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1 Discrete Morse semiflows

In this note we shall construct weak solutions to the Navier-Stokes equation by use of idea
of the discrete Morse semiflows. First the concept of discrete Morse semiflows is explained.
Let I be a functional on some Banach space X. To find critical points we must solve the
Euler-Lagrange equation
d
(1.1) 6I(u) = EI(U +ep)f =0

£=0

for any ¢ € X. We sometimes had better regard critical points as stationary points of flow

defined by
1
(1.2) U = —Eéf(u),
which is called the Morse semiflow. In other words we solve (1.2) with some initial data ug

and get solutions to (1.1) by passing to the limit as ¢ — oo.
To solve this evolution equation we discretize (1.2) with respect to the time variable

h _ h
: - 1
R )
(1.3) 2
ul is given.

Now we assume X — L2. Since we can regard (1.3) as the Euler-Lagrange equation to
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the functional o
— ”u _ un-—-1”2

J(u) = —=—+ (),
; h
where || - || is the L2-norm, we can define u” as the minimizer of this functional, i.e.,
ul . J(u) — min. in X.

We call the sequence {u”} the discrete Morse semiflow. This idea can be found in a paper
of Rektorys [7).

We conversely apply the idea of discrete Morse semiflows to evolution equations. Such
trial had been done for the heat flow to harmonic maps by Bethuel-Coron-Ghidaglia-Soyeur
[1], for a semilinear hyperbolic system by Tachikawa [9]. The author and Omata considered
the asymptotics of discrete Morse semiflow for a functional with free boundary in [5, 6].
Here we shall apply the idea to the evolutional Navier-Stokes equation. The Navier-Stokes
equation, however, is not an Euler-Lagrange equation to some functional, so we need some
modification.

In the next section we shall regard the Navier-Stokes equation as an ordinary differential
equation on some Banach space as usual manner, and define the concept of a weak solution.
In § 3 we devote ourself to the explanation of our scheme. In § 4 we shall derive a priori
estimates for an approximate solution, and construct a weak solution by vanishing the
time increment of discretization. Furthermore we shall comment on our scheme in the last
section.

2 Navier-Stokes equation

Let © be a domain in R™. We do not assume any smoothness of the boundary 9€2. The
initial-boundary value problem for the Navier-Stokes equation is described by

[(u+(u-V)u+Vp=Au+f in Q x (0,00),
divu=0 in Q x (0,00),
u=0 on 90 x (0, 00),

| U= on £ x {0}.

Here u and p are unknown functions which represent the velocity and the pressure of fluid
respectively. f and ug are given functions which stand for the external force and the initial
velocity respectively. It is convenient for analysis to rewrite the above system of partial
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differential equations to an ordinary equation on Banach space as usual manner. Function
spaces V, H, V and V' are defined by

[V ={peCr)]divy=0},
H = the closure of V in L?(Q),

V = the closure of V in Hé(Q), |

| V' = the dual space of V with respect to L?(2)-inner product.

Then our problem can be written in the abstract form as

d
2 4 Au+ Bu= f in V' for almost every t € (0,T),
(2.1) dt

U(,O) = U € H.

Here A and B are respectively linear and non-linear operators from V to V' defined by

(Au, ), = /Q(Vu,Vgo)d;c,

{(Bu, @), = /Q((UV)U, p)dz

for ¢ € V. Notations ,{-,-),, {, ) and (:,-) mean respectively the duality between el-
ements of V' and V, the pointwise inner products between m x m-tensors and between
m-dimensional vectors. Now we define the concept of a weak solutions

Definition. We suppose ug € H and f € L{ ([0,00); V). We say that uis a weak solution

loc
d
to (2.1) if it belongs to L2(0,T;V) with the time derivative .d_? € L'(0,T; V') and satisfies
(2.1).

In the sequel we shall give an alternative approach constructing weak solutions, which is
successful if  as a two- or three-dimensional bounded domain.
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3 Discretization

In this section we explain our scheme. We employ the partially implicit scheme of
discretization of (2.1) with respect to the time variable

Uh - Uh
=l LA+ But =" in V,
(3.1) h |
ul = o,
where
na LM paae
fn = h Jin=1)n ’

The above equation can be considered as the Euler-Lagrange equation to the functional

[lu — up_a I3

I"(u) = A +IVull; + 2b(up_y, vy, w) = 2,,(fn,u), (> 0)

on V, where
b(u,v,w) = /((u-V)v,w)dm for u, v, weV.
Q

For fixed h > 0, we can obtain the minimizer u* of I(u) on V, that is the discrete Morse
semiflow. However I cannot show a priori estimates uniformly on h. Therefore I cannot

show the convergence as h | 0. Hence we need some modification to the functional. We
modify I*(u) to

[

THu) =

+([Vulld + 20(b(ul 2y, oy w) = 2, (2w, (R >0),

where p is a truncating function satisfying

z for ze€[-1,00),
plz) = {

0 for =z€(—o0,—2).

Let {u"} be the minimizer of J* on V, which is obtained by the standard minimizing
sequence argument:
(3.2) | u® : J"(u) — min on V.

n

The Euler-Lagrange equation to this functional is

h_ .k .
(3:3) Do) g Al 4 (4o vy, k) Bty = 2 in V.

n
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If u® converges to some functional u as h | 0, we can expect for small h

b(“n-—l? Up—1) n)Nb( Up—15 2 1,Uﬁ_1) = 0.

And p is an identity function near z = 0. Therefore (3.3) may be a good approximation of
(3.1). Indeed this scheme gives weak solutions as A | 0 in (3.3). We give the detail in the
next section.

4 Results

Let assume ug € V. The using the standard argument of minimizing sequences, we find
the sequence {u} can be defined. First we give its a priori estimates.

Lemma 4.1. It holds that

n nh
lunll3 + D luk — uwiill; + Z hl[Vui|l3 < luoll3 + Cink + Cz/O | F1I3dt.

k=1

Proof. We take u® € V as a test function for the Euler—Lagrange equation (3.3). It
follows from the choice of p that

~20'(b(up_1, tmy, up) )by, up_yuy) < —2min p/(z)z = € < co.

n

Combining this with the Poincaré inequality we have

llunlly + 3 lluk = wiall3 +2 3 Al Vugll3
= k=1

< luoll? + Cinh + 2 37 Al fillvllugllv
k=1

< lluoll + Cinh + 3 Al Vurlls + C2 - All ¢l

Takmg Z Rl FHIZ < / |l fI|3+dt into consideration, we obtain the assertion. a
k=1

Next we give an estimate for the finite difference in time variable of the approximate
solution. From now we frequently use the Gagliardo-Nirenberg inequality

llulls < CoyllullallVull;™ for € Hi(%),
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1 1
where § = 5 when m =2, and § = 1 when m = 3. Here || - ||, is the LP(Q)-norm.

1 4
Lemma 4.2. Let y= -9 ie., y=2 whenm =2, and y = 3 when m = 3. Then it
holds that
i ul —ut_ " nh K
Sh|EA—2 <G 1+nh+/ A3t )
k=1 h v 0

Proof. Tt follows from (3.3) that

JREEC SN
o) h

2(1-6 '
< IVt Vel + CoC2 10 ool 2 1Vl 15521V ol + 1w ol

for any ¢ € V. Therefore by Lemma 4.1 we have
"1

1744
n n—1 n .
< CA NIVl +1) +_sup I3 30 AVl + 3 (121 + 1)}
Stsn— k=0 k=1

) nh v
< Ch 1+nh+/ ||f||€,,dt) :
0

Let u*, @* and @" be

' u(z,t) = E:—(nh——l)hu’:i(x) + oy (2),

{ @t(z,t) = uh(z),

#(z,1) = ub_,(c)

\

for t € ((n — 1)h,nh}. Then it follows from Lemmata 4.1 and 4.2 that
{ur}, {@*}, {@*} are bounded sets in L2 ([0, 00); H) N LE ([0,00); V),

loc loc

du” : .
is a bounded set in L] ([0, 00); V).

—d_t— loc
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Hence we can extract a subsequence of h so that the functions converge.

h

Proposition 4.1. The functions u*, @* and 4" converge to a function u in the sense

that
ub — u  weakly star in L. ([0, 00); H), weakly in LE ([0, 00); V),

and strongly in L2 _([0,00); H) N LE ([0, 00); L*(£2)),

loc

a* — u  weakly star in L. ([0,00); H), weakly in L2 ([0, 00);V),

loc

and strongly in LE _([0,00); H) N LE ([0, 00); L*(R2)),

loc loc

i* — u  weakly star in L2([0,00); H), weakly in LE_([0, 00); V),

loc

and strongly in L2 ([0, 00); H) N LE ([0, 00); L*(£2))

du® du

= L=

dt dt

as h | 0 up to a subsequence.
Proof. First we show

weakly in L} ([0, 00); V).

(4.1) v —a" -0 and -3 —0
as h | 01in L ([0, 00); H). Since
t—kh
uh —at = h (ullz - uﬁ—l))
. t—(k—1h
o= 2B )

for t € ((k — 1)h, kh], it holds that

T h hy|2 L h h 2
[ = it <Y Al - )
k=1

’ T+h
<h{llali+ im0 [l —0 s b1,

where 4" is @* or 4", and [T'/h] is the ceiling of T'/h, i.c., the smallest integer greater than

or equal to T'/h. Here we use Lemma 4.1.
Therefore the result is derived from the standard weak (star) compactness result of
Banach spaces, [9, Chapter III, Theorem 2.1], the diagonal argument, and (4.1). a
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In consequence of Proposition 4.1 the convergence

du '
== —u in Lj([0,00)577),

Ad® — Au in L2

loc

([0, 00); V),

B#* — Bu in LE ([0, c0); V")
hold along the subsequence. However to show the convergence

pl(b(uﬁ—la UZ—l) Uﬁ) —1

we need the compactness of imbedding H2(2) — L*(9) and so on. Therefore we must
assume (2 is bounded two- or three-dimensional domain.
Proposition 4.2. It holds that
o'(b(@", @*, @"))Ba* — Bu

weakly in L7 _([0,00); V") as h | 0 up to a subsequence.
Proof. Let o/ = 'yj_l’ i.e., 7' = 2 whenm = 2, and 4/ = 4 when m = 3. For the purpose
we put
p'(b(a*, a* a*))Bat — Bu=T1" 4+ 11",
where
I* = p'(b(@*, @*, a"))(B&* — Bu),
I = (J(3(a", @, @) — 1)Bu,
Let ® € C*(Q x [0, T]) be a function satisfying
o(-,t) eV for t€[0,T];

the set of such functions is dense in L7'(0,T;V). By use of [9, Chapter III, Lemma 3.2]
and Proposition 4.1 we have

T T
) [, dt] < Callolloo [ 113 = s (21l + lulls) [V Blludlt — 0 a5 & 0,

which shows the weak convergence of I* to 0 in L2(0, T; V").
Next we show the weak convergence of IT*. By the facts o' € L®(R) and 1 < ||¢/||o We
have |

|, 1%, @), | < 2010l eo (2, w, @) < CHC2, [ eIl V27|V, € (0, T)
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for ® € LY'(0,T; V). On the other hand by use of [9, Chapter II, Lemma 1.3] we have
|, A1, @), | = |(0/(b(a", @, @) — of (b(@*, @, 5*)))b(u, u, @)

< Callo"llao @IV EH {2l a* — a*{]a]b(w, u, ).

With the help of Proposition 4.1 by extracting a subsequence again, if necessary, ||u"(¢)]|s
converges to ||u(t)||s for almost every ¢t € (0,T), and especially sup |[u*(t)|]s is finite (of
N h B

course the supremum may depend on t). Moreover it holds that for every ¢ > 0
T ok h _ ~h T oah2 L T Sa
[ IVatbla - @it < e [V Bdt+ o [ lla* - @2t — Ca(T)e
0 0 0

‘as h | 0, which implies || V@*||5||@* —@*||s — 0 as k| 0 for almost every ¢ € (0, T’) provided,
if necessary, we extract a subsequence again. These facts yield

(4.2) (1", ®),

—0 as h |0 for almost every t € (0,7).

Hence the dominated convergence theorem implies
T
/0 (I ®),dt — 0 as A0,

Finally we must show that the initial condition is satisfied.

Proposition 4.3. It holds that
u(0) = uo.

Proof. It holds that
[|u(0) — wollv

< Nu(0) = u(ty)llv + llu(t;) — w*@)llve + llu*(E;) = vollv:

' tj
<4 (/
0

= O(t;h,) as €0

5

tj

du

dt

d°u

¥ 1/y
o4l

v

v

dt)ll7 +[lu(ty) = u(t;) v + £ (/0

— 0 as j— o0,
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whence u(0) = ug is derived. )

Consequently we conclude that

Theorem 4.1. Our scheme (3.2) gives the Leray-Hopf weak solution as h | 0 along a
subsequence, if @ C R™ (m =2 or 3) is bounded and ug € V, f € L} ([0, 00); V).

By use of (3.3) and the argument similar to the proof of Proposition 4.2 we have the
energy equality for the two-dimensional flow and the energy inequality for the three-
dimensional flow.

Theorem 4.2. When m = 2, our weak solution satisfies the energy equality

(43) G0l +2 [ 19t DlEdr = ol +2 [ (7)o, ) dr

for any t € [0, 00). When m = 3, it satisfies the energy inequality

@) OB+ [ 196l B < ol +2 [ (o) ul, ) dr
for almost every t € [0 00).

Proof. When m = 2, because of u € L ([0,00); V) and u; € L2 ([0,00); V'), we have
(4.3) by [9, Chapter III, Lemma 1.2}.

Finally we shall show (4.4) for m = 3. We take 2hu® € V as a test function in (3.3), and
sum up with respect to n. We use estimates

n
< 0 Mk — weall?
k=1
and
—29,(5('“2—1) Ug_1,) UZ))b(UZ—la Up—1> UZ) <2 {Pl(b(u;:—l) Up_1, uﬁ))b(u}i_l, U1, UZ)}_ )

where g_ = max{—g,0}. Then we get

) nh
-, b + 2 /0 V3, 7)|Bdr

"h ~h ~h —h\\L(~h ~h -h nh h
< “u0”2+2/ U y U ,ﬂ ))b(u y U ’i[’ )}_dT+2/0 V'(f(':T)>a ('aT»VdT
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in terms of u", @* and @*. Let t € (0, 00) be fixed, and n be an integer such that
il <n< [l
Rl =~ ihl’

0<2 {P’(b(UQ_l, up_y, up))b(uhy, vy, ui‘)}_ <G
h

The estimate

h

holds. Moreover since b(@*, 4" a") = b(@"*, i — @*), we have

2{ ' (b(up_y, up_y, up))b(up_y, up_y,uf)}

, U

CrollP Nl ll@* V@ l2lla® — a@*|ls  if b(a", ", a*) € supp [0'(z)z]_,

<
0 otherwise,

— 0 as h |0 for almost every ¢t € (0,7)

by Proposition 4.1. Here we need an argument similar to that to derive (4.2). Therefore
the bounded convergence theorem yields

nh
2/ {6, @, a")b(a*, @, @)} dr—0 as k0.
0 -
By this fact and the argument in [9, Chapter III, Remark 4.1] we have the energy inequality
by passing to the limit A | 0. ' _ O

By épproximate argument of the initial value it folds the same result as Theorems 4.1
and 4.2 even for ug € H ;

Theorem 4.3. Our scheme (3.2) still works even for ug € H with further suitable
modification.

For the details see [4].

5 Final remarks

Of course the existence of weak solution has been already well known. But I think our
scheme (3.2) has potential interest. For minimizing property may clarify the structure of
partial regularity of weak solutions by virtue of technique of Giaquinta-Giusti [2, 3].

Our scheme also works for the problem with non-homogeneous boundary condition, if
0N is suitably smooth.



186

References

[1] Bethuel, F., J.-M. Coron, J.-M. Ghidaglia & A. Soyeur, Heat flows and relazed energies
for harmonic maps, in “Nonlinear Diffusion Equations and Their Equilibrium States,
37, ed.: N. G. Lloyd, W. M. Ni, L. A. Peletier, J. Serrin, Progr. Nonlinear Differential
Equations Appl. 7, Birkhauser, Boston - Basel - Berlin, 1992, pp. 99-109.

[2] Giaquinta, M., “Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic
Systems”, Ann. of Math. Stud. 105, Princeton Univ. Press, Princeton, 1983.

[3] Giaquinta, M. & E. Giusti, On the regularity of the minima of variational integrals,
Acta Math. 148 (1982), 31-46.

[4] Nagasawa, T., An alternative approach to constructing solutions of the Navier-Stokes
equation via discrete Morse semiflows, preprint.

[5] Nagasawa, T. & S. Omata, Discrete Morse semiflows of a functional with free bound-
ary, to appear in Adv. in Math. Sci. Appl. 2 (1993).

[6] Nagasawa, T. & S. Omata, Discrete Morse semiflows and their convergence of a func-
tional with free boundary, to appear in the proceeding of the International Conference
on Nonlinear Partial Differential Equations, World Scientific.

[7] Rektorys, K., On application of direct variational methods to the solution of parabolic
boundary value problems of arbitrary order in the space variables, Czechoslovak Math.
J. 21 (1971), 318-339.

[8] Tachikawa, A., A wvariational approach to constructing weak solutions of semilinear
hyperbolic systems, preprint.

[9] Temam, R., “Navier-Stokes Equations Theory and Numerical Analysis” (The 3rd
[revised] Ed.), Stud. Math. Appl. 2, North-Holland, Amsterdam - New York - Oxford,
1984 (The 1st Ed.: 1977).



