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Numerical analysis of a uniform flow of a rarefied gas past a
sphere on the basis of the Boltzmann equation
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A slow uniform flow of a rarefied gas past a sphere is investigated on the basis of the lin-
earized Boltzmann equation for hard-sphere molecules and the diffuse reflection condition. With
the aid of a similarity solution, the Boltzmann equation is reduced to two simultaneous integro-
differential equations with three independent variables, which are solved numericaUy. The col-
lision integral is computed efficiently by the use of a numerical collision kernel [Phys. Fluids A
1, 363 (1989)]. The velocity distribution function of the gas molecules, which has discontinuity
in the gas, the density, flow velocity, and temperature fields of the gas, and the drag on the
sphere are obtained accurately for the whole range of the Knudsen number. In spite of slow
flow, the temperature is nonuniform (thermal polarization). From the behavior of the velocity
distribution function, the kinetic transition region is clearly seen to separate into the Knudsen
layer and the $S$ layer for small Knudsen numbers.

I. INTRODUCTION

A slow uniform flow of a rarefied gas past a sphere, or motion of a very small particle in a
gas, is one of the simplest and most fundamental problems in rarefied gas dynamics, and aerosol
sciences, and has interested many scientists and engineers.1-16 Millikan’s $experiments^{1,3}$ are
famous among the works on this subject. Cercignani et al.8 analyzed the problem by their vari-
ational method17 on the basis of the Boltzmann-Krook-Welander (BKW or BGK) $equation^{18,19}$

and obtained the drag on the sphere for the whole range of the Knudsen number. $2$ Their results
agree very well with recent more detailed computations although a very simple test function
was used. The behavior of the gas around the sphere is studied in Refs. 10,11,12,14, and 15.
In Refs. 10 and 15, the asymptotic behavior of the gas for small Knudsen numbers is obtained
analytically up to the second order of the Knudsen number with the aid of the asymptotic
$theory^{21,22}$ of the Boltzmann system. According to Refs. 10 and 15, in contrast to the solution
of classical fluid dynamics, the temperature around the sphere is nonuniform even in a slow flow,
which is called thermal polarization.i3 The exphcit expression of the nonuniform temperature
field is given in Ref. 15. In Refs. 12 and 14, Loyalka et al. carried out numerical computa-
tion of the simultaneous integral equations for macroscopic variables derived from the BKW
equation and diffuse reflection condition. There is some discrepancy between the results of the
temperature field in Refs. 14 and 15. The information obtained so far is for the BKW model
equation, and very few have been done on this subject on the basis of the standard Boltzmann
equation; recently, hmited results on the drag have been reported in Refs. 23 and 24. In this
paper we will carry out accurate and detailed numerical study of the problem on the basis of the
Boltzmann equation for hard-sphere molecules and clarify the comprehensive behavior of the
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flow field for the whole range of the Knudsen number. It is shown in Refs. 25 and 26 that the
velocity distribution function of gas molecules has discontinuity in a gas around a convex body.
The discontinuity not only is interesting to be investigated accurately but also should be treated
carefully to obtain the accurate information of the macroscopic variables. From the behavior of
the velocity distribution function, we will see separation of the kinetic transition region into the
Knudsen layer and the $S1ayer^{26,27}$ for small Knudsen numbers (Sec. V C).

II. PROBLEM AND PRELIMINARY ANALYSIS

A. Problem and notations

Consider a uniform flow of a rarefied gas [velocity $(U_{\infty}, 0,0)$ , pressure $p_{\infty}$ , and temperature
$\tau_{\infty}]$ past a spherical body (radius $L$ and temperature $\tau_{\infty}$ ) at rest. We will investigate the steady
behavior of the gas under the following assumptions: (i) The gas molecules are hard spheres of
a uniform size and undergo complete elastic coUision between themselves; (ji) The gas molecules
are reflected diffusely on the sphere; and (i\"u) The flow speed $(U_{\infty})$ is so small compared with the
speed of the sound that the basic equation (the Boltzmann equation for hard-sphere molecules)
and the boundary condition can be linearized around a uniform equilibrium state at rest.

We summarize the main notations used in this paper: $\rho_{\infty}=p_{\infty}/RT_{\infty}$ ; $R$ is the specffic gas
constant (the Boltzmann constant divided by the mass of the molecule); $l_{\infty}$ is the mean free
path of the gas molecules at the equilibrium state at rest with pressure $p_{\infty}$ and temperature $T_{\infty}$

[for a hard-sphere molecular gas, $l_{\infty}=(\sqrt{2}\pi\sigma^{2}\rho_{\infty}/m)^{-1}$ , where $\sigma$ and $m$ are the diameter and
mass of the molecule, respectively]; Kn $=l_{\infty}/L$ (Knudsen number); $k_{\infty}=\pi^{1/2}Kn/2;Lx$ ; is the
Cartesian coordinate system with its origin at the center of the sphere and with its $x_{1}$ axis in the
direction of the uniform flow; $(rL, \theta, \varphi)$ is the polar coordinate system with $r=0$ at the center of
the sphere and with $\theta=0$ (the polar direction) in the $x_{1}$ direction; $(2RT_{\infty})^{1/2}\zeta_{i}$ is the molecular
velocity; ( $=|(i|=(\zeta_{i^{2}})^{1/2};(_{r},$ ($\theta$ , and $\zeta_{\varphi}$ are, respectively, the $r,$

$\theta$ , and $\varphi$ components of $\zeta_{i}$

in the polar coordinate system; $E(\zeta)=\tau r^{-3/22}\exp(-();\rho_{\infty}(2RT_{\infty})^{-3/2}E(1+\phi)$ is the velocity
distribution function of the gas molecules; $\rho_{\infty}(1+\omega)$ is the density of the gas; $T_{\infty}(1+\tau)$ is the
temperature; $p_{\infty}(1+P)$ is the pressure; $(2RT_{\infty})^{1/2}u_{i}$ is the flow velocity; $p_{\infty}(\delta_{ij}+P_{ij})$ is the
stress tensor; and $p_{\infty}(2RT_{\infty})^{1/2}Q_{1}$ is the heat flow vector, where $\delta_{ij}$ is Kronecker’s delta. The
components of $u;,$ $P_{ij}$ , and, $Q_{i}$ in $(r, \theta, \varphi)$ system are expressed by the subscripts $r,$

$\theta$ , and $\varphi$

(e.g., $u_{r},$ $u_{\theta}$ ). (See Fig. 1.)

B. Basic equation and boundary condition

The linearized Boltzmann equation for a steady state is written as:

($i^{\frac{\partial\phi}{\partial x_{i}}}= \frac{1}{k_{\infty}}\mathcal{L}(\phi)$ . (1)

For a hard-sphere molecular gas, the linearized coUision integral $\mathcal{L}(\phi)$ is expressed in the following
$form$ :

$\mathcal{L}(\phi)=\mathcal{L}_{1}(\phi)-\mathcal{L}_{2}(\phi)-\nu(\zeta)\phi$ , (2)

$\mathcal{L}_{1}(\phi)=\frac{1}{\sqrt{2}\pi}\int\frac{1}{|\zeta_{1}-\xi_{i}|}\exp(-\xi_{j}^{2}+\frac{(\epsilon_{1jk}\zeta_{j}\xi_{k})^{2}}{((h-\xi_{h})^{2}})\phi(x;, \xi_{i})d\xi_{1}d\xi_{2}d\xi_{3}$, (3a)

$\mathcal{L}_{2}(\phi)=\frac{1}{2\sqrt{2}\pi}\int|(i-\xi;|\exp(-\xi_{j^{2}})\phi(x_{i}, \xi_{i})d\xi_{1}d\xi_{2}d\xi_{3},$ (3b)
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$\nu(\zeta)=\frac{1}{2\sqrt{2}}[\exp(-\zeta^{2})+(2\zeta+\frac{1}{\zeta})\int_{0}^{(}\exp(-\xi^{2})d\xi]$ . (3c)

Here $\epsilon_{1jk}$ is Eddington’s epsilon (thus, $\epsilon_{ijk}(j\xi_{k}$ is the vector product of ($i$ and $\xi_{i}$ ); and the domain
of integration in $\mathcal{L}_{1},$ $\mathcal{L}_{2}$ , and au the following integrals with respect to the molecular velocity
(($i$ or $\xi_{i}$ ) is the whole molecular velocity space unless otherwise stated.

The (nondimensional) macroscopic variables $\omega,$ $u;,$ $\tau$ , etc. are given by the moments of $\phi$ :

$\omega=\int\phi Ed\zeta_{1}d\zeta_{2}d(3,$ (4a)

$u_{i}= \int\zeta_{t}\phi Ed\zeta_{1}d\zeta_{2}d\zeta_{3}$, (4b)

$\tau=\frac{2}{3}\int(\zeta_{j^{2}}-\frac{3}{2})\phi Ed(1d\zeta_{2}d\zeta_{3},$ (4c)

$P=\omega+\tau$, (4d)

$P_{1j}=2 \int\zeta_{i}\zeta_{j}\phi Ed\zeta_{1}d\zeta_{2}d(3,$ (4e)

$Q_{i}= \int j^{2}1$ . (4f)

The linearized form of the diffuse reflection boundary condition on the sphere $(x_{1}^{2}=1)$ at
rest and with temperature $\tau_{\infty}$ is given by

$\phi(x_{1}, \zeta;)=\sigma_{w}$ , $(\zeta_{i}n;>0)$ , (5)

$\sigma_{w}=-2\pi^{1/2}\int_{t:n.<0}\xi_{j}n_{j}\phi Ed\xi_{1}d\xi_{2}d\xi_{3}$, (6)

where $n_{i}$ is the unit normal vector to the boundary, pointed to the gas. The boundary condition
at infinity [uniform equilibrium flow with pressure $p_{\infty}$ , temperature $T_{\infty}$ , and velocity $(U_{\infty},$ $0,0)$]
is given as

$\phi=2(1u_{\infty},$ (7)

with
$u_{\infty}=U_{\infty}(2RT_{\infty})^{-1/2}$ . (8)

C. Similarity solution

According to Ref. 30, the solution of the boundary-value problem, Eqs. (1), (5), and (7),
can be expressed by the following similarity solution:

$\phi=\Phi_{c}(r, \zeta, \theta_{(})\cos\theta+(\Phi(r, \zeta, \theta_{(})\sin\theta,$ (9)

$\theta_{\zeta}=\pi-Arc\cos(\zeta_{r}/\zeta)$ , $(0\leq\theta_{(}\leq\pi)$ . (10)

The $\pi-\theta_{(}$ is the angle between the molecular velocity $\zeta_{i}$ and the radial direction. Then $\Phi_{c}$ and
$\Phi_{s}$ are determined by the following equations:

$\mathcal{D}\Phi_{c}+\frac{(\zeta\sin\theta_{\zeta})^{2}}{r}\Phi_{s}=\frac{1}{k_{\infty}}[\mathcal{L}_{1}^{c}(\Phi_{c})-\mathcal{L}_{2}^{c}(\Phi_{c})-\nu(()\Phi_{c}]$ , (11)

$\mathcal{D}(\Phi_{s}\zeta\sin\theta_{\zeta})-\frac{\zeta\sin\theta_{\zeta}}{r}\Phi_{c}=\frac{1}{k_{\infty}}[\mathcal{L}_{1}^{s}(\Phi_{s}\xi\sin\theta_{\xi})-\mathcal{L}_{2}^{s}(\Phi_{s}\xi\sin\theta_{\xi})-\nu(\zeta)\Phi_{s}\zeta\sin\theta_{\zeta}]$ , (12)



67

where
$D \Phi=-\zeta\cos\theta_{\zeta}\frac{\partial\Phi}{\partial r}+\frac{(\sin\theta_{\zeta}\partial\Phi}{r\partial\theta_{\zeta}}$ , (13)

$\mathcal{L}_{1}^{c}(\Phi)=\frac{1}{\sqrt{2}\pi}\int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{2\pi}\frac{\xi^{2}\sin\theta_{\xi}}{\mathcal{F}_{1}}\exp(-\xi^{2}+\frac{\mathcal{F}_{2}}{\mathcal{F}_{1}^{2}})\Phi(r, \xi, \theta_{\xi})d\overline{\psi}d\theta_{\xi}d\xi$ , (14a)

$\mathcal{L}_{2}^{c}(\Phi)=\frac{1}{2\sqrt{2}\pi}\int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{2\pi}\mathcal{F}_{1}\xi^{2}\sin\theta_{\xi}\exp(-\xi^{2})\Phi(r, \xi, \theta_{\xi})d\overline{\psi}d\theta_{\xi}d\xi$ , (14b)

$\mathcal{L}_{1}^{s}(\Phi)=\frac{1}{\sqrt{2}\pi}\int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{2\pi}\frac{\xi^{2}\sin\theta_{\xi}\cos\overline{\psi}}{\mathcal{F}_{1}}\exp(-\xi^{2}+\frac{\mathcal{F}_{2}}{\mathcal{F}_{1^{2}}})\Phi(r, \xi, \theta_{\xi})d\overline{\psi}d\theta_{\xi}d\xi$ , (15a)

$\mathcal{L}_{2}^{s}(\Phi)=\frac{1}{2\sqrt{2}\pi}\int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{2\pi}\mathcal{F}_{1}\xi^{2}\sin\theta_{\xi}\cos\overline{\psi}\exp(-\xi^{2})\Phi(r, \xi, \theta_{\xi})d\overline{\psi}d\theta_{\xi}d\xi$ , (15b)

$\mathcal{F}_{1}=[(2+\xi^{2}-2(\xi(\cos\theta_{\zeta}\cos\theta_{\xi}+\sin\theta_{\zeta}\sin\theta_{\xi}\cos\overline{\psi})]^{1/2},$ (16a)

$\mathcal{F}_{2}=\zeta^{2}\xi^{2}[\cos^{2}\theta_{\zeta}\sin^{2}\theta_{\xi}+\sin^{2}\theta_{\zeta}\cos^{2}\theta_{\xi}+\sin^{2}\theta_{\zeta}\sin^{2}\theta_{\xi}\sin^{2}$ di
-2 $\cos\theta_{\zeta}\sin\theta_{\zeta}\cos\theta_{\xi}\sin\theta_{\xi}\cos\overline{\psi}$ ]. (16b)

The set $(\xi, \pi-\theta_{\xi},\overline{\psi})$ corresponds to the polar coordinate expression of $\xi$; in Eqs. (3a) and (3b),
with the polar direction in the radial direction.

The boundary conditions for $\Phi_{c}$ and $\Phi_{s}$ are:
at $r=1$ ,

$\Phi_{c}$ $=$ $2 \pi^{3/2}\int_{0}^{\infty}\int_{0}^{\pi/2}\zeta^{3}\sin 2\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d($,
$(\pi/2<\theta_{\zeta}\leq\pi)$ , (17)

$\Phi_{s}$ $=$ $0$ ,

and as $rarrow\infty$ ,

$\Phi_{c}$ $arrow$ $-2\zeta\cos\theta_{\zeta}u_{\infty}$ ,
(18)

$\Phi_{s}$ $arrow$ $-2u_{\infty}$ .

The boundary-value problem, Eqs. (1), (5), and (7), for a single integro-differential equation
of six independent variables is reduced to that, Eqs. (11), (12), (17), and (18), for two simul-
taneous integro-differential equations of three independent variables, which will be analyzed
numerically in the next section.

The macroscopic variables $\omega,$ $u_{r},$ $u_{\theta}$ , etc. are expressed by $\Phi_{c}$ and $\Phi_{s}$ as follows:

$\omega$ $=$ $2 \pi(\int_{0}^{\infty}\int_{0}^{\pi}(^{2}\sin\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d\zeta)\cos\theta,$ (19a)

$u_{r}$ $=$ $- \pi(\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{3}\sin 2\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d\zeta)\cos\theta$ , (19b)

$u_{\theta}$ $=$ $\pi(\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{4}\sin^{3}\theta_{\zeta}\Phi_{s}Ed\theta_{\zeta}d\zeta)\sin\theta$ , (19c)

$u_{\varphi}$ $=$ $0$ , (19d)

$\tau$ $=$ $\frac{4}{3}\pi[\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{2}(\zeta^{2}-\frac{3}{2})\sin\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d(]\cos\theta,$ (19e)
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$P_{rr}$ $=$ $4 \pi(\int_{0}^{\infty}\int_{0}^{\pi}(^{4}\cos^{2}\theta_{\zeta}\sin\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d()\cos\theta,$ (19f)

$P_{\theta\theta}$ $=$ $2 \pi(\int_{0}^{\infty}\int_{0}^{\pi}(^{4}\sin^{3}\theta_{\zeta}\Phi_{c}Ed\theta_{(}d\zeta)\cos\theta,$ (19g)

$P_{r\theta}$ $=$ $-2 \pi(\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{5}\cos\theta_{\zeta}\sin^{3}\theta_{\zeta}\Phi_{s}Ed\theta_{\zeta}d()\sin\theta,$ (19h)

$P_{\varphi\varphi}$ $=$ $3(\omega+\tau)-P_{rr}-P_{\theta\theta}$ , $P_{r\varphi}=P_{\theta\varphi}=0$ , (19i)

$Q_{r}$ $=$ $- \pi[\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{3}(\zeta^{2}-\frac{5}{2})\sin 2\theta_{\zeta}\Phi_{c}Ed\theta_{\zeta}d(]\cos\theta,$ (19j)

$Q_{\theta}$ $=$ $\pi[\int_{0}^{\infty}\int_{0}^{\pi}\zeta^{4}((-\frac{5}{2})\sin\theta_{\zeta}\Phi_{s}Ed\theta_{(}d\zeta]\sin\theta,$ (19k)

$Q_{\varphi}$ $=$ $0$ . (191)

D. Discontinuity of the velocity distribution function

The Boltzmann equation (1) defines the variation of $\phi$ in the direction of $\zeta_{t}$ in the $x$ ; space.
If there is a discontinuity of $\phi$ at $x;=x_{i}^{(0)}$ and ($i=\zeta_{i}^{(0)}$ , it propagates along the characteristic
$x_{i}=x_{i}^{(0)}+(_{t}^{(0)}t$ , where $t(>0)$ is a parameter. Since the $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ terms of the collision integral
$\mathcal{L}(\phi)$ are continuous, the vaniation of the discontinuity is determined by

($i \frac{\partial[\phi]}{\partial x_{i}}=-\frac{1}{k_{\infty}}\nu(\zeta)[\phi]$ , (20)

where $[\phi]$ is the difference of $\phi$ on both sides of the discontinuity. The discontinuity decays in
the length scale of the free path of the molecule with velocity ($i\cdot$ The position of discontinuity
is independent of molecular speed.

On a boundary the velocity distribution function of the molecules leaving the boundary is
specified. That is

$\phi=\sigma_{w}$ , ( $(|n;>0)$ . (21)

The feature of $\sigma_{w}$ is quite different from $\phi$ with ($in_{1}<0$ , which is established by collisions
of surrounding gas molecules. Thus, $\phi$ on the boundary is generally discontinuous at $(in;=0$ .
When the boundary is convex, this discontinuity propagates into the gas along the characteristic
of Eq. (1). When the boundary is concave, on the other hand, the characteristic, which is tangent
to the boundary, does not enter into the gas and therefore no discontinuity propagates into the
gas. Thus at a given point $x_{i}$ in the gas, $\phi$ is discontinuous at $\zeta$; whose opposite vector $(-\zeta_{t})$

lies on the circular cone along which the edge of the sphere is viewed from $x_{i}$ (Fig. 2).
By transformation into ( $r$ , $(, \theta_{\zeta})$ space or directly from the characteristics of Eqs. (11) and

(12), the discontinuity of $\Phi_{c}$ and $\Phi_{s}$ in $(r, \zeta, \theta_{\zeta})$ space is found to lie on the common surface:

$r\sin\theta_{\zeta}=1$ , $(\pi/2\leq\theta_{\zeta}\leq\pi)$ . (22)

In the following numerical analysis of $\Phi_{c}$ and $\Phi_{s}$ , the difference formulae of differentiation that
contain the data on both sides of the discontinuity should be avoided.

More about the discontinuity of the velocity distribution function, especially its relation to
the $S$ layer27 at the bottom of the Knudsen layer, are found in Refs. 25, 26 and 31.
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III. ASYMPTOTIC SOLUTIONS FOR LARGE AND SMALL KNUDSEN NUM-
BERS

Before proceeding to numerical analysis of the problem, we give the asymptotic solution of
the boundary-value problem, Eqs. (11), (12), (17), and (18), for two limiting cases $k_{\infty}arrow\infty$ and
$k_{\infty}arrow 0$ .

For the free molecular limit $(k_{\infty}=\infty)$ , where the collision term of the Boltzmann equation
is neglected, the solution is obtained as follows:

$\frac{\Phi_{c}}{u_{\infty}}=\{\sqrt{\pi}[\cos\theta^{(}(1-r^{2}\sin^{2}\theta_{\zeta})^{1/2}-r\sin^{2}\theta_{\zeta}]-2\zeta\cos\theta_{\zeta},$

,
$[ \pi-A^{\zeta}rc\sin(\frac{1}{r})<\theta_{\zeta}\leq^{\frac{1}{r}}\pi][0\leq\theta<\pi-Arc\sin()],$

$\}$ (23)

$\frac{\Phi_{s}}{u_{\infty}}=\{\sqrt{\pi}^{2}(--1[r\cos\theta_{\zeta}+(1-r^{2}\sin^{2}\theta_{(})^{1/2}],$
$[ \pi-A^{\zeta}rc\sin(\frac{1}{r})<\theta\leq^{\frac{1}{r}}\pi][0\leq\theta<\pi-Arcsi_{\zeta}n()],$

$\}$ (24)

$\frac{\omega}{u_{\infty}\cos\theta}$ $=$ $- \frac{\sqrt{\pi}}{6}\{(1+\frac{6}{\pi})r^{-2}+[2-(2+r^{-2})(1-r^{-2})^{1/2}]r\}$ , (25a)

$\frac{u_{r}}{u_{\infty}\cos\theta}$ $=$ $\frac{1}{2}+\frac{1}{2}(1-r^{-2})^{3/2}-\frac{1}{4}r^{-3}-\int_{0}^{1/r}t(1-t^{2})^{1/2}(1-r^{2}t^{2})^{1/2}dt$, (25b)

$\frac{u_{\theta}}{u_{\infty}\sin\theta}$ $=$ $- \frac{1}{2}-\frac{1}{4}(1-r^{-2})^{1/2}(2+r^{-2})-\frac{1}{8}r^{-3}$

$+ \frac{1}{2}\int_{0}^{1/r}t^{3}(1-t^{2})^{-1/2}(1-r^{2}t^{2})^{1/2}dt$ , (25c)

$\frac{\tau}{u_{\infty}\cos\theta}$ $=$ $- \frac{1}{3\sqrt{\pi}}r^{-2}$ . (25d)

The asymptotic solution for small $k_{\infty}$ [up to $O(k_{\infty})$] is easily obtained with the aid of the
asymptotic theory in Re&. 26, 31, 32 and 33 as follows:

$\frac{\omega}{u_{\infty}\cos\theta}$ $=$ $- \frac{3}{2}\gamma_{1}k_{\infty}r^{-2}$ , (26a)

$\frac{u_{r}}{u_{\infty}\cos\theta}$ $=$ $1- \frac{3}{2}(1+\kappa_{0}k_{\infty})r^{-1}+\frac{1}{2}(1+3\kappa_{0}k_{\infty})r^{-3}$ , (26b)

$\frac{u_{\theta}}{u_{\infty}\sin\theta}$ $=$ $-1+ \frac{3}{4}(1+\kappa_{0}k_{\infty})r^{-1}+\frac{1}{4}(1+3\kappa_{0}k_{\infty})r^{-3}+\frac{3}{2}k_{\infty}Y_{0}(\eta)$ , (26c)

$\tau$ $=$ $0$ , (26d)

where $\gamma_{1},$ $\kappa_{0}$ , and $Y_{0}(\eta)$ are determined by the molecular model. That is,

$\gamma_{1}=1.270042$ , $\kappa_{0}=-1.2540$ , (hard-sphere molecules),
(27)

$\gamma_{1}=1$ , $\kappa_{0}=-1.01619$ , (BKW model),

and $Y_{0}(\eta)$ , called Knudsen-layer function for the shear flow, is a function of the stretched co-
ordinate $\eta$ defined by $\eta=(r-1)/k_{\infty}$ and tabulated in Ref. 34 for hard-sphere molecules and
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in Ref. 35 for the BKW model ( $[Y_{0}(\eta),$ $\eta]$ (here, Refs. 26, 32, $33)=[-S(x_{1}),$ $x_{1}]$ (Ref. 34)).
The constants $\gamma_{1}$ and $\kappa_{0}$ are related to the viscosity and the slip coefficient of the shear flow,
respectively [Re&. 26, 31, etc.; $\kappa_{0}=-\beta_{A}$ (Ref. 34)]. The pressure is obtained up to $O(k_{\infty}^{2})$ ,
except for the Knudsen-layer correction, as

$\frac{P}{u_{\infty}\cos\theta}=-\frac{3}{2}\gamma_{1}k_{\infty}(1+\kappa_{0}k_{\infty})r^{-2}$ . (28)

IV. METHOD OF NUMERICAL ANALYSIS

A. Process of numerical computation by a finite difference method

In the present paper we analyze the boundary-value problem, Eqs. (11), (12), (17), and
(18), numerically by a finite difference method. As is pointed out in Sec. II $D$ , the velocity
distribution functions $\Phi_{c}$ and $\Phi_{s}$ are discontinuous along $r\sin\theta_{\zeta}=1(\pi/2\leq\theta_{\zeta}\leq\pi)$. In order
to describe the discontinuity accurately and avoid errors owing to it, a special care is required in
constructing the difference scheme.25 The problem is considered over a finite domain $(1\leq r\leq r_{D}$ ,
$0\leq(\leq\zeta_{D}, 0\leq\theta_{\zeta}\leq\pi)$, where $r_{D}$ and $\zeta_{D}$ are chosen properly depending on situations. The
process of reduction to the finite domain will be discussed in Sec. IV C. Let ( $r^{(i)},$ $(^{(j)}, \theta_{\zeta}^{(k)})$ be
the lattice points in the domain, where $i=0,1,$ $\ldots,$

$I(r^{(0)}=1, r^{(I)}=r_{D}),$ $j=0,1,$ $\ldots,$
$J$

$(((0)=0, \zeta^{(J)}=\zeta_{D})$ , and $k=0,1,$ $\ldots,$

$\overline{K},$

$\ldots,$
$K(\theta_{\zeta}^{(0)}=0, \theta_{(}^{(\hat{K})}=\pi/2, \theta_{\zeta}^{(K)}=\pi)$ . The

functions $\Phi(r, \zeta, \theta_{(})$ of $(r, \zeta, \theta_{\zeta}),$ $f(r)$ of $r$ , etc. at a lattice point are denoted by the subscripts
corresponding to the lattice point:

$\Phi_{(i,j,k)}=\Phi(r((, \theta_{\zeta}^{(k)}),$ $f_{(i)}=f(r^{(i)})$ . (29)

In the followings we introduce a new function $\hat{\Phi}$ , defined by

$\hat{\Phi}_{s}=\Phi_{s}\zeta\sin\theta_{\zeta}$ , (30)

and carry out analysis in terms of $\Phi_{c}$ and $\hat{\Phi}$ , instead of $\Phi_{c}$ and $\Phi_{s}$ . We construct the discrete
solutions $\Phi_{c(i,j,k)}$ and $\hat{\Phi}_{s(:,j,k)}$ of Eqs. (11), (12), (17), and (18) as the limit of the sequences
$\Phi_{c(i,j)k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}(n=0,1,2, \ldots)$ obtained by the iteration process described below.

Corresponding to Eqs. (11) and (12), the following finite difference equations for $\Phi_{c(\cdot,j,k)}^{(n)}$ and
$\hat{\Phi}^{(n)}$

$s(i,j,k)$ are adopted:

$-((J) \cos\theta_{\zeta}^{(k)}\nabla_{1^{1}}^{(,j,k)}\Phi_{c}^{(n)}+\frac{((j)_{\sin\theta_{\zeta}^{(k)}}}{r^{(;)}}\nabla_{2}^{(i,j,k)}\Phi_{c}^{(n)}+\frac{\zeta^{(j)}\sin\theta_{\zeta}^{(k)}}{r^{(i)}}\hat{\Phi}_{s(i,j,k)}^{(n)}$

$= \frac{1}{k_{\infty}}(C_{(i,j,k)}^{(n-1)}-\nu_{(j)}\Phi_{4i}^{(n)_{j,k)}},)$ , (31)

$-((j)_{\cos\theta_{\zeta}^{(k)}\nabla_{1}^{(i,j,k)}\hat{\Phi}_{s}^{(n)}+\frac{(^{(j)}\sin\theta_{\zeta}^{(k)}}{r^{(i)}}\nabla_{2}^{(i,j,k)}\hat{\Phi}_{s}^{(n)}-\frac{\zeta^{(j)}\sin\theta_{\zeta}^{(k)}}{r^{(:)}}\Phi_{c(i,k)}^{(n)_{\theta}}}$

$= \frac{1}{k_{\infty}}(\hat{S}_{(i,j,k)}^{(n-1)}-\nu_{(j)}\hat{\Phi}_{s(i,j,k)}^{(n)})$ , (32)
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where $\nabla_{1}^{(i,j,k)}$ and $\nabla_{2}^{(i,j,k)}$ correspond to $\partial/\partial r$ and $\partial/\partial\theta_{\zeta}$ operators, respectively, given exphcitly
below, and $C_{(\dot{\cdot},j,k)}^{(n)}$ and $\hat{S}_{(\dot{\cdot},j,k)}^{(n)}$ are the collision integrals:

$C_{(1j,k)}^{(n)}=[\mathcal{L}_{1}^{c}(\Phi_{c}^{(n)})-\mathcal{L}_{2}^{c}(\Phi_{c}^{(n)})]_{(i,j,k)}$ (33)

$\hat{S}_{(i,j,k)}^{(n)}=[\mathcal{L}_{1}^{s}(\hat{\Phi}_{s}^{(n)})-\mathcal{L}_{2}^{s}(\hat{\Phi}_{s}^{(n)})]_{(i,j,k)}$ (34)

An efficient way of computation of $C_{(ij,k)}^{(n_{)})}$ and $\hat{S}_{(\cdot,j,k)}^{(n)}$ , adopted in the paper, is given in the next
subsection (Sec. IV B).

We use the following formulae for the $\nabla_{1}$ and $\nabla_{2}$ operators:

(35a)

$\nabla_{2}^{(i,j,k)}\Phi=\{\begin{array}{l}(\Phi_{(i)j,1)}-\Phi_{(i,j,0)})/\Delta\theta_{\zeta}^{(1)}[(\lambda_{(k-1)}^{-1}+2)\Phi_{(i,j,k)}-(\lambda_{(k-1)}+\lambda_{(k-1)}^{-1}+2)\Phi_{(i,j,k-1)}+\lambda_{(k-1)}\Phi_{(i_{\dot{J}},k-2)}]/(\Delta\theta_{\zeta}^{(k-1)}+\triangle\theta_{\zeta}^{(k)})\end{array}$

$(2\leq k\leq K)$

$(k=1)$ ,

(35b)

$\Lambda_{(i)}=\frac{\Delta r^{(i+1)}}{\Delta r^{(i)}}\Delta r^{(i)}=r^{(i)}-r^{(i-1)}$

,
$\Delta\theta_{(}^{(k)}\theta_{\zeta}^{(k-1)}\lambda_{(k)}=^{=}\frac{\Delta\theta^{(k+1)}\theta_{\zeta_{(}}^{(k)}-}{\Delta\theta_{\zeta}^{(k)}}$

.
(35c)

As explained in Sec. II $D,$ $\Phi_{c}$ and $\hat{\Phi}_{s}$ are discontinuous along $r\sin\theta_{\zeta}=1(\pi/2\leq\theta_{\zeta}\leq\pi)$ . The
difference formulae (35a) and (35b) should be modified when they consist of the data on both
sides of the discontinuity. That is,

V $(*,j,k)_{\Phi=}1\{\begin{array}{l}A_{1}\Phi_{(i,j)k)}-A_{2}\Phi_{(i-1,j,k)}+A_{3}\Phi_{(i(k),j,k)+},(r^{(i-1)}>1/sin\theta_{\zeta}^{(k)}\geq r^{(i-2)})(\Phi_{(i_{\dot{J}},k)}-\Phi_{(*(k),j,k)+})/(r^{(\dot{\cdot})}-1/sin\theta_{\zeta}^{(k)}),(r^{(i)}>1/sin\theta_{\zeta}^{(k)}\geq r^{(i-1)})\end{array}$ (36a)
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$\nabla_{2}^{(i,j,k)}\Phi=\{\begin{array}{l}B_{1}\Phi_{(*)j,k)}-B_{2}\Phi_{(|)j,k-1)}+B_{3}\Phi_{(i,j,k(e))-}[\theta_{\zeta}^{(k-1)}>\pi-Arcsin(1/r^{(i)})\geq\theta_{\zeta}^{(k-2)}](\Phi_{(|}\cdot,\dot{J}^{k)}-\Phi_{(|j,k(i))-})/[\theta_{\zeta}^{(k)}+Arcsin(1/r^{(*)})-\pi][\theta_{\zeta}^{(k)}>\pi-A\iota csin(1/r^{(|)})\geq\theta_{\zeta}^{(k-1)}]\end{array}$ (36b)

where

$\Phi_{(i(k),j,k)\pm}$ $=$ $\Phi(1/\sin\theta_{\zeta}^{(k)}\pm 0, \zeta^{(j)}, \theta_{\zeta}^{(k)})$ , (37a)

$\Phi_{(i,j,k(i))\pm}$ $=$ $\Phi(r^{(i)}, \zeta^{(j)}, \pi-Arc\sin(1/r^{(i)})\mp 0)$ , (37b)

and $A_{1},$ $A_{2}$ , and $A_{3}$ ( $B_{1},$ $B_{2}$ , and $B_{3}$ ) are chosen in such a way that $\nabla_{1^{*}}^{(k)}\theta,\Phi(\nabla_{2}^{(i,j,k)}\Phi)$ is the
difference expression of the second-order accuracy for $\partial\Phi/\partial r(\partial\Phi/\partial\theta_{\zeta})$ at
$(r^{(i)}, \zeta^{(j)}, \theta_{\zeta}^{(k)})$ . $A_{1},$ $A_{2},$ $A_{3},$ $B_{1},$ $B_{2}$ , and $B_{3}$ depend only on $i$ and $k$ . It is noted that $(i(k), j, k)$

and $(i, j, k(i))$ are not regular lattice points. The $i(k)$ and $k(i)$ represent the intersection of the
characteristic $r\sin\theta_{\zeta}=1$ with the lattice lines $\theta_{\zeta}=\theta_{\zeta}^{(k)}$ and $r=r^{(i)}$ respectively. That is

$r^{(i(k))}$ $=$ $1/\sin\theta_{\zeta}^{(k)}$ ,
(38)

$\theta^{(k(*))}$
$=$ $\pi-Arc\sin(1/r^{(:)})$ .

When a discontinuous function on the characteristic is considered, the two hmiting cases as in
Eqs. (37a) and (37b) should be considered. The formulae contain $\Phi_{(i(k),j,k)+}$ and $\Phi_{(*,j,k(i))-}$ , i.e.,
$\Phi$ on either side of the discontinuity. The sequences $\Phi_{c(:}^{(n)_{j,k(:))\pm}}$ and $\hat{\Phi}_{s(:}^{(n)_{j,k(*))\pm}}$ , corresponding
to $\Phi_{c}$ and $\hat{\Phi}_{s}$ at $r^{(i)}$ on either side of the discontinuity, are constructed by the following difference
scheme:

$- \zeta^{(j)}\cos\theta_{(}^{(k(i))}\nabla_{1^{*}}^{(,j)\pm}\Phi_{c}^{(n)}+\frac{\zeta^{(j)}\sin\theta_{\zeta}^{(k(i))}}{r^{(:)}}\hat{\Phi}_{s(*}^{(n)_{j,k(:))\pm}}$

$= \frac{1}{k_{\infty}}(C_{(i,j,k(:))}^{(n-1)}-\nu_{(j)}\Phi_{c(ij,k(i))\pm}^{(n)_{)}})$ , (39)

$- \zeta^{(j)}\cos\theta_{\zeta}^{(k(*))}\nabla_{1}^{(i,j)\pm}\hat{\Phi}_{s}^{(n)}-\frac{(^{(j)}sin.\theta_{\zeta}^{(k(i))}}{r^{(*)}}\Phi_{4^{i},)}^{(n)_{jk(i))\pm}}$

$= \frac{1}{k_{\infty}}(\hat{S}_{(i,j,k(i))}^{(n-1)}-\nu_{(j)}\hat{\Phi}_{s(i}^{(n)_{j,k(i))\pm}})$ , (40)

where $\nabla_{1}^{(i,j)\pm}\Phi$ corresponds to $\nabla_{1}^{(i,j,k)}\Phi(\overline{K}+1\leq k\leq K)$ in Eq. (35a) with $\Phi_{(i1j,k)}$ replaced by
$\Phi_{(i,j,k(i))\pm}$ . The absence $of\pm sign$ in $C_{(*j,k(i))}^{(n_{)}-1)}$ and $\hat{S}_{(i,j,k(i))}^{(n-1)}$ corresponds to the fact that $\mathcal{L}_{1}(\phi)$

and $\mathcal{L}_{2}(\phi)$ are continuous.
The boundary conditions for $\Phi_{c(1j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}$ at $r=1(i=0)$ are obvious from Eq. (17).

As the condition at $r=r_{D}$ , instead of Eq. (18), we impose

$\Phi^{(n)}$
$=$

$G^{(n)}$

$4I-1,j,k)$ $c(j,k)$ ’

(41)
$\Phi_{c(I,j,k)}^{(n)}$ $=$ $H_{c(j,k)}^{(n)}$ ,
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$\hat{\Phi}_{s(I-1,j,k)}^{(n)}$ $=$ $G_{s(j,k)}^{(n)}$ ,
(42)

$\hat{\Phi}_{s(I,j,k)}^{(n)}$ $=$ $H_{s(j,k)}^{(n)}$ ,

where $G^{(n)}$ $G^{(n)}$ $H^{(n)}$

in&c. $I\wp_{c’}^{k)}$.
$s(j,k)$ ’ $c(j,k)$ ’ and $H_{s(j,k)}^{(n)}$ are determined by the asymptotic solution for large $r$

With these preparation of difference formulae, we construct the sequences $\Phi_{c(i,j,k)}^{(n)}$ and $\hat{\Phi}_{s(*,j,k)}^{(n)}$

by the following process. Let $\Phi_{4^{1,j,k)}}^{(n-1)}$ and $\hat{\Phi}_{s(l,j,k)}^{(n-1)}$ be known. Then $G_{4j}^{(n)_{k)}},$ $G_{s(j,k)}^{(n)},$ $H_{c(j,k)}^{(n)}$ , and
$H^{(n)}$

$s(j,k)$ are known (Sec. IV C).

(i) For $0\leq k\leq\overline{K}$, starting from $\Phi_{4I-2,j,k)}^{(n)}$ and $\hat{\Phi}_{s(I-2,j,k)}^{(n)}$ , compute $\Phi_{4*}^{(n)_{j,k)}}$

, and $\hat{\Phi}_{s(i,j,k)}^{(n)}$

using Eqs. (31), (32), (41), and (42) in descending order of $i$ down to $\Phi_{c(0,j,k)}^{(n)}$ and $\hat{\Phi}_{s(0,j,k)}^{(n)}$ .
The step $i=i+1$ to $i=i$ is as follows. Let $\Phi_{c(i,j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}$ $(i‘ >i)$ be given.

Starting from $\Phi_{4*}^{(n)_{j,0)}}$ and $\hat{\Phi}_{s(i,j,0)}^{(n)}$ , compute $\Phi_{c(i,j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}$ using Eqs. (31)$-(35c)$ [and

Eqs. (41) and (42) for $i=I-2,$ $I-3$] in ascending order of $k$ up to $\Phi^{(n)}$ and $\hat{\Phi}^{(n)}$

$c(i,j,\hat{K})$ $s(*,j,\hat{K})$

Carry out this step for every $j$ .

(ii) Compute $\Phi_{c(*}^{(n)_{j,k(i))\pm}}$ and $\hat{\Phi}_{s(ij,k(i))\pm}^{(n)_{)}}$ along the discontinuity using Eqs. (39) and (40):
$\Phi_{4^{i,k(i))+}}^{(n)_{\theta}}$ and $\hat{\Phi}_{s(*}^{(n)_{j,k(i))+}}$ are constructed from the initial data $\Phi_{c(0,j,\hat{K})}^{(n)}$ and $\hat{\Phi}_{s(0,j,\hat{K})}^{(n)}$

obtained in the preceding step $(i)^{36}$ ; $\Phi_{4^{1}}^{(n)_{j,k(i))-}}$ and $\hat{\Phi}_{s(*}^{(n)_{j,k(i))-}}$ from the initial condition
given by Eq. (17). The computation is continued until the discontinuity becomes negligibly
small. Then, from a set of $\Phi_{4^{i}}^{(n)_{j,k(i))+}}(\hat{\Phi}_{s(i}^{(n)_{j,k(i))+}})$ , obtain $\Phi_{4*}^{(n)_{(k),j,k)+}}$ $(\hat{\Phi}_{s(*(k),j,k)+}^{(n)})$ by
interpolation. [The data on the discontinuity in Eqs. (36a) and (36b) are now prepared.]

(i\"u) For $\overline{K}+1\leq k\leq K$ , the computation is carried out in ascending order of $i$ , independently
in the two regions $r>1/\sin\theta_{\zeta}$ and $r<1/\sin\theta_{\zeta}$ separated by the discontinuity. The
step $i=i-1$ to $i=i$ is as follows. Let $\Phi_{c(i,j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}(i’<i)$ be given. (a) For
$r>1/\sin\theta_{\zeta}$ , starting from $\Phi_{c(*,j,\hat{K}+1)}^{(n)}$ and $\hat{\Phi}_{s(i,j,\hat{K}+1)}^{(n)}$ , compute $\Phi_{c(1j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}$ using
Eqs. (31), (32), (35a), (35b), (36a), and the data obtained in steps (i) and (ii) in ascending
order of $k$ up to $\Phi_{c(i,j,\overline{k})}^{(n)}$ and $\hat{\Phi}_{s(l,j,\overline{k})}^{(n)}$ , where $\theta_{\zeta}^{(\overline{k})}<\pi-Arc\sin(1/r^{(*)})\leq\theta_{\zeta}^{(\overline{k}+1)}$ . (b) For

$r<1/\sin\theta_{\zeta}$ , starting from $\Phi_{c(*,j,\overline{k}+1)}^{(n)}$ and $\hat{\Phi}_{s(i,j,\overline{k}+1)}^{(n)}$ , compute $\Phi_{c(1,j,k)}^{(n)}$ and $\hat{\Phi}_{s(*,j,k)}^{(n)}$ using
Eqs. (31), (32), (35a), (35b), (36b), the data of Eq. (17), and those obtained in step (ii)
in ascending order of $k$ up to $\Phi_{4^{1K)}}^{(n)_{\dot{J}}},$

, and $\hat{\Phi}_{s(i,j,K)}^{(n)}$ . Carry out these steps for every $j$ . For
$i>i_{c}$ , where the discontinuity is neghgibly small, neglecting the discontinuity, compute
$\Phi_{c(*,j,k)}^{(n)}$ and $\hat{\Phi}_{s(i,j,k)}^{(n)}$ from $k=\overline{K}+1$ to $K$ only with the standard formulae (35a) and (35b)
as in step (i).

(iv) Applying the Simpson formula to Eqs. $(19b)-(19e)$ , compute $(u_{r}/\cos\theta)_{(I)}^{(n)},$ $(u_{\theta}/\sin\theta)_{(I)}^{(n)}$ ,

and $(\tau/\cos\theta)_{(I)}^{(n)}$ . Then by the process of connection of these data to the asymptotic

solution for large $r$ (Sec. IV C), determine $G_{4j,k)}^{(n+1)},$ $H_{4j,k)}^{(n+1)},$ $G_{s(j,k)}^{(n+1)}$ , and $H_{s(j,k)}^{(n+1)}$ in Eqs. (41)
and (42).

(v) Repeat steps $(i)-(iv)$ with shift of the superscript ( $n$ to $n+1$ ) until $\Phi_{4*}^{(n)_{j,k)}}$

, and $\hat{\Phi}_{s(i,j,k)}^{(n)}$
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converge. We take the hmits as the solution ( $\Phi_{4^{i,j,k)}}$ and $\hat{\Phi}_{s(i,j,k)}$ ) of the problem, from
which the macroscopic variables are obtained by integration [cf. Eqs. $(19a)-(191)$].

The order of computation in the preceding process is consistent with the natural course of
integration of Eqs. (11) and (12) along their characteristic in the direction of molecular velocity.

B. Computation of collision integral

To compute the colIision integrals $C_{(\dot{*},j,k)}^{(n)}$ and $\hat{S}_{(1j,k)}^{(n)}$ efficiently, which take the majority of
the computing time, we make use of the numerical kernel method introduced in Ref. 37. That
is, $\Phi_{c}$ and $\hat{\Phi}_{s}$ at the nth step and $r=r^{(i)}$ are expanded in a set of basis functions:

$\Phi_{c}^{(n)}(r^{(i)},$

$(, \theta_{\zeta})=\sum_{\ell,m}\Phi_{c(i,\ell,m)}^{(n)}\Psi_{tm}(\zeta, \theta_{(}),$
(43)

$\hat{\Phi}_{s}^{(n)}(r^{(i)}, \zeta, \theta_{(})=\sum_{t,m}\hat{\Phi}_{s(1,\ell,m)}^{(n)}\Psi_{tm}(\zeta, \theta_{\zeta})$
, (44)

where the basis functions $\Psi_{\mathfrak{l}m}(\zeta, \theta_{(})$ are chosen in such a way that $\Phi_{c}^{(n)}$ and $\hat{\Phi}_{s}^{(n)}$ are continuous
in (and $\theta_{\zeta}$ , take $\Phi_{4^{1}}^{(n)_{t,m)}}$ and $\hat{\Phi}_{s(i,l,m)}^{(n)}$ , respectively, at the lattice points and are expressed by
the quadratic functions of $\zeta$ and $\theta_{\zeta}$ in each rectangle of $2\cross 2$ lattices with even lattice points at
its four corners.38 Then,

$C_{(1j,k)}^{(n)}= \sum_{t,m}\Phi_{4^{1}}^{(n)_{\ell,m)}}K_{jk\ell m}^{c}$
, (45)

$\hat{S}_{(*,j,k)}^{(n)}=\sum_{\ell,m}\hat{\Phi}_{s(1,t,m)}^{(n)}K_{jktm}^{s}$
, (46)

where $K_{j^{c}k\ell m}$ and $K_{j^{s}ktm}$ are, respectively, $C_{(\dot{\iota},j,k)}^{(n)}$ with $\Phi_{c}^{(n)}=\Psi_{\ell m}$ and $\hat{S}_{(i,j,k)}^{(n)}$ with $\hat{\Phi}_{s}^{(n)}=\Psi_{tm}$ :

$K_{jk\ell m}^{c}=[\mathcal{L}_{1}^{c}(\Psi_{lm})-\mathcal{L}_{2}^{c}(\Psi_{\ell m})]_{(j,k)}$ , (47)

$K_{jk\ell m}^{s}=[\mathcal{L}I(\Psi_{\ell m})-\mathcal{L}_{2}^{s}(\Psi_{\ell m})]_{(j,k)}$ , (48)

The $K_{j^{c}ktm}$ and $K_{j^{s}u_{m}}$ are universal constants, which can be computed beforehand and used in
various problems. The computations of Eqs. (47) and (48), whose effective domain of integration
is a slender ring with the support of $\Psi_{\ell m}$ , where $\Psi_{\ell m}\neq 0$ , as its cross section, should be carried
out carefully since the kernels of Eqs. (14a) and (15a) have singularity.39

The discontinuities in ( $\theta_{\zeta}$ space of $\Phi_{c}^{(n)}(r^{(i)}, \zeta, \theta_{\zeta})$ and $\hat{\Phi}_{s}^{(n)}(r^{(i)}, \zeta, \theta_{(})$ cannot be described
by the expansions (43) and (44). The expanded functions are inaccurate over a lattice elements
in $\theta_{\zeta}$ (say, $\theta_{\zeta}^{(2\kappa)}\leq\theta_{\zeta}<\theta_{\zeta}^{(2\kappa+2)}$ , where tc depends on $r^{(i)}$ ) for all (. These local inaccuracies
induce only neghgible errors in the results (45) and (46) of integration over ( $\theta_{\zeta}$ space. In our
computation, the discontinuity at $r^{(0)}$ (i.e. $r=1$ ) is taken care of by introducing two limiting
values 36 at $\theta_{\zeta}=\pi/2$ for $\Phi_{c(0,\ell,\hat{K})}$ and $\hat{\Phi}_{s(0,\ell,\hat{K})}$ . If the discontinuity happens to pass the lattice

points $\theta_{\zeta^{\wedge}}^{(k)}$ ( $k\wedge=2\kappa$ or $2\kappa+1$ ), the hmiting values $\Phi_{c}(r^{(i)},$ $(^{(l)}, \theta_{\zeta^{\wedge}}^{(k)}-0)$ and $\hat{\Phi}_{s}(r^{(i)}, \zeta^{(l)}, \theta_{\zeta^{\wedge}}^{(k)}-0)$

are taken as $\Phi_{c(*,t,k)}\wedge$ and $\hat{\Phi}_{s(,k)};,\ell^{\wedge}$

’ respectively in Eqs. (45) and (46), and therefore the expanded

functions are inaccurate over the lattice element $\theta_{\zeta}^{(2\kappa)}\leq\theta_{\zeta}<\theta_{\zeta}^{(2\kappa+2)}$ .
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C. Asymptotic behavior for large $r$ and the condition at $r=r_{D}$

We have hmited the original infinite domain to the finite one $(1\leq r\leq r_{D},$ $0\leq(\leq\zeta_{D},$ $0\leq$

$\theta_{\zeta}\leq\pi)$ . It does not introduce any problem to hmit the range of $\zeta$ . As is easily checked
by computation, $\Phi_{c}E$ and $\Phi_{s}E$ decay very rapidly as ( $arrow\infty$ , and therefore the accurate
computation of the problem can be carried out with a reasonable size of $\zeta_{D}$ . The problem is
not so simple for the case of the $r$ variable. From the asymptotic solutions for small $k_{\infty}$ and
$k_{\infty}=\infty$ , the approach of $\phi$ (or $\Phi_{c}$ and $\Phi_{s}$ ) to the uniform state at infinity is expected to be
very slow $(\sim r^{-m})$ . Thus, a very large $r_{D}$ is required to obtain an accurate result by simple
apphcation of Eq. (7) at $r=r_{D}$ . We therefore introduce a method to make use of the asymptotic
solution for large $r$ .

Let the deviation $\delta\phi(=\phi-2(1u_{\infty})$ from the equihibrium state at infinity be $O(r^{-m})$ for large
$r$ , then $\partial\delta\phi/\partial r=r^{-1}O(\delta\phi)$ . That is, for $r>r_{A}$ the characteristic length scale of variation of
$\delta\phi$ is larger than $r_{A}$ , and therefore the effective Knudsen number $Kn_{e\#}(=t_{\infty}/Lr_{A}=Kn/r_{A})$ is
small for large $r_{A}$ . Thus, the asymptotic form of $\phi$ (or $\Phi_{c}$ and $\Phi_{s}$ ) for large $r$ is obtained with
the aid of the asymptotic theory for smaJl Knudsen numbers as follows:

$\frac{\Phi_{c}}{u_{\infty}}$ $=$ $-2(1+c_{1}r^{-1}+c_{2}r^{-3}) \zeta\cos\theta_{\zeta}+c_{3}r^{-2}(\zeta^{2}-\frac{5}{2})$

$+k_{\infty}r^{-2}[ \gamma_{1}c_{1}-2c_{3}r^{-1}(A(()\cos\theta_{\zeta}-\frac{1}{2}(c_{1}+3c_{2}r^{-2})\zeta^{2}B(()(1-3\cos^{2}\theta_{\zeta})]$

$+k_{\infty}^{2}r^{-3}\{2c_{1}\zeta D_{1}(\zeta)\cos\theta_{\zeta}+3c_{3}r^{-1}\zeta^{2}F(\zeta)(1-3\cos^{2}\theta_{\zeta})$

$-2[c_{1}(3\cos^{2}\theta_{(}-2)+3c_{2}r^{-2}(5\cos^{2}\theta_{\zeta}-3)]\zeta^{3}D_{2}(\zeta)\cos\theta_{\zeta}\}$ , (49)

$\frac{\Phi_{s}}{u_{\infty}}$ $=$ $-2-c_{1}r^{-1}+c_{2}r^{-3}+k_{\infty}r^{-3}[c_{3}A(\zeta)-3c_{2}r^{-1}\zeta B(\zeta)\cos\theta_{\zeta}]$

$+k_{\infty}^{2}r^{-3}\{-c_{1}D_{1}(\zeta)+6c_{3}r^{-1}(F(\zeta)\cos\theta_{\zeta}$

$- \frac{1}{2}[c_{1}(1-3\cos^{2}\theta_{(})+9c_{2}r^{-2}(1-5\cos^{2}\theta_{\zeta})](2D_{2}(()\},$ (50)

$\frac{\omega}{u_{\infty}\cos\theta}$ $=$ $(\gamma_{1}c_{1}k_{\infty}-c_{3})r^{-2}$ , (51a)

$\frac{u_{r}}{u_{\infty}\cos\theta}$ $=$ $1+c_{1}r^{-1}+c_{2}r^{-3}$ , (51b)

$\frac{u_{\theta}}{u_{\infty}\sin\theta}$ $=$ $-1- \frac{1}{2}c_{1}r^{-1}+\frac{1}{2}c_{2}r^{-3}$ , (51c)

$\frac{\tau}{u_{\infty}\cos\theta}$ $=$ $c_{3}r^{-2}$ , (51d)

where $c_{1},$ $c_{2}$ , and $c_{3}$ are undetermined constants, and $A((), B(\zeta),$ $D_{1}((), D_{2}(\zeta)$ , and $F(\zeta)$ are
the solutions of the following integral equations, which are tabulated in Ref. 40 [$A(()$ and $B(\zeta)$

are first accurately obtained in Ref. 41] :

$\mathcal{L}[\zeta;A(()]=-\zeta_{i}(\zeta^{2}-\frac{5}{2})$ ,
(52)

subsidiary condition: $\int_{0}^{\infty}\zeta^{4}A(\zeta)\exp(-\zeta^{2})d\zeta=0$,

$\mathcal{L}[(\zeta_{i}\zeta_{j}-\frac{1}{3}\zeta^{2}\delta_{*j})B(\zeta)]=-2(\zeta;\zeta_{j}-\frac{1}{3}(2\delta_{*j}),$ (53)

$\mathcal{L}[(\zeta_{i}\zeta_{J}\cdot-\frac{1}{3}\zeta^{2}\delta_{ij})F(\zeta)]=(\zeta_{i}\zeta_{j}-\frac{1}{3}(2\delta_{ij})A((),$ (54)
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$\mathcal{L}[(\zeta_{i}\delta_{jk}+\zeta_{j}\delta_{k*}+\zeta_{k}\delta_{*j})D_{1}(\zeta)+\zeta_{*}(j(kD_{2}(()]$

$=\gamma_{1}((i\delta_{jk}+\zeta_{j}\delta_{k*}+\zeta_{k}\delta_{ij})-(;(j(kB((),$ (55)

subsidiary condition: $\int_{0}^{\infty}[5\zeta^{4}D_{1}(\zeta)+\zeta^{6}D_{2}(\zeta)]\exp(-(2)d\zeta=0$ .

The undetermined constants $c_{1},$ $c_{2}$ , and $c_{3}$ are introduced since the information on the side of
the sphere is not taken into account.

If $r_{D}$ is taken larger than $r_{A}$ , Eqs. (49) and (50) can be used to evaluate the boundary
conditions (41) and (42). That is, by connecting $u_{r}/\cos\theta,$ $u_{\theta}/\sin\theta$ , and $\tau/\cos\theta$ in Eqs. (51b),
(51c), and (51d) with $(u_{r}/\cos\theta)_{(I)}^{(n)},$ $(u_{\theta}/\sin\theta)_{(I)}^{(n)}$ , and $(\tau/\cos\theta)_{(I)}^{(n)}$ obtained in the step (iv) of
the process of solution in Sec. IV A respectively, we determine the constants $c_{1},$ $c_{2}$ , and $c_{3}$ (say
$c_{1}^{(n)},$ $c_{2}^{(n)}$ , and $c_{3}^{(n)}$ ). Let $\Phi_{c}$ and $\hat{\Phi}_{s}$ in Eqs. (49) and (50) with these constants be denoted by $\Phi_{cA}^{(n)}$

and $\hat{\Phi}_{sA}^{(n)}$ , respectively. We take $\Phi_{cA}^{(n)}$ (or $\hat{\Phi}_{sA}^{(n)}$ ) at $(r^{(I-1)}, \zeta^{(j)}, \theta_{\zeta}^{(k)})$ and ( $r^{(I)},$ $(^{(j)}, \theta_{\zeta}^{(k)})$ as $G_{c(j,k)}^{(n+1)}$

(or $G_{s(j,k)}^{(n+1)}$ ) and $H_{c(j,k)}^{(n+1)}$ (or $H_{s(j,k)}^{(n+1)}$ ) in Eq. (41) [Eq. (42)] respectively. Thus, the boundary
conditions (41) and (42) for the finite difference method are computed.

V. RESULT AND DISCUSSION

A. Macroscopic variables

The macroscopic variables $\omega,$ $u_{r},$ $u_{\theta}$ , and $\tau$ have simple dependence on $\theta:u_{\theta}$ is proportional
to $\sin\theta$ and the others are proportional to $\cos\theta$ [see Eqs. $(19a)-(19e)$]. The result of numerical
computation $u_{r}/u_{\infty}\cos\theta$ vs $r$ is shown in Fig. $3a$ and Table I, $u_{\theta}/u_{\infty}\sin\theta$ in Fig. $3b$ and Table II,
$\omega/u_{\infty}\cos\theta$ in Fig. $3c$ and Table III, and $\tau/u_{\infty}\cos\theta$ in Fig. $3d$ and Table IV. In these figures
and tables, the two hmiting solutions for $k_{\infty}=0$ and $k_{\infty}=\infty$ (see Sec. III) are also shown. For
comparison, the corresponding results fdr the BKW equation are shown in Figs. 4a-4d.

The uniform flow is retarded by the sphere, whose effect is larger for smaller Knudsen num-
bers. One may think the effect of sphere extends further in the gas for larger Knudsen numbers
since the molecules reflected on the sphere proceed in the gas with less collisions for larger Knud-
sen numbers, but it is not so in a steady flow. In the free molecular flow, only the molecules
that hit the sphere get the information of the existence of the sphere. That is, only the part
$O(1/r^{2})$ of the molecules is affected by the sphere. When the Knudsen number is very small,
on the other hand, the molecules reflected on the sphere soon collide with other molecules, give
them the information of the sphere, return to the sphere, and reflected there again. The collided
molecules soon collide with other molecules and so on. Successively the effect of the sphere
propagates into the gas and finally to all the molecules. As the Knudsen number increases,
the molecules travel longer distance before coUision and some of the molecules that return to
the sphere for smaller Knudsen numbers do not return to the sphere. Thus, the effect of the
sphere is weaker for larger Knudsen numbers in the steady flow, although in a transient process
disturbances may propagate faster for larger Knudsen numbers.

The temperature is not uniform, and the nonuniformity is larger for larger Knudsen num-
bers. This is a typical effect of gas rarefaction called thermal polarization.13 Obviously in the
continuum limit $(k_{\infty}=0)$ , the temperature is uniform in a slow flow where a quantity of the
second order of the Mach number can be neglected. For $k_{\infty}=0.1$ (a small Knudsen number),
the variation $\tau$ of the temperature for the BKW model is the opposite sign to that for the
hard-sphere molecular gas, although both are very small (Figs. $3d$ and $4d$). To understand the
thermal polarization, let us examine the velocity distribution function at forward stagnation
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point ($r=1,$ $\theta=\pi$ for $U_{\infty}>0$) for the free molecular flow. The distribution of the molecules
leaving the sphere is the half $(\zeta_{1}<0)$ of a stationary Maxwellian with temperature $\tau_{\infty}$ , and
that of the incoming molecules is the part ($(1>0)$ of the MaxweUian with temperature $T_{\infty}$ and
velocity $U_{\infty}$ . Thus the width of the distribution at the stagnation point is wider by the order
of $U_{\infty}(>0)$ than that of the distribution with temperature $T_{\infty}$ , which means the temperature
of the gas at the stagnation point is higher than $T_{\infty}$ by the order of $U_{\infty}$ .

B. Drag on the sphere

The force acting on the sphere is obtained by integrating the momentum flux, which is
equivalent to stress in the linearized problem, over any surface enclosing the sphere. Let $F_{i}$ be
the force on the sphere and $U$; [instead of a special $(U_{\infty},$ $0,0)$] be the uniform flow. Then,

$F_{*}\cdot=p_{\infty}L^{2}(2RT_{\infty})^{-1/2}U_{1}h_{D}(k_{\infty})$ , (56)

where $h_{D}(k_{\infty})$ , a function of $k_{\infty}$ , is given in Fig. 5 and Table V. For the free molecular flow
$(k_{\infty}=\infty)^{4}$ ,

$h_{D}(\infty)=2\sqrt{\pi}(\pi+8)/3$ , (57a)

and for small Knudsen numbers,

$h_{D}(k_{\infty})=6\pi\gamma_{1}k_{\infty}(1+\kappa_{0}k_{\infty})$ , (57b)

which is calculated from the asymptotic solution in Sec. III (For the BKW equation, another
higher order term in $k_{\infty}$ is $obtained^{10}$). In Fig. 5 various results by Millikan’s experiment or
other methods are also shown for comparison. The result for the BKW equation is our recent
detailed computation by the method similar to the present analysis but the difference from the
results in Refs. 8, 12, and 14 is small (See Table VI). The way of comparing the results of
different molecular models is not unique. The relation between the viscosity $\mu$ and the mean
free path $l_{\infty}$ is given by $\mu=(\sqrt{\pi}/2)\gamma_{1}p_{\infty}(2RT_{\infty})^{-1/2}l_{\infty}$ . Since $\gamma_{1}$ depends on molecular models
[Eq. (27)], the result of comparison of a quantity (e.g., $h_{D}$ ) differs whether $\mu$ or $\ell_{\infty}$ is taken as
the common independent variable. When $\mu$ is taken as the common independent variable, $k_{\infty}$

for a hard-sphere molecular gas is related to $k_{\infty}$ for the BKW model as

$k_{\infty}(BKW)=1.270042k_{\infty}$ (hard sphere). (58)

In the comparison of the drag in Fig. 5, the conversion formula (58) for the BKW model and a
similar one for Millikan’s result are used.

Recently the drag for $k_{\infty\sim}>1$ has been reported in Ref. 24. The results seem to he nearly on
the same curve as ours (shghtly larger for $k_{\infty}\sim 1$ and smaller for $k_{\infty}\sim 10$ than ours) in Fig. 5.
In Ref. 24 the interest was the global quantity, i.e., the drag, and the kernel of the collision
integral is expanded and truncated at the fourth term. The result in Ref. 24 is a numerical
solution of the model Boltzmann equation with the truncated collision kernel. In the numerical
analysis the discontinuity of the velocity distribution function is not taken into account. Both
save a large amount of computation. Thus, the purpose and approach in Ref. 24 are different
from ours, where we tried to solve the original equation faithfully.

The drags for the BKW model computed by different methods are compared in Table VI.
The difference is not large as a whole. The variational result, though a very simple test function
was used, agrees very well with our result, where the discontinuity is taken into account. In
the integral equation approach in Ref. 12, the difficulty of the discontinuity is bypassed42, but
the temperature field is assumed to be uniform, which means that larger errors are expected



78

for larger $k_{\infty}$ , since the variation of the temperature is larger for larger $k_{\infty}$ (cf. Fig. $4d$ ). The
approach in Ref. 24 shows the same tendency (smaler for large $k_{\infty}$ and larger for moderate $k_{\infty}$ )
as that for a hard-sphere molecular gas with the kernel truncation.

C. Velocity distribution function

The velocity distribution functions $\Phi_{c}E/u_{\infty}$ and $\hat{\Phi}_{s}E/u_{\infty}$ at several points in the gas are
shown for $k_{\infty}=0.1,1$ , and 10 in Figs. 6-11. The $\Phi_{c}E/u_{\infty}$ and $\hat{\Phi}_{s}E/u_{\infty}$ of the uniform flow at
infinity, common to all $k_{\infty}$ , are shown in Fig. 12 for reference. The difference due to the Knudsen
number is clear. At $k_{\infty}=\infty$ (the free molecular flow; Sec. III), two classes of molecules are
distinct. That is, at a point $(r)$ , the molecules with velocity $0\leq\theta_{\zeta}<\pi-Arc\sin(1/r)$ come
directly from infinity, whose distribution is given by the part $[0\leq\theta_{\zeta}<\pi-Arc\sin(1/r)]$ of the
uniform flow in Fig. 12; the molecules with the other velocities come directly from the sphere,
whose distribution is given in Fig. 13 [Eqs. (23) and (24)]. At $k_{\infty}=10$ (alarge Knudsen number)
in Figs. 10 and 11, this feature is well preserved and only local correction is seen. In contrast to
the free molecular flow, however, the discontinuity of the velocity distribution function on the
sphere decays in a long distance owing to molecular collisions. At $k_{\infty}=0.1$ (Figs. 6 and 7) the
behavior is quite different. The discontinuity of the velocity distribution function on the sphere
decays in a short distance (Fig. $6aarrow 6barrow 6c$; Fig. $7aarrow 7barrow 7c$), and it transforms completely
into a distribution similar to that of the uniform flow in a fairly short distance (Fig. $6aarrow 6d$ ;
Fig. $7aarrow 7c$). Further away from the sphere the change in the distribution is mainly in size
but not in shape (Fig. $6earrow 12a$; Fig. $7carrow 7darrow 12b$ ). At $k_{\infty}=1$ (an intermediate Knudsen
number), the behavior of the distribution retains more of the feature of $k_{\infty}=10$ . For $k_{\infty}=1$

and 10, the velocity distribution function is, more or less, of similar shape to that of the uniform
flow in a region where its discontinuity is vanishingly small. This shows that the flow is nearly
in equihibrium there. On the other hand, for $k_{\infty}=0.1$ , the decay of the discontinuity is so fast
that the velocity distribution function undergoes thorough transformation in a region where the
discontinuity is vanishingly $smaU$ . This kinetic transition region is the Knudsen layer, and the
region with discontinuity is the $S$ layer at the bottom of the Knudsen layer, discussed in Refs. 26
and 27.

In order to show the decay of the discontinuity with distance clearly, $\Phi_{c}E/u_{\infty}$ and $\hat{\Phi}_{s}E/u_{\infty}$

in $r\theta_{(}$ plane at a given $\zeta$ are shown in Figs. 14-17. The $\Phi_{c}/u_{\infty}$ and $\hat{\Phi}_{s}/u_{\infty}$ expressing the
uniform flow at infinity are given by $\Phi_{c}/u_{\infty}=-2(\cos\theta_{\zeta}$ and $\hat{\Phi}_{s}/u_{\infty}=-2(\sin\theta_{\zeta}$ [cf. Eq. (18)].
These sinusoidal surfaces are disturbed by the sphere, which imposes the condition (17). The
discontinuity of $\phi$ decays monotonicaUy with distance [cf. Eq. (20)]. This does not mean that
the discontinuities of $\Phi_{c}$ and $\hat{\Phi}_{s}(=\zeta\sin\theta_{\zeta}\Phi_{s})$ decay monotonically because of the interaction
terms between $\Phi_{c}$ and $\Phi_{s}$ in Eqs. (11) and (12). The discontinuity is smaller and decays in
shorter distance for smaller Knudsen numbers (Figs. 14-16). Figures 15 and 17 show that the
discontinuity decays more rapidly for smaUer molecular speed. This reflects the fact that the
discontinuity decays in the scale of the free path (but not the mean free path). At $k_{\infty}=1$ and
10 (Figs. 15 and 16), the discontinuity extends to a point of the order of the mean free path
from the sphere, but at $k_{\infty}=0.1$ (Fig. 14), it extends only to a point much nearer than a point
of the order of the mean free path from the sphere. This is because the discontinuity is nearly
parallel near the sphere and decays in a distance of the order of the free path. This very thin
layer with discontinuity for $smaU$ Knudsen numbers corresponds to the $S$ layer at the bottom
of the Knudsen layer. The figures for the BKW model corresponding to Figs. 14-17 are given
in Ref. 26. They are quite similar to the present results. For example, the figure for the BKW
model corresponding to Fig. 15 is given in Fig. 18.
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D. Lattice data and accuracy test

The data of the lattice system that was used to obtain the results in Secs. V $A,$ $B$ , and $C$ are
summarized. The typical examples of the size of physical space $r_{D}$ and the lattice are shown in
Table VII. The number of section is commonly 300 for all $k_{\infty}$ . The molecular speed is considered
in $0\leq(\leq\zeta_{D}$ with ($D=5$ , and the interval is divided into 24 sections, $i.e.,$$\zeta^{(i)}-=(D(i/J)^{2}$ with
$J=24$ . The region $0\leq\theta_{\zeta}\leq\pi$ is divided into uniform 176 sections, i.e., $K=88$ and $K=176$ .
In this lattice the molecular velocity space $\zeta\theta_{(}$ has 4425 lattice points, which means that 4425
terms are taken in the senies (43) and (44) The criterion of convergence of the sequences $\Phi_{c}^{(n)}$

and $\hat{\Phi}_{s}^{(n)}$ is that the variations of the macroscopic variables $(\omega/u_{\infty}\cos\theta)^{(n)},$ $(u_{r}/u_{\infty}\cos\theta)^{(n)}$ ,
$(u_{\theta}/u_{\infty}\sin\theta)^{(n)}$ , and $(\tau/u_{\infty}\cos\theta)^{(n)}$ in 10 iterations are less than $5\cross 10^{-7}$ .

It is inefficient, and also impossible in the present circumstances, to carry out extensive
direct accuracy tests by various lattice systems on the basis of the Boltzmann equation for hard-
sphere molecules since the computation is very large. The errors come from two different type
of sources: computation of the coUision integral and numerical integration of the differential
system. For the latter the BKW equation is a guide. We therefore investigate the same problem
by the same method on the basis of the BKW equation for various lattice systems, which can be
carried out by engineering workstations such as MIPS RS 3230 and HP 9000730. The typical
data showing the dependence of the results on lattice systems are given in Table VIII, where
the maximum differences of the macroscopic variables $\omega/u_{\infty}\cos\theta,$ $u_{r}/u_{\infty}\cos\theta,$ $u_{\theta}/u_{\infty}\sin\theta$ , and
$\tau/u_{\infty}\cos\theta$ by the use of different lattice systems over the whole flow field are shown. In the
original computation of $\mathcal{L}_{1}$ and $\mathcal{L}_{2}$ , the discontinuity of the velocity distribution function is
not taken into account since the error of the integrand hes only between two lattice points
$\theta_{\zeta}^{(2\kappa)}\leq\theta_{\zeta}<\theta_{\zeta}^{(2\kappa+2)}$ (cf. Sec. IV B). This error is tested for the BKW equation. The results
are also shown in Table VIII. Ftom the data in our previous works (Refs. 34, 37, etc.) on the
Boltzmann equation for hard-sphere molecules, in addition to the above tests on BKW equation,
we have chosen the lattice system mentioned in the first paragraph of this subsection.

Now return to solutions of the Boltzmann equation for hard-sphere molecules. The mag-
nitude of $\Phi_{c}E/u_{\infty}$ and $\hat{\Phi}_{s}E/u_{\infty}$ at $\zeta=3.828$ is less than 6 $\cross 10^{-7}$ for any $r,$ $\theta_{\zeta}$ , and $k_{\infty}$ ,
and therefore the size $\zeta_{D}(=5)$ adopted in the present analysis is sufficiently large. Two tests
for different lattice systems are carried out. In the test 1 (T1), the first 241 $r^{(i)}$ lattice points
$(i=0-240)$ among 301 are reduced to 161, and in the test 2 (T2), the original 176 divisions of
$0\leq\theta_{\zeta}\leq\pi$ are reduced to 132 divisions. The results of both computations of the macroscopic
variables $\omega/u_{\infty}\cos\theta,$ $u_{r}/u_{\infty}\cos\theta,$ $u_{\theta}/u_{\infty}\sin\theta$ , and $\tau/u_{\infty}\cos\theta$ are compared with those on the
original lattice system. Their maximum differences over the whole flow field are shown in Ta-
ble IX, where the maximum values of the corresponding variables over the whole flow field are
also given for reference. The lattice for $\theta_{\zeta}$ seems to be sufficient. In the intermediate Knudsen
numbers, more $r^{(i)}$ lattices are required to get the result of the same accuracy. This feature is
consistent with that of the BKW equation.

The collision integral vanishes for Maxwellian distributions ( $\phi=1,$ $\zeta_{i}$ , or $\zeta_{j^{2}}$ ). For corre-
sponding $\Phi_{c}$ and $\hat{\Phi}_{s}$ , therefore,

$C_{(1,j,k)}=\nu_{(j)}\Phi_{c(i,j,k)}$ ,
(59)

$\hat{S}_{(i,j,k)}=\nu_{(j)}\hat{\Phi}_{s(i,j,k)}$ .

The maximum differences between the computed and exact values of $(CE)_{(*,j,k)}$ and $(\hat{S}E)_{(*,j,k)}$

for $\Phi_{c}=1,$ $\zeta\cos\theta_{\zeta},$ $(^{2}$ , and $\hat{\Phi}_{s}=(\sin\theta_{\zeta}$ are 3.3 $x10^{-5},1.4\cross 10^{-5},5.8x10^{-6}$ , and 5.2 $x10^{-5}$ ,
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respectively. Incidentally, the maximums of $\nu(()E, \nu(()(E\cos\theta_{\zeta}, \nu(()(2E$ , and $\nu(()(E\sin\theta_{\zeta}$

are about 0.13, 0.06, 0.06, and 0.06 respectively.
The drag on the sphere can be computed by integrating the momentum flux over any surface

enclosing the sphere. In principle this serves a good accuracy test of computation. In practice it
is too severe in a three-dimensional problem in an infinite domain such as the present one to be
apphed to an arbitrarily large control surface. For a large control surface, the drag is obtained
as a small quantity multiplied by a large area. Thus, the error in local variables is multiphed by
the factor $r_{c}^{2}$ , where $r_{c}$ is the characteristic linear dimension of the control surface. The results
in Table. V are computed on the sphere $r=1$ . In the tests for the control spheres $r=r^{(i)}$ for all
$r^{(i)}$ between 1 and 4, the variation (max–min) of $h_{D}$ is less than 0.15% of $h_{D}$ for $k_{\infty}=0.2-10$

(0.56% for $k_{\infty}=0.1$ , 3.1% for $k_{\infty}=0.05$ ). Another test to confirm the result of $h_{D}$ was made
for the BKW equation: The drag computed with the lattice system of double $r^{(i)}$ points (601)
remains constant with width 0.26% allowance for the control surfaces $r=r^{(*)}$ with $r^{(:)}=1-10$ .
The data for $r^{(i)}=1-4$ are essentially the same as those computed with the original system of
301 $r^{(i)}$ lattice points.

A practical point that was introduced to improve the accuracy of numerical computation is
added here. The solution approaches the uniform flow at infinity fairly slowly, and therefore
for a wide range of $r(<r_{D})$ , the difference between the solution and its asymptotic solution is
fairly small. We consider the difference $\phi’$ :

$\phi’=\phi-\phi_{a}$ ,
(60)

$\phi_{a}/u_{\infty}=2(1+c_{1}r^{-1})\zeta_{1}+c_{1}r^{-1}\zeta_{\theta}\sin\theta$ ,

where $\phi_{a}$ corresponds to the terms up to $O(1/r)$ in Eqs. (49) and (50). Then, from Eq. (1)

$(. \frac{\partial\phi’}{\partial x_{\dot{\iota}}}=\frac{1}{k_{\infty}}\mathcal{L}(\phi’)-(:\frac{\partial\phi_{a}}{\partial x_{i}},$ (61)

where $\mathcal{L}(\phi_{a})$ term disappears since $\phi_{a}$ is a local Maxwelhan. Over a wide range, $|\phi’|$ is fairly
smaller than $|\phi|$ , and correspondingly the error of $\mathcal{L}(\phi’)$ is fairly smaller than that of $\mathcal{L}(\phi)$ .
Furthermore, by analyzing Eq. (61) instead of Eq. (1), we can avoid the error accumulated by
long range integration to form the slowly varying dominant part $\phi_{a}$ for large $r$ (cf. footnote 39
in Ref. 25).

The computation was carried out by HP 9000730 and MIPS RS 3230 at our laboratory (for
the BKW equation) and FACOM VP-2600 computer at the Data Processing Center of Kyoto
University (for the Boltzmann equation for hard-sphere molecules).

VI. CONCLUDING REMARKS

We have investigated the behavior of a rarefied gas around a spherical body set in a uniform
flow on the basis of the hnearized Boltzmann equation for hard-sphere molecules and the diffuse
reflection boundary condition. With the aid of the similarity solution, the original hnearized
Boltzmann equation with six independent variables is reduced to two simultaneous integro-
differential equations with three independent variables. These equations are solved numerically
by a finite-difference method. The computation of the collision integral, which takes the majority
of the computing time, is carried out efficiently by the numerical kernel method. The data of the
kernel stored can be applied to other computations. Thus, we have obtained the comprehensive
and accurate information of the flow field, including the velocity distribution function with
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discontinuity, and the force acting on the sphere for the whole range of the Knudsen number.
The $S$ layer at the bottom of the Knudsen layer is discussed by the behavior of the velocity
distribution function.

The velocity distribution function of the gas molecules has a discontinuity in the gas, which
is of considerable size and extends to a wide region for intermediate and large Knudsen numbers.
This is a typical feature of a gas around a convex body. Thus it introduces another difficulty in
analysis of rarefied gas flow problems. Some of the results of the present analysis are compared
with those of the BKW model equation. In view of the result of comparison and the simphcity
of the BKW equation, for which the analysis of the present problem can be carried out by
engineering workstations such as MIPS RS 3230, it is a nice equation to be used in engineering
problems.

In the present analysis, the temperature of the sphere is assumed to be equal to that of the
gas at infinity. This is realized without any special device when the thermal conductivity of the
sphere is much larger than that of the gas. In this case the temperature of the sphere is uniform
and the energy flow from the sphere vanishes since the sphere cannot be a source or sink of
energy in a steady state. From the similarity solution, the latter condition is seen to be satisfied
by the present solution, where the temperature of the sphere is the same as that of the gas at
infinity. When the sphere is kept at a different temperature, a spherically symmet$ric$ solution
should be superimposed. This does not influence the velocity field and the drag on the sphere.
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TABLE I. The distribution of the radial flow velocity ( $u_{r}/u_{\infty}\cos\theta$ vs r) for various $k_{\infty}$ . The data are interpolated with sufficient
accuracy from those at the lattice points, $wl\iota ich$ are not common for differen $tk_{\infty}$ .

$\overline{\overline{\frac{\backslash rk_{\infty}\frac{u_{r}/u_{\infty}\cos\theta}{0005Q1020.406124610\infty}}{100000000000000000000\acute{0}0000000000000000000000000.00000000000000}}}$

101 $0$ 0001 $0$ 0015 0.0025 $0$ 0040 $0$ 0060 $0$ 0072 $0$ 0086 $0$ 0099 $0$ 0106 0.0109 $0$ 0111 0.0113
1.1 0.0120 $0$ 0245 $0$ 0347 $0$ 0500 $0$ 0702 $0$ 0831 $0$ 0973 0.1113 0.1190 0.1215 0.1236 0.1263
1.2 $0$ 0394 $0$ 0600 0.0779 $0$ .I050 0.1417 0.1651 0.1914 $0$ 2170 $0$ 2314 0.2360 0.2398 0.2448
13 $0$ 0737 0.0994 0.1224 0.1578 0.2065 0.2380 0.2734 0.3080 0.3273 0.3335 0.3386 0.3453
14 0.1108 0.1393 $0$ . 1658 0.2068 0.2640 0.3014 0.3435 0.3848 $0$ 4078 0.4152 $0$ 4212 $0$ 4291
15 0.1481 0.1782 0.2068 0.2515 0.3146 $0$ 3562 $0$ 4034 0.4495 $0$ 4751 0.4835 $0$ 4902 $0$ 4990
1.7 0.2194 $0$ 2502 0.2808 0.3290 0.3988 $0$ 4454 0.4985 $0$ 5507 0.5797 0.5893 0.5967 0.6066
2 0.3125 0.3420 0.3725 0.4211 0.4932 0.5424 0.5988 0.6547 0.6858 0.6961 0.7039 0.7145

2.5 0.4320 $0$ 4577 0.4856 0.5304 0.5987 0.6466 0.7021 0.7578 0.7888 0.7992 0.8070 0.8174
3 0.5185 $0$ 5407 0.5656 0.6056 0.6678 0.7122 $0$ 7641 $0$ 8169 0.8464 0.8564 0.8638 0.8736
4 $0$ 6328 $0$ 6498 $0$ 6696 0.7016 0.7525 0.7898 $0$ 8339 0.8796 $0$ 9057 $0$ 9144 0.9210 0.9294
5 0.7040 $0$ 7177 0.7337 0.7601 0.8025 0.8342 0.8717 0.9113 $0$ 9343 0.9420 0.9478 0.9551
7 0.7872 $0$ 7971 0.8083 0.8276 $0$ 8591 $0$ 8831 0.9115 0.9423 0.9606 0.9668 $0$ 9715 0.9773
10 0.8505 $0$ 8575 0.8651 $0$ 8785 0.9012 $0$ 9187 0.9393 $0$ 9621 $0$ 9761 $0$ 9809 0.9845 $0$ 9889
15 0.9001 $0$ 9048 0.9096 $0$ 9185 0.9338 $0$ 9458 0.9600 0.9757 0.9857 0.9892 0.9919 0.9951
20 0.9251 $0$ 9286 0.9321 $0$ 9386 0.9501 0.9593 0.9700 $0$ 9821 0.9898 0.9925 0.9946 0.9973
25 0.9400 $0$ 9428 0.9456 0.9508 $0$ 9599 $0$ 9673 0.9760 0.9857 $0$ 9920 0.9943 0.9961 0.9983
50 0.9700 $0$ 9714 0.9728 $0$ 9753 0.9796 $0$ 9833 0.9878 $0$ 9929 $0$ 9961 0.9974 0.9983 $0$ 9996
100 0.9850 $0$ 9857 0.9864 $0$ 9876 0.9897 0.9915 0.9937 0.9963 $0$ 9981 0.9987 0.9992 0.9999
200 0.9925 $0$ 9929 0.9932 0.9938 0.9948 $0$ 9957 0.9968 0.9981 $0$ 9990 0.9993 0.9996 10000
500 $0$ 9970 $0$ 9971 $0$ 9973 $0$ 9975 0.9979 $0$ 99830.9987 $0$ 9992 $0$ 9996 $0$ 9997 $0$ 999910000

TABLE II. The distribution of the $\theta$ component of the flow velocity ( $u_{\theta}/u_{\infty}\sin\theta$ vs r) for various $k_{\infty}$ . The data are interpolated with
sufficient accuracy from those at the lattice points, $w1\iota ic|_{l}$ are not common for different $k_{\infty}$ .

$\overline{\overline{\frac{\backslash rk_{\infty}\frac{u_{\theta}/u_{\infty}\sin\theta}{00050.1020406124610\infty}}{100000-00598-0.1078-0.1777-02662-03206-0.3805-04379-04696-04801-04884-0.5000}}}$

$1$ OI $-00148$ $-00854$ $-0.1403$ $-02216$ $-03272$ $-0.3929$ $-04658$ $-0.5362$ $-05751$ $-0.5882$ $-0.5984$ $-0$ 6128
1.1 $-0.1304$ $-0.1996$ $-02598$ $-0.3512$ $-04748$ $-0.5539$ $-0.6425$ $-0.7285$ $-0.7763$ $-07922$ $-08047$ $-0$ 8219
12 $-0.2303$ $-0.2S90$ $-0.344S$ $-04317$ $-05531$ $-0.6322$ $-0.7215$ $-0$ .SOS4 $-0$ .S566 $-0$ .S725 $-0$ .SS50 $-0.9021$

$13$ $-0.3093$ $-0.3592$ $-04095$ $-04895$ $-0.6042$ $-0.6804$ $-0.7668$ $-0.8512$ $-0.8979$ $-0.9133$ $-09253$ $-0$ 9417
14 $-0.3732$ $-04163$ $-04616$ $-05345$ $-06418$ $-0.7141$ $-07965$ $-0.8774$ $-0.9222$ $-0.9370$ $-09484$ $-0$ 9639

15 $-0.4259$ $-0.4636$ $-05047$ $-05712$ $-06710$ $-0.7393$ $-0.8177$ $-0.8948$ $-0.9376$ $-0.9517$ $-09625$ $-0$ 9772
17 $-0.5079$ $-0.5378$ $-0.5721$ $-06280$ $-07146$ $-07755$ $-0.8460$ $-0.9161$ $-0.9551$ $-0.9679$ $-09777$ $-0.9908$

$2$ $-05938$ $-06163$ $-0.6437$ $-06883$ $-07595$ $-0.8111$ $-0.8717$ $-09330$ $-0.9672$ $-0.9784$ $-09870$ $-0$ 9983
25 $-0.6840$ $-06999$ $-07203$ $-07534$ $-08075$ $-08482$ $-0.8967$ $-09470$ $-0.9756$ $-09849$ $-09920$ $-1$ 0011
3 $-0.7407$ $-0.7531$ $-0.7692$ $-07954$ $-08389$ $-08723$ $-0.9124$ $-0.9549$ $-0.9795$ $-0.9876$ $-09936$ $-1$ 0014
4 $-0$ .SOS6 $-0$ .S174 $-0.8284$ $-0$ .S470 $-08782$ $-0.9027$ $-0.9321$ $-0.9645$ $-0.9837$ $-0.9902$ $-0.9949$ $-1$ 0009
5 $-0.8480$ $-0$ .S550 $-0$ .S631 $-0$ .S775 $-09020$ $-0.9213$ $-0.9444$ $-0.9704$ $-0.9863$ $-0.9916$ $-09956$ $-1.0006$

$7$ $-0.8921$ $-08972$ $-09023$ $-09122$ $-09294$ $-0.9431$ $-0.9592$ $-09776$ $-0.9894$ $-0.9935$ $-09965$ $-1$ 0003

10 $-09248$ $-0.9283$ $-0.9315$ $-09382$ $-09501$ $-0.9597$ $-0.9708$ $-09836$ $-0.9920$ $-0.9950$ $-0.9973$ $-1.0001$

$15$ $-09499$ $-0.9523$ $-09544$ $-09586$ $-09664$ $-0.9728$ $-0.9802$ $-09887$ $-0.9943$ $-09964$ $-09980$ $-1.0000$

$20$ $-0.9625$ $-0.9642$ $-0.9659$ $-09690$ $-09745$ $-0.9794$ $-0.9850$ $-0.99I3$ $-0.9956$ $-0.9972$ $-09984$ $-1.0000$

$25$ $-0.9700$ $-09714$ $-0.9727$ $-09752$ $-09794$ $-09833$ $-0.9879$ $-0.9930$ $-0.9964$ $-0.9977$ $-09987$ -I.OOOO

50 $-0.9850$ $-09857$ $-0.9864$ $-09876$ $-09895$ $-0.9914$ $-0.9937$ $-0.9964$ $-09981$ $-0.9988$ $-09993$ $-1.0000$

$100$ $-0.9925$ $-09929$ $-0.9932$ $-0.9938$ $-09948$ $-0.9956$ $-0.9967$ $-09981$ $-0.9990$ $-09994$ $-0.9996$ $-1.0000$

$200$ $-09962$ $-0.9964$ $-0.9966$ $-09969$ $-09974$ $-09978$ $-09983$ $-0.9990$ $-0.9995$ $-0.9997$ $-09998$ $-1$ 0000

500 $-099S5$ $-09986$ $-09986$ $-09988$ $-09990$ $-09991$ $-09993$ $-0.9996$ $-0.9998$ $-0.9999$ $-09999$ $-1$ 0000
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TABLE III. The distribution of the density (($v/u_{\infty}\cos\theta$ vs r) for various $k_{\infty}$ . The data are interpolated with sufficient accuracy from
those at the lattice point $s$ , which are not common for different $k_{\infty}$ .

$\overline{\overline{\frac{r\backslash k_{\infty}\frac{(v/u_{\infty}\cos\theta}{0050.10.2040.6124610\infty}}{I-00925-0.1842-03522-0.6128-0.7897-09968-1.2055-1.3263-1.3683-1.4016-1.4504}}}$

1.01 $-00886-0.1740-0.3272-0.5622-0.7214-0.9076-10949-1.2034-1.2410-1.2708-1.3967$
$11$ $-0.0730-0.1396-02543-0.4266-05432-0.6797-0.8170-0.8964-09239-0.9457-12014$
$12$ $-0.0613-0.1158-0.2076-0.3435-0.4354-0.5429-0.6513-0.7137-0.7356-0.7526-1.0501$
$1.3$

$-00523-00451-00845-00982-01490-0..1743-0.\cdot 2855-02421-03048-0.3605-0.4484-0.3784-0.\cdot 5371-04523-0.\cdot 5881-04951-05101-0.6061-05218-0.\cdot 6200-0.9311-0.8345$
$1.4$

1.5 $-0.0394-0.0735-0.1291-0.2085-0.2617-0.3240-0.3872-0.4235-0.4363-0.4461-0.7545$
$1.7$

2
2.5
3 $-00100-00183-00318-00499-0.0616-0.0749-0.0883-0.0964-00988-0.1010-0.2897$
$4$ $-00056$ $-00103$ $-00178$ $-0.0279$ $-00344$ $-00417$ $-00489$ $-00531$ $-00545$ $-0.0556$ $-0.2003$

$5$ $-00036$ $-00066$ $-00114$ $-00178$ $-00219$ $-00266$ $-0031I$ $-00337$ $-0.0345$ $-0.0351$ $-0.1520$

$7$ $-0.0019-00033-00058-00091-00111-00135-0.0158-00170-00174-0.0177-0.1017$
$10$ $-00009$ $-00016$ $-00028$ $-00044$ $-00054$ $-00066$ $-00077$ $-0.0083$ $-00085$ $-00086$ $-0.0676$

$15$ $-00004-00007-0.0012-0.0019-0.0024-00029-00034-0.0037-0.0037-0.0038-0.0432$
$20$ $-00002-00004-0.0007-0.0011-00013-00016-00019-00021$ $-0.0021$ $-0.0022-0.0317$
$25$ $-00001$ $-00003$ $-00004$ $-0.0007$ $-00008$ $-00010$ $-0.0012$ $-00013$ $-00013$ $-00014$ $-0.0250$

$50$ $-00000-00001-00001-0.0002-00002-0.0002-00003-00003-0.0003-00003-0.0122$
$100$ $-00000-00000-0.0000-00000-00001-00001-00001$ $-0.0001-0.0001-0.0060$

$\ovalbox{\tt\small REJECT} 200-00000-0.0000-00000-00000-0.0000-0.0030500-00000-0.0000-00000-00012$

TABLE IV. The distribution of $t$ he temperature ( $\tau/u_{\infty}\cos\theta$ vs r) for various $k_{\infty}$ . The data are interpolated with sufficient accuracy
from those at the lattice poilrts, which are not common for different $k_{\infty}$ .

$\ovalbox{\tt\small REJECT}\backslash _{rk_{\infty^{005}}..20406124610}^{\tau/u.\cos\theta}1-00010-0^{0}0^{1}058-0^{0}0236-00620-00903-0^{\infty}1233-0.1551-0.1724-0.1780-0.1822-0^{\infty_{1881}}\ovalbox{\tt\small REJECT}$

$1.01$

1.1

1.2
13 $-00001-0.0019-00098-0.0299-00462-00663-00870-00990-0.1032-0.1065-0.1128$
$1.4$ $-00001$ $-00016-0.0084-0.0255-00394-0.0567-0.0746-00851-0.osss-00917-0.0960$
$1.5$

17
2

2.5 $-00000$ $-00006$ $-00026$ $-0.0077$ $-00118$ $-0$ OI70 $-0.0226$ $-00261$ $-0.0274$ $-00284$ $-0.0301$
$3$ $-00001$ $-00004$ $-00019$ $-00053$ $-00082$ $-00117$ $-00156$ $-0.0180$ $-0.0189$ $-0.0197$ $-0.0209$
$4$ $-00001$ $-00003$ $-0$ OOI I $-0.0030$ $-00046$ $-00065$ $-00086$ $-0.0100$ $-00105$ $-0$ OI10 $-0.0118$

5
7

$-00001-00001$
$-00002-00001-00001$ $-00007-00004-00002$ $-0.0020-00010-00005$ $-00008-00016-00030$ $-00042-00021-00011$ $-00055-00027-00013$ $-0.0064-00032-000I5$ $-00067-00034-00016$ $-0.0070-00035-00017$ $-00019-00038-0...0075$

$10$

15 $-00001$ $-00002$ $-00004$ $-00005$ $-00006$ $-00007$ $-00007$ $-00007$ $-0.0008$

$20$ $-00001$ $-00001$ $-00002$ $-00003$ $-00003$ $-0.0004$ $-00004$ $-0.0004$ $-0.0005$

$25$ $-00000$ $-0.0001$ $-00001$ $-00002$ $-00002$ $-00002$ $-0.0003$ $-00003$ $-0.0003$

$50$ $-0.0000$ $-00000$ $-00000$ $-00001$ $-00001$ $-00001$ $-00001$ $-0.0001$

$200500100$

$-00000$ $-00000$
$-00000-00000$

$-00000-00000-00000$ $-00000-00000-00000$ $-00000-00000-00000$ $-0...0000-00000-00000$
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TABLE V. The drag on the sphere: $h_{D}$ vs $k_{\infty}$ [cf. Eq. \langle 56)].

$\overline{\overline{\frac{k_{\infty}0.050.10.20.40.6124610\infty}{h_{D}(k_{\infty})110912.11683.8110622927.79519562511277212.233312.555712.807113.1653}}}$

TABLE VI. Comparison ot $h_{D}$ in the drag formula (56) for the BKW model. The conversion (58) of $k_{\infty}$ is not made here.

$\overline{\overline{\frac{k_{\infty}\frac{h_{D}(k_{\infty})/h_{D}(\infty)}{Ref.8Ref.12Ref.24Presentmethod}}{10..64040..64020..647606403}100952909476095080.9540}}$

2 $0$ 7900 0.7899 0.7933 0.7907
4 0.8864 0.8870 0.8859 0.8879

TABLE VII. Examples ot lattice of $r$ .

(Zl,Rl, O) (Zl,R2, O) 3 $x10^{-4}$ 1 $x10^{-3}$ 6 $x10^{-4}$

(Zl,Rl, O) (Z2,Rl, O) 2 $x10^{-\ell}$ 3 $x10^{-4}$ 4 $x10^{-4}$

$(Z2,R1, O)$ $(Z2,R1, \cross)$ 3 $xI0^{-5}$ 2 $x10^{-4}$ 2 $x10^{-4}$

“ Upper bounds $oi$ the differences of $\omega/u_{\infty}\cos\theta,$ $u_{r}/u_{\infty}\cos\theta,$ $u_{\theta}/u_{\infty}\sin\theta$, and $\tau/u_{\infty}\cos\theta$ for the systems A and $B$ over the
whole lat tice points.

bZl; $(D=6,$ $J=24,$ $K=300$
Z2: $\zeta_{D}=5,$ $J=24,$ $K=176$
Rl: $I=S00,$ $r_{D}=13.77\{k_{\infty}=0.1$ ), 199.26 $(k_{\infty}=1)$ , 928.72 $(k_{\infty}=10)$

R2: $I=600,$ $r_{D}=13.77(k_{\infty}=0.1)$ , 199.26 \langle $k_{\infty}=1$ ), 928.72 $(k_{\infty}=10)$

R3: $I=320,$ $r_{D}=20.38(k_{\infty}=0.1)$ , 304.52 $(k_{\infty}=1)$ , 158987 $(k_{\infty}=10)$

$O$ ; In the computation oi the macroscopic variables in the $g$ $n$ term of collision, the discontinuity of $\phi$ is taken into account.
$x$ : not taken into account.

TABLE IX. Dependence of the macroscopic variables on the lattice systems ior the hard-sphere gas.

“ Upper bounds of the differences of a macroscopic variable for the original lattice system (cf. first paragraph of Sec. V D)
and for the system with reduced $r^{(i)}$ lattice points (cf third paragraph of Sec. V D) over the whole lattice points.

b Upper bounds of the differences of a macroscopic variable for the original lattice system and for the system with reduced
$\theta_{\zeta}^{(k)}$ lattice points (cf. third paragraph of Sec. V D) over the whole lattice points.

c Maximum of the absolute value.
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$(u_{\infty}, 0,0)$

$x_{3}$

FIG. 1. Geometry and coordinate systems [Sec. II A and Eq. (8)]. FIG. 2. Discontinuity of the velocity distribution function. At
$l$ he point $x;$ , tlle velocity distribution function‘is dis-
continuous on the $s1_{1}$ aded $COI\iota e$ ilt $\dot{\zeta}_{j}$ space.

FIG. 3. The profiles of the macroscopic variables (llard sphere). (a) $u_{r}/u_{\infty}\cos\theta$ vs $f(b)u_{\theta}/u_{\infty}\sin\theta$ vs $r,$ $(c)\omega/u_{\infty}\cos\theta$ vs $r$ , and (d)
$\tau/u_{\infty}\cos\theta$ vs $r$ . Here, –indicates the presen $t$ numerical result, $—-$ -the asymptotic solution $(26a)-(26d)$ with $k_{\infty}=0$ ,
and —- the free molecular ftow $(k_{\infty}=\infty)$ . The $x$ indicates the value at $r=1$ .
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FIG. 4. The profiles of the macroscopic variables (BKW). (a) $u_{r}/u_{\infty}\cos\theta$ vs $r,$ $(b)u_{\theta}/u_{\infty}\sin\theta$ vs $r,$ $(c)\omega/u_{\infty}\cos\theta$ vs $r$ , and (d)
$\tau/u_{\infty}\cos\theta$ vs $r$ . Here, –indicates the present numerical result, $—-$ -the asymptotic solution $(26a)-(26d)$ with $k_{\infty}=0$ ,
and —-the free molecular flow $(k_{\infty}=\infty)$ . The $x$ indicates the value at $r=1$ . The conversion (58) of $k_{\infty}$ is not made here.

FIG. 5. The drag on the sphere. $h_{D}$ vs $k_{\infty}$ . The drag F. is given by $F$. $=p_{\infty}L^{2}(2RT_{\infty})^{-1/2}U,h_{D}$ [Eq. (56)]. Here, $\bullet$ indicates the
present result for hard-spbere molecules, $+the$ present result for tbe BKW model, $Ot$he result by kernel expansion method
(Ref. 24), —–the empirical formula by Millikan (Ref. 3), –the asymptotic result for small $k_{\infty}$ [Eq. $(57b)$], $—-$ -the
$S$ tokes drag [the first-order term in $k_{\infty}$ of Eq. $(57b)$], and —the result for the free molecular flow [Eq. $(57a)$].
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(a) $r=1$ (b) $r=1010$

(c) $r=1200$

FIG. 6. The velocity distribution function $\Phi_{c}E$ at five points
in $t$ he gas for $k_{\infty}=0.1$ . (a) $r=1,$ \langle $b$ ) $r=1.010$ ,
(c) $r=1200,$ $(d)r=1.496$ , and (e) $r=1.998$ . The
surface of $\Phi_{c}E$ is shown as a function of $\zeta\cos\theta_{\zeta}$ and
( $\sin\theta_{\zeta}$ by lines $\zeta=const$ and $\theta_{\zeta}=const$ . The vertical
stripes sltow the discontinuity. Note the difference oi
the ordinate in $I\cdot ig$ . $6e$ .

(e) $r=199S$

FIG. 7. The velocity distribution function $\hat{\Phi}_{s}E$ at four points in the gas for $k_{\infty}=0.1$ . $(a)r=1,$ $(b)r=1010,$ $(c)r=1.100$ , and (d)
$r=1496$ . The surface of $\hat{\Phi}$ , $E$ is sllown as a function of ( $\cos\theta_{\zeta}$ and ( $\sin\theta_{\zeta}$ by lines $\zeta=$ const and $\theta_{\zeta}=const$ . The vertical
$s$ tripes show the discontinuity. Note the difference of the ordinate in Fig. $7d$ .
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(a) $r=1$ (b) $r=1100$

(c) $r\Rightarrow 149S$ (d) $r=2.014$

FIG. 8. The velocity distribution function $\Phi_{c}E$ at five points
in the gas ior $k_{\infty}=1$ . (a) $r=1,$ $(b)r=1.100,$ $(c)$

$r=1.49S,$ $(d)r=2014$ , and (e) $r=6$ .IO1. (See the
caption oi Fig. 6.)

(e) $r=6101$

FIG. 9. The velocity distribution function $\hat{\Phi}$ , $E$ at four points in the gas for $k_{\infty}=1$ . (a) $r=1,$ $(b)r=1.100,$ $(c)r=2.014$ , and (d)
$r=6.101$ . (See the caption of Fig. 7.)
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(a) $r=1$
(b) $r=1990$

(c) $r=6018$
(d) $r=1104$

FIG. 10. The velocity distribution function $\Phi_{c}E$ at five points
in the gas for $k_{\infty}=10$ . $(a)r=1,$ $(b)f=1990,$ $(c)$

$r=6018,$ $(d)r=11.04$ , and (e) $r=20.S6$ . (See the
caption of Fig. 6)

(e) $r=20S6$

FIG. 11. The velocity distribution function $\hat{\Phi}$ , $E$ at four points in the gas for $k_{\infty}=10$ . $(a)r=1,$ $(b)r=1990,$ $(c)r=1104$ , and (d)
$r=2086$ . (See $t$ he caption of Fig. 7.)
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(a)

FIG. 12. The velocity distribution functions $\Phi_{c}E$ and $\hat{\Phi}$ , $E$ in the uniform flow at infinity. (a) $\Phi_{c}E$ and (b) $\hat{\Phi}_{s}$ E. (common to all $k_{\infty}$ )

FIG. 14. The velocity distribution functions $\Phi_{c}E$ and $\hat{\Phi}$ , $E$ at $\zeta=0.556$ for $k_{\infty}=0.1$ . (a) $\Phi_{c}E$ and (b) $\hat{\Phi}$ , $E$ . The surfaces oi $\Phi_{c}E$ and
$\hat{\Phi}$ , $E$ are shown as functions of $r$ and $\theta_{(}$ by lines $r=$ const and $\theta_{(}=$ const. The vertical lines show the discontinuity. The
$i_{1}\iota vlsible$ lines behind $0$ tber parts are shown by dashed lines.

FIG. 15 The velocity distribution functions $\Phi_{c}E$ and $\hat{\Phi}_{s}E$ at ( $=0.556$ for $k_{\infty}=1$ . $(a)\Phi_{c}E$ and (b) $\hat{\Phi}$ , E. (See the caption of Fig. 14.)
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FIG. 16. The velocity distribution functions $\Phi_{c}E$ and $\hat{\Phi}$ , $E$ at ( $=0.556$ for $k_{\infty}=10$ . $(a)\Phi_{c}E$ and (b) $\hat{\Phi}$ , E. (See the caption of Fig. 14.)

FIG. 17. The velocity distribution functions $\Phi_{c}E$ and $\hat{\Phi}_{s}E$ at ( $=0.139$ for $k_{\infty}=1$ . $(a)\Phi_{c}E$ and (b) $\hat{\Phi}_{s}$ E. (See the caption of Fig. 14.)

FIG. 18. The distribution functions $\Phi_{c}E$ and $\hat{\Phi}_{s}E$ for the BKW equation at ( $=0667$ for $k_{\infty}=1$ , which corresponds to Fig. 15 (hard
sphere). (a) $\Phi_{c}E$ and (b) $\hat{\Phi}_{s}$ E. (See the caption of Fig. 14.) The conversion (58) of $k_{\infty}$ is not made here. Note the difference
of the value (from that in Fig. 15.


