v)|v\in TC\}$ ,

where infinum is taken over all algebraic curves $C$ in $X$ which touch the

vector $v\in TX$ , and $K_{\overline{C}}$ is the Poincar\’e metric of the normalization $\tilde{C}$ of $C$ .
Furthermore, the Kobayashi pseudodistance $k_{X}(x, y)$ on $X$ coincides with

its algebraic analogue $d_{X}(x, y)$ suggested by J. Noguchi; briefly speaking, the

chains of holomorphic discs in the definition of the Kobayashi pseudodistance

are replaced by chains of algebraic curves and hyperbolic metrics of these

curves are used instead of the Poincar\’e metric in the disc).

An approach to Kobayashi’s Problem I is to divide it into two parts:

Problem I.2 on the equivalence of (Brody) hyperbolicity and algebraic hy-

perbolicity for projective varieties, as the first part, and as the second one

the following

Problem I.3 Is it true that a generic projective hypersurface of a large

enough degree in $P^{n}$ is algebraically hyperbolic?

For $n=3$ the positive answer follows from the next recent result of Geng

Xu [Xu], that precises an earlier one of H. Clemens and proves a conjecture

due to J. Harris.

Theorem I.4 For any algebraic curve on a generic $s$urface $D\in P_{3,d}$ of
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degree $d\geq 5$ in $P^{3}$ the following estimate holds:

$g( \tilde{C})\geq\frac{d(d-3)}{2}-2\geq 3$ ,

where $g(\tilde{C})$ is the genus of the normalization $\tilde{C}$ of C. This bound is sharp,

and for $d\geq 6$ the curves of the minimal genus are sections of $D$ by tritangent

planes.

Therefore, for $d\geq 5$ a generic surface of degree $d$ in $P^{3}$ does not contain

any rational or elliptic curve, and so it is algebraically hyperbolic.

Observe that on a smooth quartic surface in $P^{3}$ and, moreover, on any K3-

surface, there exist a rational curve and a linear pencil of elliptic curves (see

[GreGri] and $[MoMu]$ ). Thus, such a surface is not algebraically hyperbolic.

This shows that the above bound $d\geq 5$ is sharp.

The proof of Theorem I.4 involves the Brill-Noether Theorem, and thus

the meaning of “genericity” in its formulation is more extended than the

genericity in Zariski sense. Namely, let $AH_{n,d}\subset P_{n,d}$ be the set of all al-

gebraically hyperbolic hypersurfaces. Then by Theorem I.4 for $d\geq 5$ the

complement $P_{3,d}\backslash AH_{3,d}$ consists of a countable number of proper algebraic

subvarieties of the $P_{3,d}$ . There is no information about their replacement. In

particular, the following problem seems to be important.

Problem I.4 Is the locus $P_{3,d}\backslash AH_{3,d}$ closed in $P_{3,d}$ in the usual topology?

Suppose that this locus is not closed. Then there exists a sequence of

non-algebraically hyperbolic surfaces $D_{k}$ in $P^{3}$ converged to an algebraically

hyperbolic surface $D_{0}$ . By the stability of hyperbolicity, $D_{0}$ is not (Brody)

hyperbolic; indeed, otherwise for $k$ large enough $D_{k}$ should be hyperbolic as

well, and therefore algebraically hyperbolic. So, if the answer to Problem
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I.4 is negative, then also the answer to Problem I.3 is negative; indeed, such

$D_{0}$ would be an example of an algebraically hyperbolic surface which is not

hyperbolic (and therefore it contains a Brody entire curve $Carrow D_{0}$ ).

A generic (in Zariski sense) hypersurface of degree $d\leq 2n-3$ in $P^{n}$

contains a projective line (in particular, a smooth cubic surface in $P^{3}$ contains

exactly 27 lines), thus it is not algebraically hyperbolic.

Question. What is the maximal number $d=d(n)$ such that $P_{n,d}\backslash AH_{n,d}$

contains a Zariski open subset of $P_{n,d^{7}}$

By the above remarks we have that $d(3)=4$ and $d(n)\geq 2n-3$ .
It is worth mentioning here the well known problems: Whether hyper-

bolicity (resp. algebraic hyperbolicity), or even measure hyperbolicity of a

compact complex manifold implies that it is a projective variety of general

type?

The positive answer is known in the case of surfaces (see [GreGri], $[MoMu]$ ).

A weaker property that could serve as a bridge between hyperbolicity and

algebraic hyperbolicity, is algebraic degeneracy.

Definition. One says that a complex space $X$ has the property of al-

gebraic degeneracy iff the image of any non-constant entire curve $Carrow X$

lies in a proper closed complex subspace of $X$ . We mention stong algebraic

degeneracy, if this subspace is the same for all such curves.

Perhaps, it is worth also to specify this notion by restricting the class of

curves under consideration to Brody curves.

The Bloch Conjecture, proven by T. Ochiai, Y. Kawamata, and also by M.

Green and P. Griffiths, R. Kobayashi (see [RKo] for the references), states

that an irregular projective variety $X$ (i.e. a variety with the irregularity
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$q(X)=h^{1,0}(X)>\dim X)$ has the property of algebraic degeneracy. The

above restriction was weakened in the case of surfaces of general type to

$q(X)\geq 2$ by C. Grant [Gral] (see also [Gra2], $[HuWi]$ , [Lu] and St. Lu’s

report in this volume for some related results).

Another property, close to algebraic hyperbolicity, is finiteness of the

number of non-hyperbolic (resp. non-algebraically hyperbolic) proper sub-

varieties. In the surface case this is finiteness of the number of rational and

elliptic curves, that was proved by F. Bogomolov [Bo] for projective surfaces

of general type under the assumption that the inequality for Chern numbers
$c_{1^{2}}>c_{2}$ holds (see also [Lu]). H. Clemens conjectured the finiteness of the

number of rational curves of any given degree $d$ on a generic quintic threefold

in $P^{4}$ , that was verified by N. Katz for $d\leq 7$ (see [Xu]).

II The non-compact case

Denote by $HE_{n,d}$ the subset of $P_{n,d}$ consisting of the hypersurfaces of

degree $d$ in $P^{n}$ with hyperbolically embedded complements. Then $HE_{n,d}$

is non-empty for any $d\geq 2n+1$ ; indeed, it contains the union $C_{n,d}$ of $d$

hyperplanes in general position. This fact (modulo Kiernan’s criterion of

hyperbolic embeddedness [Ki2]) goes back to E. Borel, A. Bloch, A. Cartan

and J. Dufresnoy (see $[KiKo]$ for the references). It was reproved many times,

for instance by M. Green [Gre2], E. Babets [Ba] and others.

The bound $d\geq 2n+1$ for $HE_{n,d}$ being non-empty should be sharp. It is

sharp for $n=2$ ; indeed, M. Green remarked in [Gre3] that for any quartic

curve $C$ in $P^{2}$ there exists a projective line $l$ that intersects $C$ not more than

in two points (an inflection tangent to $C$ , or a bitangent, or a tangent in a
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singular point, or a line passing through two singular points of $C$). Thus

$P^{2}\backslash C$ is not hyperbolic; indeed, it contains $l\backslash C\supset P^{1}\backslash$ { $2$ points}, and so

the Kobayashi pseudodistance $k_{P^{2\backslash C}}$ is degenerate along $l\backslash C$ .
We do not know whether for $d\leq 2nHE_{n,d}$ is empty or not, but we know

at least [Za3] that its complement $P_{n,d}\backslash HE_{n,d}$ contains a Zariski open subset:

Proposition II.1 For a generic (in Zariski sense) hypersurface $D$ of de-

gree $d\leq 2n$ in $P^{n}$ and for any $k,$ $0\leq k\leq d$ , there exists a projective line $l$

that intersects $D$ in two points only with multiplicities $k$ and $d-k$, respec-

tively. Thus, the pseudodistance $k_{P^{n}\backslash D}$ is degenerate along $l$ . If $d=2n$ , then

the number of such lines is fin$ite$.
In contrast with the subset $H_{n,d}$ of the $P_{n,d}$ , the subset $HE_{n,d}$ is never

open in the usual topology of $P_{n,d}$ . For instance, for any $d\geq 2n+1$ the

totally reducible hypersurfaces $C_{n,d}\in HE_{n,d}$ considered above belong to the

boundary of $HE_{n,d}$ . This follows from the next simple observation [Za4]:

Proposition II.2 Any hypersurface $D_{0}$ in $P^{n}$ that contains a projecti$ve$

line $l$ , can be approximated by a sequence of hypersurfaces $\{D_{k}\}$ such that
$l\cap D_{k}$ consists of one point only. Thus $P^{n}\backslash D_{k}$ is not hyperbolic, and so
$D_{0}\in\overline{P_{n,d}\backslash HE_{n,d}}$.

Nevertherless, in [Za4] a stability principle is obtained which can be ap-

plied in connection with Kobayashi’s Problem II. Its proof follows the line of

the proof of Theorem I.1. One of its consequencies is the following

Theorem II.1 Let $M$ be a compact complex manifold and $D$ a hyper-

$s$urface in M. If $D$ and $M\backslash D$ are both Brody hyperbolic, then $M\backslash D$ is

hyperbolically embedded into $M$; moreover, all these properties are preserved

by small deformations of the pair $(M,D)$ .
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Corollary $HE_{n,d}\cap H_{n,d}$ is an open ($but$ possibly empty) subset of $P_{n,d}$

in the usual Hausdorff topology.

It would be reasonable to suppose that th$e$ intersection $HE_{n,d}\cap H_{n,d}$

contains a Zariski open $su$ bset of $P_{n,d}$ if $d>>n$ , which would imply the

positive answer to both of the Kobayashi’s Problems.

To construct examples of hypersurfaces that belong to $HE_{n,d}\cap H_{n,d}$ , one

can use the following generalization of the Borel-Bloch-Cartan-Dufresnoy

Theorem. It can be deduced from a result of M. Green [Gre2], and it was

proven by E. Babets [Ba] by a different method.

Theorem II.2 The complement of the union of $2n+1$ smooth hypersur-

$fac$es in $P^{n}$ in general position is hyperbolically embedded into $P^{n}$ .
In fact, this is true for any union of $2n+1$ hypersurfaces such that the

intersection of any $n+1$ of them is empty (A. Eremenko and M. Sodin $[ErSo]$ ;

a simplified proof has been recently done by ${\rm Min}$ Ru). Using this theorem

and Theorem II.1, one can easily obtain the following

Corollary If $H_{n,k}$ is non-empty, then $HE_{n,d}\cap H_{n,d}$ is a non-empty open

set for any $d\geq(2n+1)k$ .
Indeed, by Theorem II.2 the union of any $2n+1$ smooth hyperbolic

surfaces in general position belongs to $HE_{n,d}\cap H_{n,d}$ .
In particular, from the existence of a hyperbolic surface in $P^{3}$ of degree

21 [Na] it follows that $HE_{3,d}\cap H_{3,d}$ is non-empty for any $d\geq 147=7\cdot 21$ .
For $n=2$ , a more refined version of the Stability Principle, which uses

absorbing stratifications [Za4], leads to the following

Theorem II.3 For any $d\geq 5$ the open set $HE_{2,d}\cap H_{2,d}$ is non-empty,

$i.e$. there exists a classicaly open set of smooth curves in $P^{2}$ of degree $d$ with
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hyperbolically embedded complements.

The bound $d\geq 5$ here is sharp, as follows from the remark of M. Green

mentioned above.

The first examples of smooth curves of any even degree $d\geq 30$ in $HE_{2,d}$

were constructed by K. Azukawa and M. Suzuki $[AzSu]$ by the Brody-Green

method [BrGre]. Remark that if $B$ in $P^{2}$ is a branching curve of a regular

projection of some hyperbolic projective surface into $P^{2}$ , then the comple-

ment $P^{2}\backslash B$ is a base of a hyperbolic covering and so it is hyperbolic. But

the class of such curves is rather restricted, as has been remarked by F. Bo-

gomolov, B. Moishezon and M. Teicher; for instance, the number of cusps

of the branching curve of a generic projection of a smooth projective surface

onto $P^{2}$ is divided by 3.

In a series of papers by M. Green, J. Carlson and M. Green, H. Grauert

and U. Peternell (see [Za4] for the references) certain sufficient conditions

were worked out that ensure, for an irreducible plane curve $C$ of genus $\geq 2$ ,

the existence in the complement $P^{2}\backslash C$ of a complete Hermitian metric with

holomorphic sectional curvature bounded from above by a negative constant

(by Ahlfors Lemma this implies the hyperbolic embededdness of $P^{2}\backslash C$ into
$P^{2})$ . Any curve satisfying these conditions is singular and of at least sixth

degree; the only known examples are the dual curves to generic smooth plane

curves of degrees $d\geq 4$ .
By Green-Babets Theorem II.2 any union of 5 smooth curves in $P^{2}$ in

general position has the hyperbolically embedded complement. Therefore,

for $d\geq 5$ the set $HE_{2,d}$ contains some quasiprojective varieties. For instance,

the quasiprojective submanifold $M=\{C_{2,5}\}=$ {unions of 5 lines in general
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position in $P^{2}$ } of dimension 10 is contained in $HE_{2,5}\subset P_{2,5}=P^{20}$ . Re-

cently G. Dethloff, G. Schumacher and P.-M. Wong [DetSchWo] have shown

that the complement to a union $C$ of 4 plane curves in general position is

hyperbolically embedded into $P^{2}$ , if the degree of $C$ is at least 5 (see P.-M.

Wong’s report in this volume). This fact can also be obtained by using of a

result of Y. Adachi and M. Suzuki [AdSul]. Another result of [DetSchWo],

conjectured by H. Grauert [Grau], is the hyperbolic embeddedness of the

complements to three quadrics in $P^{2}$ in general position (the latter condition

can be formulated explicitly in this case; in other cases it means at least

Zariski openess).

Let us mention a related criterion of hyperbolic embededdness of comple-

ments of curves [Za2].

Proposition II.3 Let $C$ be a closed curve in a smooth compact complex

surface M. The complement $M\backslash C$ is hyperbolically embedded into $M$ iff

th$ecurveC\backslash Sing(C)$ is hyperbolic and the complement $M\backslash C$ is Brody

hyperbolic.

The property of algebraic degeneracy of complements of curves was treated

by T. Nishino and M. Suzuki $[NiSu]$ , Y. Adachi and M. Suzuki $[AdSul,2]$ .
In particular, it is worth mentioning the following results.

Theorem II.4 $([NiSu])$ Let $M$ and $C$ be as above. If the logarithmic

Kodaira dimension $\overline{k}(M\backslash C)=2$ , then any proper holomorphic mapping

$f$ : $Carrow M\backslash C$ is algebraically degenerate, i.e. the image $f(C)$ is contained

in some dosed curve $E$ in $M$ .
Theorem II.5 ([AdSul]) Let a reducible $curveC$ in $P^{2}$ consists of at

least 4 irreducible components, which do not belong to the same linear pencil.
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Then there exists a $curve$ $A$ in $P^{2}$ such that the image of any non-constant

entire curve $Carrow P^{2}\backslash C$ is contained in A. Thus, $P^{2}\backslash Ch$as the property

of strong algebraic degeneracy.

All possible exceptions here are completely classified. For some examples

of degeneracy loci in complements of quartic curves see [Gre3].

Another degeneracy principle had been used in the Babets’ proof of The-

orem II.2 [Ba]. It states that,with respect to an appropriate complete Her-

mitian metric in the complement of a divisor $D$ of normal crossings type in

a compact complex manifold $M$, any holomorphic differential in $M\backslash D$ with

logarithmi$c$ poles along $D$ is constan $t$ on any Brody curve $Carrow M\backslash D$ . See

also [Na] for an algebraic degeneracy principle in the presence of an ample

meromorphic connection in Siu sense.

The definition of algebraic hyperbolicity, after some evident changes, is

available for affine algebraic or, more generally, quasiprojective varieties.

This allows one to divide Problem II into two subproblems that correspond

to Problems I.2 and I.3 above.

Problem II.1 Let $D$ be a hyperbolic hypersurface in $P^{n}$ such that there

exists a Brody curve $Carrow P^{n}\backslash D$ . Is it true that there exists a rational

projective curve $C$ in $P^{n}$ which has not more than two places on $D^{7}$

Problem II.2 Let $L_{n,d}\subset P_{n,d}$ be the locus of those hypersurfaces $D$ of

degree $d$ in $P^{n}$ , for which $su$ch rational curve $C$ as above does exist. Is it

true that the complement $P_{n,d}\backslash L_{n,d}$ contains a Zariski open subset of $P_{n,d}$

for $d>>n$ ? Is th $e$ locus $L_{n,d}$ Hausdorff closed in $P_{n,d}$ ?

Next we pass to the special subproblem of hyperbolicity of complements to

hyperplanes in $P^{n}$ . For hyperplanes in general position the following result,
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due to H. Fujimoto [Fu] and M. Green [Gr], is well known; we formulate it

together with some additional information obtained by P. Kiernan and Sh.

Kobayashi $[KiKo]$ .
Theorem II.6 Let $D$ be a union of $n+k$ hyperplanes in general position

in $P^{n}$ , where $k>0$ . Then the image of any non-constant entire curve

$Carrow P^{n}\backslash D$ is contained in a linear $su$bspace of dimension $\leq[\frac{n}{k}]$ . The

bound here is sharp. In addition, the degeneracy locus is contained in a

finite union of the ‘diagonal linear subspaces ‘of dimension $n-k+1$ , defined

by $D$ in a canonical way. Thus, $P^{n}\backslash D$ has the property of strong algebraic

degeneracy.

For $k=2$ this gives the estimate $[ \frac{n}{2}]$ of the dimension of the degeneracy

subspace, while from the Borel Lemma it follows just the linear degeneracy,

which means that any non-constant entire curve in the complement to $n+2$

hyperplanes in $P^{n}$ in general position is contained in a hyperplane. In fact,

the latter is true without the assumption of general position [Grel]. And for
$\nu$

$k=n+1$ Theorem II.6 leads once again to the Borel-Bloch-Cartan-Dufresnoy

Theorem.

The exactness of the bound $d\geq 2n+1$ for the hyperbolicity of $P^{n}\backslash D$

is shown by the following result of V.E. Snurnitsyn [Sn], which proves a

conjecture of P. Kiernan [Kil].

Theorem II.7 For any union $D$ of $2n$ hyperplanes in $P^{n}$ there exists a

projective line $l$ such that the intersection $D\cap l$ consists of not more than

two points. Therefore, $P^{n}\backslash D$ is not hyperbolic.

Some examples, where the union of hyperplanes in non-general position

has hyperbolically embedded complement, were given by P. Kiernan [Kil].
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In [Za2] the following conditions for a finite union $D$ of hyperplanes in $P^{n}$

were considered:

(a) There exists no pair ofpoin$tsx,$ $y$ in $P^{n}$ such that each hyperplane in
$D$ passes thro$ugh$ at least one of these points. In other words, there exists no

projective line $l(l=(x, y))$, which intersects the union of those hyperplanes

in $D$ , that do not contain $l$ , in not more than two points.

(b) There exists no pair of points $(x,y)$ in $P^{n}$ such that each hyperplane

in $D$ passes through exactly one of these points. In other words, there exists

no projective line $l(l=(x, y))$ that intersects $D$ in one or two points only.

It is clear that if condition (b) fails, then the Kobayashi pseudodistance

$k_{P^{n}\backslash D}$ is degenerate along $I$ , and if (a) is violated, its limit is degenerate along
$l$ . The following criteria were obtained in [Za2, Sect.3].

Theorem II.8 Let $D$ be as above. The complement $P^{n}\backslash D$ is hyper-

bolically embedded in $P^{n}$ iff condition $(a)$ holds, and it is Picard Ayperbolic

iff condition $(b)$ is fulfilled. Furthermore, for $n=2(b)$ is equivalent to

hyperbolicity of $P^{2}\backslash D$ .
The latter statement had been earlier conjectured by S. Iitaka.

Another criterion of Picard hyperbolicity of complements of hyperplanes

has been recently obtained by ${\rm Min}$ Ru [Ru].

Theorem II.9 The complement $P^{n}\backslash D$ of a finite union $D$ ofhyperplanes

in $P^{n}$ is Picard hyperbolic iff for any linear subspace $V$ in $P^{n}$ , which is

not contained in $D$ , the intersection $V\cap D$ contains at least three distinct

hyperplanes of $V$ that are linearly dependent.

An algorithm that allows one to check the latter condition (which is ob-

viously equivalent to condition $(b))$ is also given in [Ru]. We remark that to
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verify (b) one can apply an algorithm of passing from one pair of isolated in-

tersection points of $n$ hyperplanes in $D$ (if there is any such pair) to another

one, as it is done in the simplex method.

In conclusion, let us mention the Lang’s Conjecture on equivalence of

Picard hyperbolicity and mordelleness (see [La]), which was proven for com-

plements of hyperplanes by P.-M. Wong and M. Ru $[WoRu]$ under the as-

sumption of general position, and by M. Ru [Ru] without this assumption.
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