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Summary

Symmetric parallel lines bioassays with even number of doses of each preparation are

considered when a block design with nested rows and columns is used for the experi-

ment. Thus, it is assumed that two sources of nuisance variability are to be controlled

in the experiment. Nested row-column designs which estimate the preparation contrast,

the combined regression contrast and the parallelism contrast with full efficiency are

characterized and some methods of construction are provided.

1 Introduction

Suppose that a symmetric parallel line (SPL) assay involving two preparations, stan-

dard and test, each at $m$ equi-spaced doses is to be conducted using a block design with

nested rows and columns. Singh and Dey (1979) defined variance balanced incomplete

block designs with nested rows and columns. Since then several authors have given meth-

ods of constructing variance balanced and partially variance balanced designs with nested

rows and columns, e.g. Agrawal and Prasad $(1982, 1983)$ , Sreenath (1989), Uddin and
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Morgan (1990). The purpose of this paper is to consider these designs for SPL assays

when $m$ , the number of doses of each preparation, is even.

The preparation contrast $L_{p}$ , the combined regression contrast $L_{1}$ , and the parallelism

contrast $L_{1}^{1}$ are of main importance in SPL assays. The $L_{p}$ and $L_{1}$ provide an estimate

of relative potency and $L_{1}^{1}$ is important for testing deviation from parallelism of the

regression lines for the standard and the test preparations. Therefore it is desired to

estimate these three contrasts with full efficiency. Designs which estimate $L_{p},$ $L_{1}$ and $L_{1}^{1}$

with full efficiency will be referred to as L-designs in this paper.

L-designs with one dimensional blocks have been considered by several authors, see

for example Kyi Win and Dey (1980), Nigam and Boopathy (1985), Gupta (1989), Gupta

and Mukerjee (1991). Das and Kulkarni (1966) gave some designs which estimate $L_{p}$ and

$L_{1}$ with full efficiency. The reader is referred to Kshirsagar and Yuan (1992) for a unified

theory of parallel line bioassays in incomplete block designs.

L-designs with nested rows and columns are defined in Section 2. Then some charac-

terization and construction aspects are considered in Section 3.

2 L-designs with nested rows and columns

Let $s_{1}<s_{2}<\cdots<s_{u}<s_{u+1}<\cdots<s_{m}$ and $t_{1}<t_{2}<\cdots<t_{u}<t_{u+1}<$

. . . $<t_{m}$ , where $m=2u$ , denote the doses of the standard and the test preparations

respectively. Let these $v=2m$ treatments be coded as 1, 2, $\cdots,$ $2m$ respectively. Also,

let $\tau=(\tau_{1}\tau_{2}\cdots\tau_{v})’$ be the vector of treatment parameters where $\tau_{i}$ and $\tau_{m+i}$ denote

the effects of $s_{i}$ and $t_{i}$ respectively, $i=1,2,$ $\cdots,$ $m$ . Let $e_{i},$ $i=1,2,$ $\cdots,$ $m-1$ , denote all

possible contrast vectors of size $m$ as given by orthogonal polynomials. Let

$\ell_{p}$ $=$ $(1_{m}’ -1_{m}’)’$ (2.1)

$\ell_{i1}$ $=$ $(e_{i}’ e_{i}’)’$ , $l_{i2}=(e_{1}’ -e_{i}’)’$ , $i=1,2,$ $\cdots$ , $m-1$ ,



26

where $1_{q}$ denotes a column vector of l’s of size $q$ . Then

$L_{p}$ $=\ell_{p}’\tau$ , (2.2)

$L_{i}$ $=p_{i1^{\mathcal{T}}}$ $L_{i}^{1}=P_{12’}r,$ $i=1,2,$ $\cdots,$ $m-1$ .

It should be noted that $e_{i},$ $i=1,2,$ $\cdots,$ $m-1$ , have the following structure,

$e_{i}’=\{\begin{array}{l}f_{i’}[I_{u}-I_{cu}]f_{i^{/}}[I_{u}I_{cu}]\end{array}$

, $i=2,4,$ $6,\cdot\cdot,$

$m-2i=1,3,5,.\cdots,m-1$ (2.3)

where $f_{1}=[f_{11}f_{i2}$ . .. $f_{iu}]’$ is a column vector of size $u,$ $i=1,2,$ $\cdots,$ $m-1,$ $I_{u}$ is the

identity matrix and $I_{cu}$ denotes the matrix containing unity in the $(i, u+1-i)$ positions,

$i=1,2,$ $\cdots,$ $u$ , and zero elsewhere, both being of order $u\cross u$ . Since $e_{i}’1=e_{i}’e_{j}=0$ , using

(2.3) it follows that $f_{i’}1_{u}=f_{i’}f_{i}=0,$ $i\neq j=2,4,6,$ $\cdots,$ $m-2$ .

First consider a SPL assay $co$nducted using an incomplete block design having $b$ blocks

of $k$ plots each, with every treatment replicated a constant number of times denoted by $r$ .

Then, following Kyi Win and Dey (1980) and Gupta (1989), it can be proved that $L_{p},$ $L_{i}$

and $L_{i}^{1},$ $i=1,3,5,$ $\cdots$ , $m-1$ , are estimated with full efficiency if the design satisfies the

following conditions:

(a) The total number of concurrences of each of the pairs of treatments $(g, m+1-g)$ ,

$(m+g, 2m+1-g),g=1,2,$ $\cdots,$ $u$ , is equal to $r$ .

(b) Each block of the design contains $k/2$ treatments belonging to $\{$ 1, 2, $\cdots$ , $m\}$ where $k$

is necessarily even.

Let us now consider the case of block designs with nested rows and columns for SPL

assays. Thus, let each block be arranged in $p$ rows and $q$ columns with $k=pq$ . Let

$N_{1},$ $N_{2}$ and $N$ denote the $v\cross pb$ treatment versus row, $v\cross qb$ treatment versus column,

and $v\cross b$ treatment versus blocks incidence matrices respectively. The component designs

corresponding to $N_{1},$ $N_{2},$ $N$ will be denoted by $D_{1},$ $D_{2}$ and $D$ respectively. The reduced
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normal equations for estimating the vector of treatment parameters are then given by

$C\tau=Q$ where

$C=rI_{v}- \frac{1}{q}N_{1}N_{1}’-\frac{1}{p}N_{2}N_{2}’+\frac{1}{pq}NN’$, (2.4)

and $Q$ is the vector of adjusted treatment totals. Along the lines of a L-design with

one dimensional blocks considered above, we have the following definition for the case of

designs with nested rows and columns.

Definition 2.1. A design with nested rows and columns is defined to be a L-design if it

satisfies the following conditions,

(a) the two treatments $g+(j-1)m$ and $mj+1-g$ do not fall in different blocks of either

of the two component designs $D_{1}$ or $D_{2},j=1,2;g=1,2,$ $\cdots$ , $u$ , and

(b) each of the blocks of the component designs $D_{1}$ and $D_{2}$ contains an equal number of

treatments belonging to $\{1, 2, \cdots, m\}$ and $\{m+1, m+2, \cdots, 2m\}$ , where both $p,$ $q$

are necessarily even.

Using (2.1), (2.3) and (2.4), it can be verified that L-designs with nested rows and

columns of Definition 2.1 estimate $L_{p},$ $L$; and $L_{i}^{1}$ with full efficiency, $i=1,3,5,$ $\cdots,$ $m-1$ .

3 Characterizations and constructions of L-designs

Definition 2.1 implies that a typical block of the component design $D_{1}$ or $D_{2}$ is of the

form,

$[a_{i(1)}m-a_{i(1)}+1a_{i(2)}m-a_{i(2)}+1$ . .. $a_{i(h)}m-a_{i(h)}+1$

$b_{j(1)}3m-b_{j(1)}+1b_{j(2)}3m-b_{j(2)}+1$ ... $b_{j(h)}3m-b_{j(h)}+1$ ] $(3.1)$

where $4h=q$ if the block belongs to $D_{1}$ and $4h=p$ if it belongs to the component design

$D_{2}$ , and
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$\{a_{i(1)}, a_{i(2)}, \cdots, a_{i(h)}\}$ $\in$ $\{1, 2, \cdots, u\}$ , (3.2)

$\{b_{j(1)}, b_{j(2)}, \cdots, b_{j(h)}\}$ $\in$ $\{m+1, m+2, \cdots, m+u\}$ .

Each block of $D$ constitutes of $p$ rows and $q$ columns. Consider a typical block of

the component design $D_{1}$ given by (3.1). The $q$ treatments which are contained in this

block belong to $q$ different blocks of the component design $D_{2}$ . These $q$ blocks of $D_{2}$ will

be referred to as being associated with that particular block of $D_{1}$ . from Definition 2.1,

if the two treatments $g+(j-1)m$ and $mj+1-g$ occur together $\lambda$ times in some block

of the component design $D_{1}$ , then they must occur together in at least $2\lambda$ blocks of $D_{2}$

associated with this particular block of $D_{1}$ . If we now reverse the roles of $D_{1}$ and $D_{2}$ in

the above discussion then it follows that if the pair of treatments $\{g+(j-1)m, mj+1-g\}$

occurs together a certain number of times in the blocks of $D_{1}$ associated with a block of

$D$ , then it also occurs together the same number of times in the blocks of $D_{2}$ associated

with that particular block of $D$ . This means that the rows and columns within each

block of $D$ can be permuted to yield an arrangement of the following type for each block

of $D_{1}$ and $D_{2}$ ,

$[A_{i\{1)}A_{i(2)}\cdots A_{i(h)}B_{j(1)}B_{j(2)}\cdots B_{j(h)}]$ (3.3)

where

$A_{i(\ell)}$ $=$ $\{\begin{array}{ll}a_{i(\ell)} m-a_{i(\ell)}+1m-a_{i(\ell)}+1 a_{i(\ell)}\end{array}\}$ ,

$B_{j(\ell)}$ $=$ $\{\begin{array}{ll}b_{j(\ell)} 3m-b_{j\langle 1)}+13m-b_{j(l)}+1 b_{j(\ell)}\end{array}\}$ , (3.4)

$P=1,2,$ $\cdots,$
$h$ ,
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and $a_{i\{\ell)},$
$b_{j(\ell)},$ $\ell=1,2,$ $\cdots,$

$h$ , are as defined in equation (3.2). Let

$A_{g}$ $=$ $\{\begin{array}{lllll} g m +1-gm +l- g g\end{array}\}$

$B_{g}$ $=$ $\{\begin{array}{lll}m+g 2m +1-g2m+1-g m+g \end{array}\}=A_{g}+mJ_{2},$ $g=1,2,$ $\cdots,$ $u$ , (3.5)

where $J_{2}$ is a $2\cross 2$ matrix of l’s. Then $A_{i\langle l)},$ $B_{j(\ell)}$ of equation (3.4) belong to

$\{A_{1}, A_{2}, \cdots, A_{u}\}$ and $\{B_{1}, B_{2}, \cdots, B_{u}\}$ respectively.

We now present some methods for obtaining L-designs with nested rows and

columns. The case of $q=2$ will be considered in some detail. Designs for $q\geq 4$ can be

derived using designs with $q=2$ . A typical block of a L-design with nested rows and

columns having $q=2$ is given by (3.3). If $u$ is a multiple of $h$ then the blocks,

$[A_{1-1)h+1}A_{(\ell-1)h+2}\cdots A_{\ell h}B_{(\ell-1)h+1}B_{(\ell-1)h+2}\cdots B_{\ell h}]$

$\ell=1,2,$ $\cdots,$ $w$

where $w=u/h$ , yield a L-design having parameters $v=2m,$ $b=u/h=w,$ $r=2,$ $k=$

$8h,p=4h,$ $q=2$ . Designs with $q=2,$ $r=2$ are necessarily disconnected. For $r=4$ , the

following blocks constitute a connected L-design with parameters $v=2m,$ $b=2u/h,r=$

$4,$ $k=8h,p=4h,$ $q=2$ ,

$[A_{(\ell-1)h+1}A_{(\ell-1)h+2}\cdots A_{\ell h}B_{\ell h+1}B_{lh+2}\cdots B_{(\ell+1)h}]$ ,

$\ell=1,2,$ $\cdots,$ $w-1$ ,
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$[A_{\langle w-1)h+1}A_{(w-1)h+2}\cdots A_{wh}B_{(w-1)h+1}B_{(w-1)h+2}\cdots B_{wh}]$,

$[A_{\langle w-\ell)h+1}A_{\langle w-\ell)h+2}\cdots A_{\langle w-1+1)h}B_{\langle w-\ell-1)h+1}B_{\langle w-\ell-1)h+2}\cdots B_{(w-\ell)h}]$ ,

$\ell=1,2,$ $\cdots,$ $w-1$ ,

$[A_{1}A_{2}\cdots A_{h}B_{1}B_{2}\cdots B_{h}]$ .

Example 3.1. Suppose $u=4,$ $h=1,$ $r=4,$ $q=2$ . Then $m=8$ , and using (3.5),

$A_{1}$ $=$ $\{\begin{array}{ll}1 88 1\end{array}\}A_{2}=\{\begin{array}{ll}2 77 2\end{array}\}A_{3}=\{\begin{array}{ll}3 66 3\end{array}\}A_{4}=\{\begin{array}{ll}4 55 4\end{array}\}$ ,

$B_{g}$ $=$ $A_{g}+8J_{2}$ , $g=1,2,3,4$ .

A L-design with nested rows and columns having $v=16,$ $b=8,$ $r=4,$ $k=8,p=4$ ,

$q=2$ is given by

$[A_{1}B_{2}]$ , $[A_{2}B_{3}]$ , $[A_{3}B_{4}]$ , $[A_{4}B_{4}]$ ,

$[A_{4}B_{3}]$ , $[A_{3}B_{2}]$ , $[A_{2}B_{1}]$ , $[A_{1}B_{1}]$ .

When $u$ is a multiple of $b$ , the number of blocks, let $w_{1}=u/b$ . Then a L-design with

parameters $v=4u,$ $b,$ $r=h/w_{1},$ $k=8h,p=4h,$ $q=2$ is given by the following blocks,

$[A_{(i-1)w_{1}}+1A_{(i-1)w_{1}}+2$ ‘ ‘ ’ $A_{iw_{1}}B_{(i-1)w_{1}}+1B_{(i-1)w_{1}}+2$ ‘ ‘ ‘ $B_{iw_{1}}$

a times

$A_{iw_{1}}+1A_{iw_{1}}+2$ ”

$\ovalbox{\tt\small REJECT}^{A_{(i+1)w_{1}}\cdot B_{(i+1)w_{1}}]}$
$B_{iw_{1}+1}B_{iw_{1}+2}$ ”

$(h/w_{1}-a)$ times

$i=1,2,$ $\cdots,$ $b-1$ ,
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$[A_{(b-1)w_{1}+1}A_{(b-1)w_{1}+2}$ ‘ $A_{bw_{1}}B_{(b-1)w_{1}+1}B_{(b-1)w_{1}}+2$ ‘ ‘ $\cdot B_{bw_{1}}$

a times

$\underline{A_{1}A_{2}\cdots A_{w_{1}}B_{1}B_{2}\cdots B_{w_{1}}].}$

\langle $h/w_{1}-a$ ) times

L-designs for $q\geq 4$ can be obtained by some juxtaposition of the blocks of L-designs

with $q=2$ . Latin square type arrangements for each of the blocks of $D$ can also be used

which result in L-designs with $p=q$ .
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