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Abstract. An interpolation inequality for the total variation of the gradient of a com-

posite function has been derived by applying the coarea formula. The interpolation

inequality has been applied to the study of a bound for the pressure integral concern-

ing a solution of the Grad-Shafranov equation of plasma equilibrium. A weak formu-

lation of the Grad-Shafranov equation has been given to include singular current

profiles.

1. Introduction

A simple but essential question in the fusion plasma research is how large plasma

energy can be confined by a given magnitude of plasma current.1-7 In a magnetohy-

drodynamic equilibrium of a plasma, the thermal pressure force $\nabla p$ is balanced by the

magnetic $stressj\cross B$, where $B$ is the magnetic flux density,$j=\nabla\cross B/[l0$ is the current

density in the plasma and [$\downarrow 0$ is the vacuum perneability. The plasma equilibrium

equation $\nabla p=j\cross B$ thus relates the pressure and the current. We want to estimate the

maximum of the total pressure with respect to a fixed total current. Mathematically

this problem reduces to an a priori estimate for the pressure integral with respect to a

solution of the equilibrium equation with a given magnitude of current.

Here we assume a simple two dimensional plasma equilibrium. Let $\Omega\subset R^{2}$ be a

bounded domain. We consider an infinitely long plasma column; $\Omega$ corresponds to
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the cross section of a column containing the plasma. If there is no longitudinal mag-

netic field, the equilibrium equations are

$-\Delta\psi=P’(\psi)$ $inq$ (1.1)

$\psi=c$ $on\Re$ (1.2)

$\int_{\Omega}(-\Delta\psi)d\kappa=\mu_{0}I$ , (1.3)

where $\psi$ is the flux function, $P=[\downarrow 0p,$ $P(t)$ is a nonnegative function from $R$ to $RP’$

$=dP(t)/dt,$ $I$ is a given positive constant and $c$ is an unknown constant. We assume $P’$

$\geq 0$ . $Since-\Delta\psi/\mu_{0}$ parallels the current density, $I$ represents the total plasma current.

In this paper we study a bound for the total variation of the gradient $ofP(\psi)$ in $\Omega$ .
A crucial step is to establish an interpolation inequality to estimate the total variation

of the gradient $ofP(\psi)$ in $\Omega$ . Our estimate reads

$\int_{\Omega}|\nabla P(\psi(x))|\ \leq 2(P_{ma\kappa}\int_{\Omega}-\Delta\psi d\kappa)^{1\Omega}(\int_{\Omega}P’(\psi(x))d\kappa)^{1\Omega}$ (1.4)

provided that $A\psi\geq 0$ in $\Omega$ and $\psi=c$ on $\partial\Omega$ , and that $P’\geq 0$ with $P(c)=0$, where $c$ is

a constant and $P_{\max}$ is the maximum of $P(\psi)$ over $\Omega$ . We prove this estimate by using

the coarea formula.8,9 In section 2 we prove (1.4) and extend it for discontinuous $P$.
In this case the meaning of the $equation-\Delta\psi=P’(\psi)$ is not clear. We $shaU$ give a

meaning for discontinuous $P$ in section 3.

2. An interpolation inequality

Our goal in this section is to estimate the total variation $of\nabla(P(\psi))$ (as a vector-

valued measure), where $P$ is monotone $and-\Delta\psi\geq 0$ . We first derive the estimate for

smooth $\psi$.

Theorem 2.1. Let $\Omega$ be a bounded domain in R and $c$ be a constant. Suppose that

$P\in C^{1}(R)$ with $P’\geq 0$ and $P(c)=0$, and that $\psi\in C^{m}(\Omega)\cap C^{0}(\Omega)$ with



3

$-\Delta\psi\geq 0$ $in\zeta 1$ (2.1)

$\psi=c$ $on\partial C1$

where $m\geq 2$ and $m\geq n$ . Let $P_{\max}$ denote

$P_{ma\mathfrak{r}}= \sup_{x\epsilon\Omega}P(\psi(x))$ . (2.2)

Then

$\int_{\Omega}|\nabla P(\psi(x))|dx\leq 2(P_{ma\mathfrak{r}}\int_{\Omega}(-\Delta\psi)dx)^{1/2}(\int_{\Omega}P’(\psi(x))dx)^{1/2}$ (2.3)

Proof. $If-\Delta\psi\cong O$ , then $\psi\equiv c$ on $\Omega$, so (2.3) holds with zero for both sides. $IfP’(\psi)$

$\equiv 0$ on $\Omega$ or $P_{\max}=0$, then either $\psi\equiv c$ or $P\equiv 0$ . Again (2.3) holds in this case, so

we may assume that both integrals in the right hand side of (2.3) is nonzero. We may

also assume that the $L^{1}$ norm $of-\Delta\psi$ is finite.

For $K>0$ denote the set $ofx\in\Omega$ for which $|\nabla\eta(x)|>K$ by $D$. Let $E$ denote the

complement of $D$ in $\Omega$ . From the definition it follows that

$\int_{E}|\nabla P(\psi(x))|dx=\int_{E}P’(\psi)|\nabla\psi|d\kappa$

$\leq K\int_{E}P(\psi)dx\leq K\int_{\Omega}P(\psi)d\kappa$ , (2.4)

since $P’\geq 0$ .

By the maximum principle to (2.1), we observe that $\psi\geq c$ on $\Omega$ so $0=P(c)\leq P(\psi)$

$\leq P_{\max}$ on $\Omega$. Applying the coarea formula (see e.g. Ref. 8 and 9) yields

$\int_{D}|\nabla P(\psi)|dx=\int_{r}^{+\infty}lt^{larrow 1}(S_{t})P(t)dt=\int_{c^{\psi_{R}}}lt^{\hslash-1}(S_{t})P(t)dt$ (2.5)



4

with

$S_{t}=D\cap L_{t}$ $L_{t}=\{x\in\Omega;\psi(x)=t\}$ , $\psi_{ma\kappa}=\sup_{x\epsilon\Omega}\psi(x)$ ,

where $lt^{n- 1}$ denotes the $n-1$ dimensional Hausdorff measure. Since $|\nabla\psi|>K$ on $D$ it

follows that

$\S t^{n-1}(S_{t})=\int_{S_{t}}|\nabla\psi||\nabla\psi|^{-1}ffi^{\prime\vdash 1}$

$\leq K^{-1}\int_{L_{t}}|\nabla\psi|ffi^{\prime\vdash 1}$

Since $\psi\in C^{n}(\Omega)$ , Sard’s $theorem^{1}$ implies that $L_{t}$ is $C^{n}$ submanifold in $\Omega$ for almost

every $t$ (a.e. $t$). Note that $\psi>c$ in $\Omega$ and $\psi=c$ on ffl. Thus for $U_{t}=\{x\in\Omega;\psi(x)>$

$t\}$ we observe $\overline{U_{t}}\subset\Omega$ for $t>c$ . For a.e. $t>c,$ $L_{t}$ is $C^{n}$ boundary of $U_{t}$. Since $L_{t}$ is t-

level set of $\psi,$
$n=\nabla\psi/|\nabla\psi|$ is a unit normal vector field. Applying Green’s formula

yields

$\int_{L_{t}}|\nabla\psi|ffi^{\prime\vdash 1}=\int_{L_{t}}\nabla\psi\cdot nffi^{\prime\vdash 1}=\int_{U_{t}}(-\Delta\psi)d\kappa,$ $t>c$ .

$From-\Delta\psi\geq 0$ it now follows that

$\int_{L_{t}}|\nabla\psi|ffi^{l\vdash 1}\leq\int_{\Omega}(-\Delta\psi)d\kappa$ .

Wrapping up these two estimates we obtain

$l t^{larrow 1}(S_{t})\leq K^{-1}\int_{\Omega}(-\Delta\psi)dx$ .

Applying this estimate to (2.5) yields
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$\int_{D}|\nabla P(\psi)|d\kappa\leq K^{-1}P_{mar}\int_{\Omega}(-\Delta\psi)dx$ , (2.6)

where $P_{\max}$ is defined in (2.2). Summing (2.4) and (2.6) we obtain

$\int_{\Omega}|\nabla P(\psi)|d\kappa\leq K\int_{\Omega}P’(\psi)dx+K^{-1}P_{\max}\int_{\Omega}(-\Delta\psi)d\kappa$ (2.7)

for arbitrary $K>0$ . Taking

$K=[P_{\max} \int_{\Omega}(-\Delta\psi)d\kappa/\int_{\Omega}P(\psi)d\kappa]^{112}$

in (2.7) yields (2.3).
Q.E.D.

$If\psi$ is not $C^{2}$, one should interpret $-\Delta\psi\geq 0$ in the distribution sense. As well

knownl1 a nonnegative distribution is a nomegative Radon measure. Let $\mu$ be a finite

Radon measure on a bounded domain $\Omega$ in $R^{n}$ . The unique solvability of the Dirichlet

problem

$-\Delta\psi=\mu$ in $\Omega$, (2.8a)

$\psi=c$ on $\infty$ ($c$ : constant) (2.8b)

is now well known for smooth boundary $\partial\Omega$ . We solve this problem by using a result

of Simader12 when the boundary is $C^{1}$ . Let $W^{1,q}(\Omega)$ denote the $L^{q}$ Sobolev space of

order one $(1 <q<\infty)$ . Let $W_{0}^{1,q}(\Omega)$ be the subspace $\{u\in W^{1,q}(\Omega);u=0on\partial\Omega\}$ . We

denote by $W^{1,q}(\Omega)$ the dual space of $W_{0}^{1,\zeta}(\Omega)$ where $1/q=1-1/q’$.

Lemma 2.2 (Theorem 4.6 of $Simader^{12}$). $Let\Omega$ be a bounded domain with $C^{1}$

boundary in $R^{n}$ . Assume that $1<q<\infty$. For each$f\in W^{1,q}(\Omega)$ there is a unique

solution $\Phi\in W_{0}^{1,q}(\Omega)for-\Delta\Phi=f$ in $\Omega$ . Moreover the mappingfrom$f$ to $\Phi$ is

bounded linearfrom $W_{0}^{1,q}(\Omega)$ to $\dagger\Gamma^{1,q}(\Omega),$ $i.e.$ ,
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$\Vert\Phi\Vert_{1,q}\leq C||f|\llcorner_{1,q}$ (2.9)

with a constant $C=C(f1q, n)$.

Corollary 2.3. Let $\Omega$ be a bounded domain with $C^{1}$ boundary in $R^{n}$. For afinite
Radon measure $\mu on\Omega$ there is a unique $solution\psi$ of$(2.8a, b)$ such $that\psi\in W^{1,r}(\Omega)$

for $1<r<n/(n-1)$ .

Proof. Observe that $r’>n$ implies $W_{0}^{1,r’}(\Omega)\subset C(\Omega)-$ by the Sobolev inequality. This

yields $\mu\in W^{1,r}(\Omega)by$ a duality, where $1/r=1-1/r’$. Applying Lemma 2.2 with$f=$

$\mu$ obtains a unique solution $\psi$ by $\psi=\Phi+c$ .
Q.E.D.

Theorem 2.4. $Let\Omega$ be a bounded domain with $C^{1}$ boundary in $R^{n}$. Let $c$ be a con-

stant. Suppose that $P\in C^{1}(R)$ with $P’\geq 0$ and $P(c)=0$ . Suppose $that\psi\in$

$W^{1,r}(\Omega)$for some $r$ such that $1<r<\mathcal{N}(n-1)$ , and that $\psi$ satisfies

$-\Delta\psi\geq 0$ $in\Omega(inthedistributionsense)$ ,

$\psi=C$ on ffl.

Let $\psi\max$ be the essential supremum $of\psi over\Omega$. Assume that $P$ and $P’$ are bounded

on [$c,$ $\psi_{m}\theta\cdot$ Then

$\int_{\Omega}|\nabla P(\psi(x))$ I $dx \leq 2(P_{ma\kappa}II-\Delta_{\psi}\Vert_{1})^{1\Omega}(\int_{\Omega}P(\psi(x))d\kappa)^{1a}$

, (2.10)

where $P_{\max}= \sup\{P(\sigma);c\leq\sigma\leq\psi_{ma\kappa}\}$ and $\Vert\cdot\Vert_{1}$ denotes the total variation ofa

measure on $\Omega$ .

For the proof of this Theorem, the reader is referred to Ref. 13.

We next extend the inequality (2.9) when a nondecreasing function $P$ is not neces-

sarily continuous. Let us give an interpretation of each integral appeared in (2.9).

Instead of the integral $\int {}_{\Omega}Pt\psi$) $dx$ , we consider
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$[P( \psi)]=\inf\varliminf_{larrow\infty}\int_{\Omega}P_{l’}(\psi)dx$ .

Here the infimum is taken over $aU$ sequence $P_{l}\in C^{1}(R)$ with $P_{l’}\geq 0$ such that $P(\psi)$

$arrow P(\psi)$ in $L^{S}(\Omega)$ for some $1\leq s<\infty$ as $larrow\infty$ and that ($Pb_{na\kappa} arrow ess\sup_{\Omega}P(\psi)$ . We

say $\{P\iota\}$ is an admissible $aDDroximation$ of$P$ if these properties hold. If $P$ is itself $C^{1}$

and satisfies the assumptions in Theorem 2.4, $P$ itself is an admissible approximation

so for such a $P$ we have

$[P’( \psi)]\leq\int_{\Omega}P’(\psi)d\kappa$ .

Since $\int_{\Omega}|\nabla P(\psi)|dx$ is the total variation $of\nabla P(\psi)$ on $\sigma\iota$ i.e.

$\Vert\nabla P(\psi)\Vert_{1}=\int_{\Omega}|\nabla P(\psi(x)\lambda d\kappa$

$:= \sup$ { $\int_{\Omega}P(\psi(x))\nabla\cdot\propto x)dx;\varphi\in c_{0}^{\iota_{(\Omega),|\varphi(\kappa)|\leq 1}}$ on $\Omega$ },

it is easy to see

$\Vert\nabla P(\psi)\Vert_{1}\leq\varliminf_{larrow\infty}\int_{\Omega}|\nabla P_{l}(\psi)|d\kappa$

for any admissible approximation $\{P_{l}\}ofP$ since $\sup\varliminf\leq\varliminf$ sup. We have thus

proved the following assertion.

Theorem 2.5. Assume the hypotheses ofTheorem 2.4 conceming $c,$
$\Omega$ and $\psi$. Let $P$

be a nondecreasingfimction on $R$ with $P(c)=0$. Then

$\Vert\nabla P(\psi)\Vert_{1}\leq 2(P_{mar}\Vert-\Delta\psi\Vert_{1})^{1\Omega}[P’(\psi)]^{1/2}$ (2.11)

provided that $P_{mx}= ess\sup_{\Omega}P(\psi)$ isfinite.
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Remark 2.6. $IfP(0)=0$, the inequality (2.10) is an interpolation inequality

$\Vert\nabla\psi\Vert_{1}\leq 2(P_{ma\mathfrak{r}}\Vert-\Delta\psi\Vert_{1})^{1\Omega}|\Omega|^{\iota a}$,

$where|\Omega|denotes$ the Lebesgue measure of $\Omega$ .

3. Weak solution of the Grad-Shafranov equation

We shall give a meaning $of-\Delta\psi=P(\psi)$ when a nondecreasing hnction $P$ is not

continuous and $\psi$ is not smooth.

Defmition 3.1. Suppose that $\psi\in W^{1,r}(\Omega)$ for some $r,$ $1<r<\infty$ and that $P$ is nonde-

creasing. We say $\psi$ and $P$ satisfy

$-\Delta\psi=P’(\psi)$ in $\Omega$

if the following properties hold.

(i) $-\Delta\psi\geq 0$ on $\Omega$ in the distribution sense.

(ii) There is an admissible sequence $\{P_{l}\}$ such that

$\lim_{larrow\infty}\int_{\Omega}(-\Delta\psi-P_{l}’(\psi))\varphi dx=0$

for all $\varphi\in C(\Omega)$ .

Theorem 3.2. Let $\Omega$ be a bounded domain with $C^{1}$ boundary in $R^{n}$ . Let $c$ be a con-

stant. Assume that $P$ is a nondecreasingfimction on R. Assume that $\psi\in W^{1,r}(\Omega)for$

some $r,$ $1<r<’\sqrt{}(n-1)andthat\psi satisfies$

$-\Delta\psi=P’(\psi)$ in $\Omega$ (in the sense ofDefmition 3.1)

$\psi=C$ on ffl.

Then
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$\Vert\nabla P(\psi)\Vert_{1}\leq 2P_{\max^{2}[!0}^{1\prime}I$ , (3.1)

where

$I= U_{0}^{-1}\int_{\Omega}(-\Delta\psi)d\kappa=U_{0}^{-1}\Vert-\Delta\psi\Vert_{1}$ .

Proof. We may assume $P_{ma\mathfrak{r}}<\infty$ . By Definition 3.1 (ii) with $\varphi\equiv 1$ we observe that

$[P( \psi)]\leq\lim_{larrow\infty}\int_{\Omega}P_{l’}(\psi)dx=\int_{\Omega}(-\Delta\psi)dx=\Vert-\Delta\psi\Vert_{1}$

$since-\Delta\psi\geq 0$ . The inequality (2.11) yields (3.1).
Q.E.D.

4. Discussions

In plasma physics, the poloidal beta ratio, which is define by

$\beta=\int_{\Omega}pdx/(1^{2}\mu\sqrt 8\pi)=8\pi\int_{\Omega}P(\psi)d\kappa/(\int_{\Omega}(-\Delta\psi)dx)^{2}$ ,

is an important quantity to characterize a plasma equilibrium. In the case of the space

dimension $n=2$, the Payne-Rayner inequality14 applies to the estimate of $\beta$, and one

finds $\beta\leq 1$ . A general toroidal equilibrium problem includes two different effects; In

the equilibrium equation (1.1), $-\Delta\psi$ should be replaced by a more complicated term

including the toroidal curvature effect, and a new term should be added on the right-

hand side, which represents the diamagnetic effect of the longitudinal magnetic field.

Limitation of $\beta$ in such a situation has been discussed by many authors, while no rig-

orous estimate of the bound have been given. Extension of the Payne-Rayner

inequdity $wm$ be discussed elsewhere to estimate the bound for $\beta$.
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