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An alternative approach to existence result of solutions for

the Navier-Stokes equation through discrete Morse semiflows

By

Takeyuki Nagasawa (長澤壯之) 1

Department of Mathematics, College of General Education,
T\^ohoku University, Sendai 980, Japan

(東北大学 教養部)

1 Discrete Morse semfflows

In this note we shall construct weak solutions to the Navier-Stokes equation by use of idea
of the discrete Morse semiflows. First the concept of discrete Morse semiflows is explained.

Let $I$ be a functional on some Banach space $X$ . To find critical points we must solve the
Euler-Lagrange equation

(1. 1) $\delta I(u)=\frac{d}{d\epsilon}I(u+\epsilon\varphi)|_{\epsilon=0}=0$

for any $\varphi\in X$ . We sometimes had better regard critical points as stationary points of flow
defined by

(1.2) $u_{t}=- \frac{1}{2}\delta I(u)$ ,

which is called the Morse semiflow. In other words we solve (1.2) with some initial data $u_{0}$

and get solutions to (1.1) by passing to the limit as $tarrow\infty$ .
To solve this evolution equation we discretize (1.2) with respect to the time variable

(13) $\{\begin{array}{l}\frac{u_{n}^{h}-u_{n-1}^{h}}{h}=-\frac{1}{2}\delta I(u_{n}^{h})u_{0}^{h}isgiven\end{array}$

Now we assume $X^{e}-\succ L^{2}$ . Since we can regard (1.3) as the Euler-Lagrange equation to
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the functional
$J(u)= \frac{||u-u_{n-1}^{h}||_{2}}{h}+I(u)$ ,

where $||$ . I is the $L^{2}$-norm, we can define $u_{n}^{h}$ as the minimizer of this functional, $i.e.$ ,

$u_{n}^{h}$ : $J(u) arrow\min$ . in $X$ .

We call the sequence $\{u_{n}^{h}\}$ the discrete Morse semiflow. This idea can be found in a paper
of Rektorys [7].

We conversely apply the idea of discrete Morse semiflows to evolution equations. Such
trial had been done for the heat flow to harmonic maps by Bethuel-Coron-Ghidaglia-Soyeur
[1], for a semilinear hyperbohc system by Tachikawa [9]. The author and Omata considered
the asymptotics of discrete Morse semiflow for a functional with free boundary in $[5, 6]$ .
Here we shall apply the idea to the evolutional Navier-Stokes equation. The Navier-Stokes
equation, however, is not an Euler-Lagrange equation to some functional, so we need some
modification.

In the next section we shall regard the Navier-Stokes equation as an ordinary differential
equation on some Banach space as usual manner, and define the concept of a weak solution.
In \S 3 we devote ourself to the explanation of our scheme. $\ln$ \S 4 we shall derive a priori
estimates for an approximate solution, and construct a weak solution by vanishing the
time increment of discretization. Furthermore we shall comment on our scheme in the last
section.

2 Navier-Stokes equation

Let $\Omega$ be a domain in $R^{m}$ . We do not assume any smoothness of the boundary $\partial\Omega$ . The
initial-boundary value problem for the Navier-Stokes equation is described by

$\{\begin{array}{l}u_{t}+(u\cdot\nabla)u+\nabla p=\Delta u+fin\Omega\cross(0)\infty)Avu=0in\Omega\cross(0,\infty)u=0on\partial\Omega\cross(0,\infty)u=u_{0}on\Omega\cross\{0\}\end{array}$

Here $u$ and $p$ are unknown functions which represent the velocity and the pressure of fluid
respectively. $f$ and $u_{0}$ are given functions which stand for the external force and the initial
velocity respectively. It is convenient for analysis to rewrite the abov$e$ system of partial
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differential equations to an ordinary equation on Banach space as usual manner. Function
spaces V, $H,$ $V$ and $V’$ are defined by

$\{V^{V}H\mathcal{V}====thc1osu_{spaceofVw^{0}ith’}^{reof\mathcal{V}inL(\Omega)}\iota^{hec1osu_{reof\mathcal{V}inH^{2_{1}}(\Omega)_{respect}}}t_{hedua^{0}1}\{\varphi_{e}\in C^{\infty}(\Omega)|div\varphi=0\}$

,

to $L^{2}(\Omega)$-inner product.

Then our problem can be written in the abstract form as

(2.1) $\{u(\cdot 0)=u\in H\frac{du}{dt},+Au+_{0}Bu=f$

in $V’$ for almost every $t\in(O, T)$ ,

Here $A$ and $B$ are respectively linear and non-linear operators from $V$ to $V’$ defined by

$\{\begin{array}{l}V’\{Au,\varphi\}_{V}=\int_{\Omega}\{\nabla u,\nabla\varphi\}dxV\{Bu,\varphi\rangle_{V}=\int_{\Omega}\{(u\cdot\nabla)u,\varphi\rangle dx\end{array}$

for $\varphi\in V$ . Notations $V\{\cdot, \cdot\}_{V)}(\cdot,$ $\cdot$}} and $\{\cdot, \cdot\}$ mean respectively the duality between el-
ements of $V’$ and $V$ , the pointwise inner products between $m\cross m$-tensors and between
m-dimensional vectors. Now we define the concept of a weak solutions

Definition. We suppose $u_{0}\in H$ and $f\in L_{1oc}^{2}([0, \infty);V$ ‘). We say that $u$ is a weak solution
$du$

to (2.1) if it belongs to $L^{2}(0, T;V)$ with the time derivative $–\in L^{1}(0, T;V’)$ and satisfies
$dt$

(2.1).

In the sequel we shall give an alternative approach constructing weak solutions, which is
successful if $\Omega$ as a two- or three-dimensional bounded domain.
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3 Discretization
In this section we explain our scheme. We employ the partially implicit scheme of

discretization of (2.1) with respect to the time variable

(3.1) $\{u_{0}^{h}=u_{0}\frac{u_{n}^{h}-u_{n-1}^{h}}{h}+Au_{n}^{h}+Bu_{n-1}^{h}=f_{n}^{h}$

in $V’$ ,

where
$f_{n}^{h}= \frac{1}{h}\int_{(n-1)h}^{nh}f(t)dt$ .

The above equation can be considered as the Euler-Lagrange equation to the functional

$I^{h}(u)= \frac{||u-u_{n-1}^{h}||_{2}^{2}}{h}+||\nabla u||_{2}^{2}+2b(u_{n-1}^{h}, u_{n-1}^{h}, u)-2_{V},\langle f_{n}^{h}, u\rangle_{\gamma}$ $(h>0)$

on $V$ , where
$b(u, v, w)= \int_{\Omega}\{(u\cdot\nabla)v, w\}dx$ for $u,$ $v,$ $w\in V$.

For fixed $h>0$ , we can obtain the minimizer $u_{n}^{h}$ of $I(u)$ on $V$ , that is the discrete Morse
semiflow. However I cannot show a priori estimates uniformly on $h$ . Therefore I cannot
show the convergence as $h\downarrow 0$ . Hence we need some modification to the functional. We
modify $I^{h}(u)$ to

$J^{h}(u)= \frac{||u-u_{n-1}^{h}||_{2}^{2}}{h}+||\nabla u||_{2}^{2}+2\rho(b(u_{n-1}^{h}, u_{n-1}^{h}, u))-2_{V},\{f_{n}^{h}, u\}_{v}$ $(h>0)$ ,

where $\rho$ is a truncating function satisfying

$\rho(x)=\{\begin{array}{l}xforx\in[-1,\infty)0forx\in(-\infty,-2]\end{array}$

Let $\{u_{n}^{h}\}$ be the minimizer of $J^{h}$ on $V$ , which is obtained by the standard minimizing
sequence argument:
(3.2) $u_{n}^{h}$ : $J^{h}(u) arrow\min$ on $V$.
The Euler-Lagrange $e$quation to this functional is

(3.3) $\frac{u_{n}^{h}-u_{n-1}^{h}}{h}+Au_{n}^{h}+\rho’(b(u_{n-1}^{h}, u_{n-1}^{h}, u_{n}^{h}))Bu_{n-1}^{h}=f_{n}^{h}$ in $V’$ .
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If $u_{n}^{h}$ converges to some functional $u$ as $h\downarrow 0$ , we can expect for small $h$

$b(u_{n-1}^{h}, u_{n-1}^{h}, u_{n}^{h})\approx b(u_{n-I}^{h}, u_{n-1}^{h}, u_{n-1}^{h})=0$ .

And $\rho$ is an identity function near $x=0$. Therefore (3.3) may be a good approximation of
(3.1). Indeed this scheme gives weak solutions as $h\downarrow 0$ in (3.3). We give the detail in the
next section.

4 Results
Let assume $u_{0}\in V$ . The using the standard argument of minimizing sequences, we find

the sequence $\{u_{n}^{h}\}$ can be defined. First we give its a priori estimates.

Lemma 4.1. It holds that

$|1^{u_{n}^{h}||_{2}^{2}+\sum_{k=1}^{n}||u_{k}^{h}-u_{k- 1}^{h}||_{2}^{2}+\sum_{k=1}^{n}h||\nabla u_{k}^{h}||_{2}^{2}\leq||u_{0}||_{2}^{2}+C_{1}nh+C_{2}\int_{0}^{nh}||f||_{V’}^{2}dt}$ .

Proof. We take $u_{n}^{h}\in V$ as a test function for the Euler-Lagrange equation (3.3). It
follows from the choice of $\rho$ that

$-2 \rho’(b(u_{n-1}^{h}, u_{n-1}^{h}, u_{n}^{h}))b(u_{n-1}^{h}, u_{n-1}^{h}u_{n}^{h})\leq-2\min\rho’(x)x=C_{1}<\infty$ .

Combining this with the Poincar\’e inequality we have

$||u_{n}^{h}||_{2}^{2}+ \sum_{k=1}^{n}||u_{k}^{h}-u_{k- 1}^{h}\Vert_{2}^{2}+2\sum_{k=1}^{n}h||\nabla u_{k}^{h}||_{2}^{2}$

$\leq||u_{0}||_{2}^{2}+C_{1}nh+2\sum_{k=1}^{n}h||f_{k}^{h}||_{V’}\Vert u_{k}^{h}||_{V}$

$\leq||u_{0}||_{2}^{2}+C_{1}nh+\sum_{k=1}^{n}h||\nabla u_{k}^{h}||_{2}^{2}+C_{2}\sum_{k=1}^{n}h||f_{k}^{h}||_{V}^{2},$.

Taking $\sum_{k=1}^{n}h\Vert f_{k}^{h}||_{V}^{2},$
$\leq\int_{0}^{nh}||f||_{V}^{2},dt$ into consideration, we obtain the assertion. $\square$

Next we give an estimate for the finite difference in time variable of the approximate
solution. From now we frequently use the Gagliardo-Nirenberg inequality

$||u||_{4}\leq C_{GN}||u||_{2}^{\theta}||\nabla u||_{2}^{1-\theta}$ for $u\in H_{0}^{1}(\Omega)$ ,
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where $\theta=\frac{1}{2}$ when $m=2$ , and $\theta=\frac{1}{4}$ when $m=3$ . Here $||\cdot||_{p}$ is the $L^{p}(\Omega)$-norm.

Lemma 4.2. Let $\gamma=\frac{1}{1-\theta’}i.e.,$ $\gamma=2$ when $m=2$ , and $\gamma=\frac{4}{3}$ when $m=3$ . Then it

holds that
$\sum_{k=1}^{n}h\Vert\frac{u_{k}^{h}-u_{k-1}^{h}}{h}\Vert_{V}^{\gamma},$ $\leq C_{3}(1+nh+\int_{0}^{nh}||f||_{V}^{2},dt)^{\gamma}$

Proof. It follows from (3.3) that

$| \int_{\Omega}\frac{\{u_{k}^{h}-u_{k-1}^{h},\varphi\}}{h}dx|$

$\leq||\nabla u_{k}^{h}||_{2}||\nabla\varphi||_{2}+C_{4}C_{GN}^{2}$ II $\rho’||_{\infty}||u_{k-1}^{h}||_{2}^{2\theta}||\nabla u_{k- 1}^{h}||_{2}^{2(1-\theta)}||\nabla\varphi||_{2}+||f_{k}^{h}||_{V’}||\varphi||_{V}$

for any $\varphi\in V$ . Therefore by Lemma 4.1 we have

$\sum_{k=1}^{n}h\Vert\frac{u_{k}^{h}-u_{k-1}^{h}}{h}\Vert_{V’}^{\gamma}$

$\leq C_{5}\{\sum_{k=1}^{n}h(||\nabla u_{k}^{h}||_{2}^{2}+1)+\sup_{0\leq t\leq n-1}||u_{p}^{h}||_{2}^{2\theta\gamma}\sum_{k=0}^{n-1}h||\nabla u_{k}^{h}||_{2}^{2}+\sum_{k=1}^{n}h(||f_{k}^{h}||_{V’}^{2}+1)\}$

$\leq C_{3}(1+nh+\int_{0}^{nh}||f||_{V}^{2},dt)^{\gamma}$

$\square$

Let $u^{h},\overline{u}^{h}$ and $\tilde{u}^{h}$ be

$\{\begin{array}{l}u^{h}(x,t)=\frac{t-(n-1)h}{h}u_{n}^{h}(x)+\frac{nh-t}{h}u_{n-1}^{h}(x)\overline{u}^{h}(x,t)=u_{n}^{h}(x)\tilde{u}^{h}(x,t)=u_{n-1}^{h}(x)\end{array}$

for $t\in((n-1)h, nh$]. Then it follows from Lemmata 4.1 and 4.2 that

$\{$

$\{u^{h}\},\{\tilde{u}^{h}\}$
)

$\{\frac{du^{h}}{dt}\}\{\overline{u}^{h}\}iaboundedsetinL_{1oc}^{\gamma}([0,\infty);^{;_{V)}}a_{S}reboundedsetsinL_{1oc}^{\infty}([0,\infty)H).\cap L_{1oc}^{2}([0, \infty);V)$

,
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Hence we can extract a subsequence of $h$ so that the functions converge.

Proposition 4.1. The functions $u^{h},\overline{u}^{h}$ and $\tilde{u}^{h}$ converge to a function $u$ in the sense
that

$u^{h}arrow u$ weakly star in $L_{1oc}^{\infty}([0, \infty);H)$ , weakly in $L_{1oc}^{2}([0, \infty);V)$ ,

and strongly in $L_{1oc}^{2}([0, \infty);H)\cap L_{1oc}^{2}([0, \infty);L^{4}(\Omega))$ ,

$\overline{u}^{h}arrow u$ weakly star in $L_{1oc}^{\infty}([0, \infty);H)$ , weakly in $L_{1oc}^{2}([0, \infty);V)$ ,

and strongly in $L_{1oc}^{2}([0, \infty);H)\cap L_{1oc}^{2}([0, \infty);L^{4}(\Omega))$ ,

$\tilde{u}^{h}arrow u$ weakly star in $L_{1oc}^{\infty}([0, \infty);H)$ , weakly in $L_{1oc}^{2}([0, \infty);V)$ ,

and strongly in $L_{1oc}^{2}([0, \infty);H)\cap L_{1oc}^{2}([0, \infty);L^{4}(\Omega))$

$\frac{du^{h}}{dt}arrow\frac{du}{dt}$ weakly in $L_{1oc}^{\gamma}([0, \infty);V’)$ .

as $h\downarrow 0$ up to a subsequence.
Proof. First we show

(4.1) $u^{h}-\overline{u}^{h}arrow 0$ and $u^{h}-\tilde{u}^{h}arrow 0$

as $h\downarrow 0$ in $L_{1oc}^{2}([0, \infty);H)$ . Since

$\{\begin{array}{l}u^{h}-\overline{u}^{h}=\frac{t-kh}{h}(u_{k}^{h}-u_{k-1}^{h})u^{h}-\tilde{u}^{h}=\frac{t-(k-1)h}{h}(u_{k}^{h}-u_{k-1}^{h})\end{array}$

for $t\in((k-1)h, kh$ ], it holds that

$\int_{0}^{T}||u^{h}-\hat{u}^{h}||_{2}^{2}dt\leq\sum_{k=1}^{\lceil T/h\rceil}h\Vert u_{k}^{h}-u_{k-1}^{h}||_{2}^{2}$

$\leq h\{||u_{0}||_{2}^{2}+C_{1}(T+h)+C_{2}\int_{0}^{T+h}||f||_{V}^{2},dt\}arrow 0$ as $h\downarrow 0$ ,

where $\hat{u}^{h}$ is $\overline{u}^{h}$ or $\tilde{u}^{h}$ , and $\lceil T/h\rceil$ is the ceiling of $T/h,$ $i.e.$ , the smallest integer greater than
or equal to $T/h$ . Here we use Lemma 4.1.

Therefore the result is derived from the standard weak (star) compactness result of
Banach spaces, [9, Chapter III, Theorem 2.1], the diagonal argument, and (4.1). $\square$
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In consequence of Proposition 4.1 the convergence

$\frac{du^{h}}{dt}-u_{t}$ in $L_{1oc}^{\gamma}([0, \infty);V$‘),

$A\overline{u}^{h}-Au$ in $L_{1oc}^{2}([0, \infty);V$‘),

$B\tilde{u}^{h}arrow Bu$ in $L_{1oc}^{2}([0, \infty);V$‘)

hold along the subsequence. However to show the convergence

$\rho’(b(u_{n-1}^{h}, u_{n-1}^{h}, u_{n}^{h})arrow 1$

we need the compactness of imbedding $H_{0^{1}}(\Omega)-L^{4}(\Omega)$ and so on. Therefore we must
assume $\Omega$ is bounded two- or three-dimensional domain.

Proposition 4.2. It holds that

$\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))B\tilde{u}^{h}arrow Bu$

weakly in $L_{1oc}^{\gamma}([0, \infty);V’)$ as $h\downarrow 0$ up to a subsequence.

Proof. Let $\gamma’=\frac{\gamma}{\gamma-1}i.e.,$ $\gamma’=2$ when $m=2$ , and $\gamma’=4$ when $m=3$ . For the purpose
we put

$\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))B\tilde{u}^{h}-Bu=I^{h}+II^{h}$,

where

$\{\begin{array}{l}I^{h}=\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))(B\tilde{u}^{h}-Bu)II^{h}=(\rho(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}.))-1)Bu\end{array}$

Let $\Phi\in C^{\infty}(\overline{\Omega}\cross[0, T])$ be a function satisfying

$\Phi(\cdot, t)\in \mathcal{V}$ for $t\in[0, T]$ ;

the set of such functions is dense in $L^{\gamma’}(0, T;V)$ . By use of [9, Chapter III, Lemma 3.2]
and Proposition 4.1 we have

$| \int_{0}^{\tau_{V}},\{I^{h}, \Phi\}_{V}dt|\leq C_{6}||\rho’||_{\infty}\int_{0}^{T}||\tilde{u}^{h}-u\Vert_{2}(||\tilde{u}^{h}\Vert_{2}+||u||_{2})||\nabla\Phi||_{\infty}dtarrow 0$ as $h\downarrow 0$ ,

which shows the weak convergence of $I^{h}$ to $0$ in $L^{2}(0, T;V’)$ .
Next we show the weak convergence of $II^{h}$ . By the facts $\rho’\in L^{\infty}(R)$ and $1\leq||\rho’||_{\infty}$ we

have

$|_{V’}\{II^{h},$ $\Phi\rangle_{\gamma}|\leq 2||\rho’||_{\infty}|b(u, u, \Phi)|\leq C_{7}C_{GN}^{2}||\rho’\Vert_{\infty}||u||_{2}^{2\theta}||\nabla u||_{2}^{2(1-\theta)}||\nabla\Phi||_{2}\in L^{1}(0, T)$
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for $\Phi\in L^{\gamma’}(0, T;V)$ . On the other hand by use of [9, Chapter II, Lemma 1.3] we have

$|_{V},\{II^{h},$ $\Phi\rangle_{V}|=|(\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))-\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\tilde{u}^{h})))b(u, u, \Phi)|$

$\leq C_{8}||\rho’’||_{\infty}||\tilde{u}^{h}||_{4}||\nabla\tilde{u}^{h}||_{2}||\overline{u}^{h}-\tilde{u}^{h}||_{4}|b(u, u, \Phi)|$ .

With the help of Proposition 4.1 by extracting a subsequence again, if necessary, 11 $u^{h}(t)||_{4}$

converges to $||u(t)||_{4}$ for almost every $t\in(0, T)$ , and especially $\sup_{h}\Vert u^{h}(t)||_{4}$ is finite (of

course the supremum may depend on $t$ ). Moreover it holds that for every $\epsilon>0$

$\int_{0}^{T}||\nabla\tilde{u}^{h}||_{2}||\overline{u}^{h}-\tilde{u}^{h}||_{4}dt\leq\epsilon\int_{0}^{T}||\nabla\tilde{u}^{h}||_{2}^{2}dt+\frac{1}{4\epsilon}\int_{0}^{T}||\overline{u}^{h}-\tilde{u}^{h}||_{4}^{2}dtarrow C_{9}(T)\epsilon$

as $h\downarrow 0$ , which implies $||\nabla\tilde{u}^{h}||_{2}||\overline{u}^{h}-\tilde{u}^{h}||_{4}arrow 0$ as $h\downarrow 0$ for almost every $t\in(0, T)$ provided,
if necessary, we extract a subsequence again. These facts yield

(4.2) $|_{V},\{II^{h},$ $\Phi\rangle_{V}|arrow 0$ as $h\downarrow 0$ for almost every $t\in(0, T)$ .

Hence the dominated convergence theorem implies

$\int_{0}^{\tau_{V}},\{II^{h}, \Phi\}_{V}dtarrow 0$ as $h\downarrow 0$ .

$\square$

Finally we must show that the initial condition is satisfied.

Proposition 4.3. ‘It holds that
$u(0)=u_{0}$ .

Proof. It holds that

$||u(0)-u_{0}||_{V’}$

$\leq||u(0)-u(t_{j})||_{V’}+||u(t_{j})-u^{h}(t_{j})||_{V^{t}}+\Vert u^{h}(t_{j})-u_{0}||_{V’}$

$\leq t_{i}^{1/\gamma’}(\int_{0}^{t_{j}}\Vert\frac{du}{dt}\Vert_{V}^{\gamma},$
$dt)^{1/\gamma}+||u(t_{\dot{J}})-u^{h}(t_{J})||_{V’}+t_{j}^{1/\gamma’}( \int_{0}^{t_{j}}\Vert\frac{d^{\epsilon}u}{dt}\Vert_{V}^{\gamma},$ $dt)^{I/\gamma}$

$=O(t_{j}^{1/\gamma’})$ as $\epsilon\downarrow 0$

$arrow 0$ as $jarrow\infty$ ,
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whence $u(0)=u_{0}$ is derived. $\square$

Consequently we conclude that

Theorem 4.1. Our scheme (3.2) gives the Leray-Hopf weak solution as $h\downarrow 0$ along a
subsequence, if $\Omega\subset R^{m}$ ( $m=2$ or 3) is bounded and $u_{0}\in V,$ $f\in L_{1oc}^{2}([0, \infty);V’)$ .

By us$e$ of (3.3) and the argument similar to the proof of $Proposit_{m}ion4.2$ we have the
energy equality for the two-dimensional flow and the energy inequality for the three-
dimensional flow.

Theorem 4.2. When $m=2_{f}$ our weak solution satisfies the energy equality

(4.3) $||u( \cdot, t)||_{2}^{2}+2\int_{0}^{t}||\nabla u(\cdot, \tau)||_{2}^{2}d\tau=||u_{0}||_{2}^{2}+2\int_{0^{V’}}^{t}\{f(\cdot, \tau), u(\cdot, \tau)\}_{V}d\tau$

for any $t\in[0, \infty$). When $m=3$ , it satisfies the energy inequality

(4.4) $||u( \cdot, t)||_{2}^{2}+2\int_{0}^{t}||\nabla u(\cdot, \tau)||_{2}^{2}d\tau\leq||u_{0}||_{2}^{2}+2\int_{0}^{\iota_{V’}}\langle f(\cdot, \tau), u(\cdot, \tau)\rangle_{V}d\tau$

for almost every $t\in[0, \infty$).
Proof. When $m=2$ , because of $u\in L_{1oc}^{2}([0, \infty);V)$ and $u_{t}\in L_{1oc}^{2}([0, \infty);V’)$ , we have

(4.3) by [9, Chapter III, Lemma 1.2].
Finally we shall show (4.4) for $m=3$ . We take $2hu_{n}^{h}\in V$ as a test function in (3.3), and

sum up with respect to $n$ . We use estimates

$0 \leq\sum_{k=1}^{n}||u_{k}^{h}-u_{k-1}^{h}||_{2}^{2}$

and

$-2\rho’(b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h}))b(u_{k-1}^{h}, u_{k-I}^{n}, u_{k}^{h})\leq 2\{\rho’(b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h}))b(u_{k-1}^{h}, u_{k-1)}^{n}u_{k}^{h})\}_{-}$ ,

where $g_{-}= \max\{-g, 0\}$ . Then we get

$||u^{h}( \cdot, nh)||_{2}^{2}+2\int_{0}^{nh}\Vert\nabla\overline{u}^{h}(\cdot, \tau)||_{2}^{2}d\tau$

$\leq||u_{0}||_{2}^{2}+2\int_{0}^{nh}\{\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h})\}_{-}d\tau+2\int_{0^{V}}^{nh},\{f(., \tau),\overline{u}^{h}(\cdot, \tau)\}_{V}d\tau$
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in terms of $u^{h},\overline{u}^{h}$ and $\tilde{u}^{h}$ . Let $t\in(0, \infty)$ be fixed, and $n$ be an integer such that

$[ \frac{t}{h}]\leq n\leq\lceil\frac{t}{h}\rceil$ .

The estimate
$0\leq 2\{\rho’(b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h}))b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h})\}_{-}\leq C_{1}$

holds. Moreover since $b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h})=b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}-\tilde{u}^{h})$ , we have

2 $\{\rho’(b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h}))b(u_{k-1}^{h}, u_{k-1}^{n}, u_{k}^{h})\}_{-}$

$\leq\{\begin{array}{l}C_{10}||\rho’||_{\infty}||\tilde{u}^{h}||_{4}||\nabla\tilde{u}^{h}||_{2}||\overline{u}^{h}-\tilde{u}^{h}||_{4}ifb(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h})\in\sup p[\rho’(x)x]_{-}0otherwise\end{array}$

$arrow 0$ as $h\downarrow 0$ for almost every $t\in(O, T)$

by Proposition 4.1. Here we need an argument similar to that to derive (4.2). Therefore
the bounded convergence theorem yields

2 $\int_{0}^{nh}\{\rho’(b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h}))b(\tilde{u}^{h},\tilde{u}^{h},\overline{u}^{h})\}_{-}d\tauarrow 0$ as $h\downarrow 0$ .

By this fact and the argument in [9, Chapter III, Remark 4.1] we have the energy inequality
by passing to the limit $h\downarrow 0$ . $\square$

By approximate argument of the initial value it folds the same result as Theorems 4.1
and 4.2 even for $u_{0}\in H$

Theorem 4.3. Our scheme (3.2) still works even for $u_{0}\in H$ with further suitable
modification.

For the details see [4].

5 Final remarks
Of course the existence of weak solution has been already well known. But I think our

scheme (3.2) has potential interest. For minimizing property may clarify the structure of
partial regularity of weak solutions by virtue of technique of Giaquinta-Giusti $[2, 3]$ .

Our scheme also works for the problem with non-homogeneous boundary condition, if
$\partial\Omega$ is suitably smooth.
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