goooboooogn
0 8240 19930 1-10

A Bound for the Pressure Integral in a Plasma Equilibrium
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Abstract. An interpolation inequality for the total variation of the gradient of a com-
posite function has been derived by applying the coarea formula. ‘The interpolation
inequality has been applied to the study of a bound for the pressure integral concern-
ing a solution of the Grad-Shafranov equation of plasma equilibrium. A weak formu-
lation of the Grad-Shafranov equation has been given to include singular current

profiles.

1. Introduction

A simple but essential question in the fusion plasma research is how large plasma
energy can be confined by a given magnitude of plasma current.!-7 In a magnetohy-
drodynamic equilibrium of a plasma, the thermal pressure force Vp is balanced by the
magnetic stress jxB, where B is the magnetic flux density,j = VXB / g is the cumrent
density in the plasma and g is the vacuum permeability. The plasma equilibrium
equation Vp =jxB thus relates the pressure and the current. We want to estimate the
maximum of the total pressure with respect to a fixed total current. Mathematically
this problem reduces to an a priori estimate for the pressure integral with respect to a
solution of the equilibrium equation with a given magnitude of cument.

Here we assume a simple two dimensional plasma equilibrium. Let Q cR?be a

bounded domain. We consider an infinitely long plasma column; Q corresponds to
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the cross section of a column containing the plasma. If there is no longitudinal mag-

netic field, the equilibrium equations are

~Ay=P'(y)  nQ 1.1

y=c on dQ, (1.2)
f (-ay) dx =pol, (1.3)
Q

where y is the flux function, P =pgp, P(f) is a nonnegative function from Rto R, P’

=dP(t)/dt, Iis a given positive constant and c is an unknown constant. We assume P’

2 0. Since -Awy/ parallels the current density, Irepresents the total plasma current.
In this paper we study a bound for the total variation of the gradient of P(y) in Q.

A crucial step is to establish an interpolation inequality to estimate the total variation

of the gradient of P(y) in Q. Our estimate reads
1”2 1”2
( I Py(x))dx ) (1.4)
Q

provided that -Ay 2 0 inQ and y = ¢ on 9L, and that P'> Q with P(c) = 0, where ¢ is

flvmwx))ldx <2 me ~Ay dx
Q Q

a constant and Py, is the maximum of P(y) over Q. We prove this estimate by using
the coarea formula8.® In section 2 we prove (1.4) and extend it for discontinuous P.
In this case the meaning of the equation -Ay = P’ (y) is not clear. We shall give a

meaning for discontinuous P in section 3.

2. An interpolation inequality
Our goal in this section is to estimate the total variation of V(P(y)) (as a vector-
valued measure), where P is monotone and -Ay > 0. We first derive the estimate for

smooth .

Theorem 2.1. Let Q be a bounded domain in R" and ¢ be a constant. Suppose that
Pe CR)with P'20and P(c) =0, and that ye C™Q)N co(ﬁ) with



-Ay=20 inQ, | 2.1)
y=c ono<,
where m22and m2n. Let Pygy denote
Prax= sup Ply(x)) . (2.2)

Then

f | VPOy) | dx <2Pra f (-av) ax
Q Q

12 12
U P’(\v(x))dx) . (2.3)
Q

Proof. If -Ay =0, then y =c on £, s0 (2.3) holds with zero for both sides. If P’'(y)
=0o0n Q or Py =0, then eithery=c or P=0. Again (2.3) holds in this case, so
we may assume that both integrals in the right hand side of (2.3) is nonzero. We may
also assume that the L! norm of —Av is finite. |

For K > 0 denote the set of x € Q for which ‘ Vyx) ‘ >K by D. Let E denote the

complement of D in Q. From the definition it follows that

] | VPOye) | dx = I P(y)| Vy| dx
E E

<K f Py)dx<K I POy dx, 2.4)
E Q

since P'2 0.
By the maximum principle to (2.1), we observe that y 2> ¢ on Q s0 0 = P(c) < P(y)

< Pparon Q. Applying the coarea formula (see e.g. Ref. 8 and 9) yields

Wmax

f | vPay) | dx = f HS) Py di = J H'S) P0) dt (2.5)
D
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with

St=DNL;, Li={xeQ; yx) =t} \vmax=sugw(x),

where H7-1 denotes the n—1 dimensional Hausdorff measure. Since | V\ul >K onDit

follows that

H(S) = j |Vl vyl Bt
St

<k j vyl @
L;

Since Wy € CQ), Sard's theorem10 implies that L;is C? submanifold in Q for almost
every t (a.e. ). Note that y >cin Q and y=c on dQ. Thus for U;= {xe Q; y(x) >
t } we observe U;cQ fort>c. Forae.t>c, L;is C? boundary of U;. Since L, is ¢
level set of y, n = V\ull V\|I| is a unit normal vector field. Applying Green's formula

yields

f | Vy| ™! =I vy ndi*! =f ((ay)dx, t>c.
L, L U '

From -Awy 2 0 it now follows that

] vyl a < j ().
L, Q

Wrapping up these two estimates we obtain

H'(S) <k I (~Ay) ax
Q

Applying this estimate to (2.5) yields



I |VPW)| dx <K'Ppg f (-ay) dx, (2.6)
D Q
where Ppqy is defined in (2.2). Summing (2.4) and (2.6) we obtain

] | vPay)| dx SKf Ply) dx +K—1P,,,,,,,I (~Ay) dx Q.7
Q Q Q

for arbitrary K > 0. Taking

K=

12
P ] (~ay) dx / f P(w)de
Q Q

in (2.7) yields (2.3).
QED.
If y is not C2, one should interpret -Awy 2 0 in the distribution sense. As well
known!! a nonnegative distribution is a nonnegative Radon measure. Let pbe a finite
Radon measure on a bounded domain Q in R”. The unique solvability of the Dirichlet

problem
Ay =p inQ, (2.8a)
y=c ondQ (c: constant) (2.8b)

is now well known for smooth boundary 0Q2. We solve this problem by using a result
of Simader!2 when the boundary is C1. Let W' 4(Q) denote the L? Sobolev space of
order one (1 < g <o), Let Wé’q(Q) be the subspace {u € W4(Q),u=00n0Q}. We
denote by W-1:4(Q) the dual space of Wg"[(ﬂ) where 1/g=1-1/q".

Lemma 2.2 (Theorem 4.6 of Simader!2). Let Q be a bounded domain with C!
boundary in R". Assume that 1 <q <os. For eachfe W-1.4(Q) there is a unique
solution ® e Wé’ 1Q) for -A® =fin Q. Moreover the mapping from f to ® is
bounded linear from Wé’q(Q) to W4Q), ie,



@l <ClifiLig 2.9
with a constant C = C(E, g, n).

Corollary 2.3. Let Q be a bounded domain with C* boundary in R". For a finite
Radon measure L on Q there is a unique solutiony of (2.8a, b) such thaty e WH7(Q)
Jor 1 <r<nfn-1).

Proof. Observe that ' > n implies Wé’ r Q)c C(a) by the Sobolev inequality. This
yields e W17 (Q)by a duality, where 1/r=1-1/r". Applying Lemma 2.2 with f=
1 obtains a unique solution Yy by y=® +c.

QE.D.
Theorem 2.4. Let Q be a bounded domain with C! boundary in R*. Let ¢ be a con-
stant. Suppose that P € CIR)with P' 20 and P(c) =0. Suppose that y €
WL Q) for some r such that 1 <r <n/An-1), and that \y satisfies

Ay 20 inQ (in the distribution sense),

y=c ondQ.

Let Wipqy be the essential supremum of f over Q. Assume that P and P' are bounded

on [¢c, Ymax). Then

Ll Vé(w(x)} |dx <2 (Pmaxll—Awlll)“Z( ]

12
P’(w(x))dx) (2.10)
Q ’ '

where Py = sup {P(0); ¢ <O < Ymay } and H . H1 denotes the total variation of a

measure on Q.

For the proof of this Theorem, the reader is referred to Ref. 13.
We next extend the inequality (2.9) when a nondecreasing function P is not neces-

sarily continuous. Let us give an interpretation of each integral appeared in (2.9).
Instead of the integral | o P(y)dx, we consider



[Py] =inf Jim ] Piy)dx.
= Ja

Here the infimum is taken over all sequence Pje C1(R) with P/ >0 such that Pfy)
— P(y) in LXQ) for some 1 <5 <0 as ] — oo and that (Ppynqx — €ss supg P(y). We
say {P;} is an admissible approximation of P if these properties hold. If P is itself C!
-and satisfies the assumptions in Theorem 2.4, P itself is an admissible approximation

so for such a P we have

[Py < I Py) dx.
Q

Since [ g | VP(\|1)| dx is the total variation of VP(y) onQ, i.e.

| vPayll = ] | VPO dx

Q
:=sup { f Py()V-o) dx ; g € CHQ),|ow)|<1onQ },
Q
. it is easy to see

|| Vel < lim ] | VP, () dx
= Jo

for any admissible approximation {P}of P since sup lim < lim sup. We have thus

proved the following assertion.

Theorem 2.5. Assume the hypotheses of Theorem 2.4 concerning ¢, Q and . Let P

be a nondecreasing function on R with P(c) = 0. Then

|| VP ||y <2 (P | -2l ) 2 Peyi)] @.11)

provided that Pyqy = ess supq P(y) is finite.



Remark 2.6. If P(C) = o, the inequality (2.10) is an interpolation inequality

|| v |}i 22 (P || -2} 2 22,

where [ Q| denotes the Lebesgue measure of Q.
3. Weak solution of the Grad-Shafranov equation

We shall give a meaning of -Ay = P'(y) when a nondecreasing function P is not-

continuous and y is not smooth.

Definition 3.1. Suppose that y € W1 "(Q)for some 7, 1 < r <o and that P is nonde-

creasing. We say y and P satisfy
~Ay=P'(y) inQ

if the following properties hold.

(i) -Ay =0 on Q in the distribution sense.

(ii) There is an admissible sequence {P; } such that

lim f (-ay - Piy) g ax =0
Q

00
forall g € CQ).

Theorem 3.2. Let Q be a bounded domain with C! boundary in R". Let c be a con-
stant. Assume that P is a nondecreasing function onR. Assume thaty e W7(Q)for

some r, 1 <r<nAn-1)and that y satisfies
Ay =P'(y) 1in &2 (in the sense of Definition 3.1)
y=c on dQ.

Then



|| VPl <2 P¥Zapol, 3.1)

where

r=u:[ ) dx =i -avl.
Q

Proof. We may assume Pp,, <oo. By Definition 3.1 (ii) with ¢ =1 we observe that

[Py < lim I

Pl s = j (cav) s =||-avll
Q

Q

since -Ay 2 (. The inequality (2.11) yields (3.1).
Q.ED.

4, Discussions

In plasma physics, the poloidal beta ratio, which is define by

s )] [ ]

Q

is an important quantity to characterize a plasma equilibrium. In the case of the space
dimension n = 2, the Payne-Rayner inequality!4 applies to the estimate of B, and one
finds < 1. A general toroidal equilibrium problem includes two different effects; In
the equilibrium equation (1.1), -Ay should be replaced by a more complicated term
including the toroidal curvature effect, and a new term should be added on the right-
hand side, which represents the diamagnetic effect of the longitudinal magnetic field.
Limitation of B in such a situation has been discussed by many authors, while no rig-
orous estimate of the bound have been given. Extension of the Payne-Rayner

inequality will be discussed elsewhere to estimate the bound for f.
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