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Canonical metrics and function families
BN EHE - IR RY '

Wz KBz (U TFHE= (Shinji Yamashita)

"Home-keeping youth have ever homely wits."
~-Shakespeare, The Two Gentlemen of Verona,
Act 1, Scene 1

1. Introduction; canonical distances. We set SE ¢t = {Izl < +w} = C

U {«}, the one-point compactification of S, = C {1z] < +=}, the

P
complex plane, and, SH =D = {Izl < 1}, the unit disk. The letters E,
P, and # mean "elliptic", "parabolic", and "hyperbolic", respectively.
We shall consider some families of meromorphic functions f: D - SX
whose "derivative" 8Xf defined soon safisfies some properties. Let

5X(z,u) = |z - wl/l1 + q(X)zu| for z, w € S,, where q(E) = 1, q(P)

1}

Xl
0, and q(H) = -1. From the commlex-analytic viewpoint each space SX

has the canonical distance dX(z,u): the spherical distance dE(z,u)
tan_le(z,u) (tan_l(+w) = n/z), the Euclidean distance dp(z,u) =
dplz,u) = |z - w|, and the non-Euclidean hyperbolic or the Poincare
distance dH(z,u) = tanh—lay(z,u). The distance dX(z,u) is,
geometrically, the integral of the differential (l + q(X)Iglz)—lldgl
along the geodesic, where one can immediately observe that the

density is (l + q(X)Iglz)—l = }im | dx(w,s)/lu - ¢t|. The following
w-¢|-0

"derivative" Sxf will play a fundamental role. Fbr a meromorphic f: D

- SX' we set at z € D,

(8yf)(2z) = lim dy(f(w),f(2))/lu - zl,
|u-z[-0
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so that Sxf = If'l/(l + q(X)IfIz). We note that dX(u,z)/éx(m,z) - 1
as sx(u,z) - 0. We begin with the Lipschitz continuity in the next

section.

2. a-Lipschitz condition. 0 < o« < 1. To define dp(z,u) we set

Sp(z,w) = lz - wi/l1 + zw| for z, w € € with zw # -1;
= 4o for z, w € C with zw = -1;
SE(Z,W) = SE(m,z) = 1/|lz| for z € € \ {0};
= 4o for z = 0;
SE(z,u) =0 for z = w € C~.
Then
(8pf) (2) = If'(z)l/(l + If(z)Iz) if f(z) # =;

1(1/F)'(2) | if f(z) = =,

is called the spherical derivative. Let X be the sphere of diameter 1
in the space R3 touching € = Rz at the origin from above with the
stereographic projection from the north pole (0,0,1), in notation, z"
> z € C*. Then dE(z,u) in case z # w is the smaller of the lengths of
the arcs with terminal points z* and w* on the (or a) great circle of‘
the Riemann sphere X passing through z* and w*. Hence 0 < dE(z,u) <
n/2. The spherical chordal distance x(z,w) = sin dE(z,u) is popular
in Complex Analysis. We actually have

dp(z,w)cos dp(z,uw) < x(z,uw) < dg(z,w) < x(z,w)(l - x(z,u)zj_l/z.

Obviously dE(z,u) satisfies the postulates of metric.
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We begin with

Theorem I. Let 0 < ax <1 and let f: D - SX be meromophic. Then f

satisfies the a-Lipschilz condition:

(2.1) dy(F(z),f(@)) < Klz - w|® (K > 0)

. . . 2)1-o , .

in D if and only if (1 - Izl ) (Sxf)(z) ig bounded in D.

The case: X = P is a classical result of G. H. Hardy and J. E.
Littlewood (see [D, p. 74, Theorem 5.1]). The case X = E is in [Y34]
and X = H is in [Y14]; see also [Y17,36].

What can we say in the limiting case o » 0, namely, in case
(2.2) [1 - Izlz)(axf)(z) is bounded in D ?

Answers are in the next section.

3. ex—boundedness and the family BX' Let f: D » SX' Then f is said to

be ax—bounded, or f € BX in notation, if

(1 - Izlz)(axf)(z) = 1lim

dy(f(w),f(2))/d,(u,z)
|lw-z|-0 X H

is bounded in D.

Case X = H: Each holomorphic f: D -» D is.SH—bounded in view of

the Pick differential form of the Schwarz lemma (SPL):

(1 - 1213 eyn@ = (1 - 121310 @11 - 1717 <1 zeD.
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Case X = E: The family BE is just the family N of normal
meromorphic functions in the sense of 0. Lehto and K. I. Virtanen

[LV] in D; see also [Y1l, 2, b, 6, 13, 18, 28, 29, 30, 32, 39].

Case X = P: Each member f € BP is called a Bloch function; we

denote BP = B. The Bloch functions appear in the proof of the Bloch

theorem: There exists a universal constant cg > 0, called the Bloch

constant, such that if f is holomorphic in D and f'(O) = 1, then the

Riemann image surface of D by f over € contains an open one-sheeted

disk of (Euclidean) radius cp- See [Lal. For B see also [Y4, 7, 10,
18, 28, 29, 32, 33, 35, 39].
It is not difficult to prove that f: D - SX is in BX if and only

if f is Lipschitz-continuous in the sense that
(3.1) dx(f(Z),f(u)) < KdH(z,m) (K > 0)

in D. This is trivial for X = # where we always have K = 1.
We consider here area criteria for f: D =» SX to be in BX in case
X = E, P. Let Q be a nonempty subset of D for which the double

integral

Ag(£.Q) = ffa(axf)z(z)dmdy <o (z =z iy)

is significant; if Q is a domain, then AX(f,Q) is the area of the
Riemann image surface of Q by f covering the set-theoretic image f(Q)
c SX = (SX’dX)' We denote by A;(f,Q) the area of f(Q); thus A;(f,Q) =

fff(Qj(l * q(X)|ZI2]'2dxdy < Ay(f,Q). Suppose that Q = A(z,r) e

C; SH(u,z) < r}, z €D, 0<r»< 1. This is the disk {m € SH; dH(u,z)
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< tanh_lr} in the space SH = (SH,dH) on the one hand, and the disk
{w € SP; dp(u,zo) < ro} (the Appolonius disk) of center zZ, =
z(l - rz)/(l - Izlzrz) and radius r_ = r(l - Izlz)/(l - Izlzrz) in

the space SP

(SP,dP); on the other, z € D, 0 < r < 1.

Theorem II. Let X = E or P and f: D - SX‘ Then f € BX if and

only if one of the following holds:
(3.2) For each fized r € (0,1),

sup AX(f,A(z,r)) < n in case X = E;
z€D

< +» i case X = P.
(3.3) There exists r» € (0,1) such that

sup A;(f,A(z,r)) < n in case X = E;
z€D

< +o in case X = P.

The proof depends on the estimate of [l - Izlz](exf)(z) by
A;(f,A(z,r)); see [Y18] and also [Y35, Theorem 6, Y4, Y32].

What can we say in case X = # in terms of A;(f,A(z,r)) ?
(3.4) For each z € D and each r € (0,1), we have

(1 - 1217 0y () < 0 (A5F 80z )] < 1,

p 11720, py-1/2

where mr(m) = , £ > 0; see [Y22, Theorem 1]; see
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also [Y15]. One might say that this is an improvement of the Pick

version of the Schwarz lemma.

All the equalities hold in case f is a conformal homeomorphism

from D onto D.

4. X-boundedness and the family BC

X Let f: D = SX’ w €D, and 0 < r

< 1. Set
-1p7 -1
Ty(w,f,7) = m fot Ag(£,8(0,1))dt

and set Tx(u,f) = Tx(w,f,l). Recall that TE(O,f,r) is the so-called
Shimizu-Ahlfors characteristic function of f: D » C*: see [N, p.
177], where the term "spharische Normalform der Charakteristik" is

used. One can observe that Tx(u,f,r) = TX(O,fu,r), where fm(z) =

f((z + w)/(1 + Ez)), Zz € D. We can show that Tx(w,f) is either
constantly +« or the Green potential of the measure (Sxf)z(z)dxdy in

D, namely,

Ty(u.f) = IID gp(z.u) (8,1 2 (2)dedy < +=,

at each w € D with gD(z,u) = ~log SH(z,u), the Green function of D
with its pole at w.

A meromorphic function f:D = SX is called X-bounded, f € BCX in
notation, if there exists w € D such that Tx(u{f) < +o, It is easily
proved that if f € BCX’ then Tx(u,f) < +o at each w € D. Furthermore,
BCH c BH is trivial. There is no inclusion relation between BCX and

BX for X = E, P.
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The family BC of functions of bounded Nevanlinna charcteristic
in D [N, p. 185 et 88q.] is just BGE. The Hardy class Hz in D is just

BC see [Le] and [Y29]. Finally, the hyperbolic Hardy class H; (or

p
Hi) (Y3, 8, 11, 36] is nothing but BCH‘
The celebrated F. Riesz theorem shows that if a subharmonic
function F in D has a harmonic function h as a majorant, that is, F <
h in D, then the least harmonic majorant F# of F, the smallest among

# F is a Green

all the harmonic majorants of F in D exists and F
potential with a suitable measure in D.

The problem is therefore whether there exists a subharmonic
function FX 7 relating to f: D - SX such that f € BCX if and only if
FX,f has a harmonic majorant in D and furthermore, Fﬁ’f(u) - FX,f(”)

= TX(u,f) everywhere in D. The answer is in the positive.

Case X = E: Each meromophic function f in D can be expressed as

a quotient f = fllf2 in D where f1 and f2 are single-valued

holomorphic functions without common zero in D. We choose odne pair
. _ eo-1 2 2 .

fl’ fz’ and set FE,f = 2 1og(|f1| + Ile ). Thus the difference

Fz ;o FE ¥ is independent of the particular choice of a pair.

2711712,
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H: Let FH,f - 2_1log[1 - |f12).

It now follows from the Green formula, together with AFX F =

2(8Xf)2 (in particular, FX f is subharmonic in DJ, that

2A,(F,A(0,¢8)) = AF, (z)dzdy =
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2n

Js

((S/St)F (t ie))tde - t(d/dt)fan (te*®)do
X, 508 i o X.F'%C '

Hence TX(O,f) = Fﬁ’f(O) - FX,f(o) for f: D -~ SX' It is not difficulat

to observe that Fﬁ’fu(o) = Fg’f(u) and FX,fu(o) = FX,f(”)’ so that

Ty(w,f) = Ty(0,7,) = Fy () - Fy (), w € D.

To state area criteria we let G # @ be a subdomain of D and 1let
T@G(T) be the length of the intersection G n {Izl = r}, 0 <r<1. We
denote by ¢ the family of subdomains G # 0 such that 1 is on the
boundary of & and BG(r)/(l - r) is bounded and bounded away from zero

as r » 1. namely,

0 < 1im inf SG(r)/(l - r), 1lim sup SG(r)/(l - P) < +o,
r -1 r-1

Let 7 be the family of trianglular domains A at 1, that is, A is the
interior of a triangle ¢ D with one vertex at 1. Then 7 c €. Let Gg =

{gz; Z € G} be the rotation of G € ¥, ¢t € aD.

Theorem III. Let f: D - SX be meromorphic. Then f € BCX if and

only if one of the following holds:

(4.1) For each G € 9,

21
IO Ax(f,Gg)d arg ¢ < +o,

(4.2) There exists G € ¢ such that
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275
| fo Ag(£,G)d arg § < +o.

The case where X = E and G is essentially resricted to be in 7
is due to V. I. Gavrilov [Gv, Theorem 2]. The case where X = P and G
-is essentially retricted to be in 7 is partially due to N. N. Lusin
[Lu, pp. 146-147]1(f € Hz => (4.1) for each G = A € 7) and Gavrilov
[Gv, Theorem 3] for the converse. The proof of the general form
including the case X = H as above is immediate in view of the paper

[Y3]. See also [Y12] for X = P.

5. Uniform X-boundedness and the family UBCX, We call a meromorphic

f: D~ SX uniformly X-bounded, f € UBCX in notation, if

sup Tx(u,f) < + o,
weD

A potential-theoretic characterization is : f € UBCX if and only if
Fﬁ 7 exists (this is the case if and only if f € BCX) and the Green

potential Fﬁ’f(u)’— FX,f(u) = Tx(m,f) is bounded in D.

Case X = E: The family UBC = UBCE is introduced in [Y16]; see
also [Y19, 23, 24, 25, 26, 27, 32, 39, 40].

Case X H: The family BMOAo

UBCH is introduced in [Y31]; see
also [Y39].

Case X = P: The family BMOA

1}

UBCp is known as the family of
holomorphic functions of bounded mean oscillation in D. Let |J| > 0

be the length of an open subarc J ¢ 38D. For a Lebesgue integrable,
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complex-valued function ¢ on 8D we then set J(¢) = IJI-lf ¢o(g)ldtl,
J

the mean of ¢ on J. Then ¢ is called of bounded mean oscillation, or
¢ € BMOA(3D) in notation, if J(|l¢ - J(¢)|), the mean oscillation of ¢
on J, remains bounded as J ranges over all open subarcs of 8D. A
holomorphic function f in D is called BMOA if (1) f has a radial

limit 9(5) = 1im f(rt) € € at almost every point ¢t € 8D; (2) ? is of
~1-0

bounded mean oscillation on 8D; ; and (3) f is the Poisson integral

of ?, namely.
_1p2n 2 2
1) = (20 e (1 - 1217718 - z1%d arg ¢ (5 e ap)
0

at all z € D. One can prove that a holomorphic function f is in BMOA

if and only if

sup (17 - Fw1%]#(0) < +o,
weD ( v )

Thus,
(17, - 7 13)*0) = (2n)“1f2n|?((; v/ wn) - 7| % arg .

Ignoring the priority of the term UBC in [Y16] some authors try
to rename it BMOM (M: meromorphic). However, for a meromorphic
function f in D to be in UBC its boundary value does not play a
decisive role. There exists a Blaschke products bl and b2 such that f
= bl/b2 is not in UBC; see [Y16, 25], yet, obviously l?l =1 a.e.
Trivially f € UBC cannot, in general, be reproduced as_the Poisson
integral.of ?. It wouid be interesting if one can show that each f €

UBC has "bounded mean oscillation” in a reasonable sense.
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As to UBCH = BMOAO we have the following [Y31]: A holomorphic

function f: D » D is in BMOAo if and only if

#
sup |(d,(f. ,f(w))]|7(0) < +=,
weh ( H u )

Let E(f,k) be the set of points a € C* such that the equation
f(z) = a for a meromorphic f:D - SE has at most k > 0 roots in D,
counted according to multiplicities. It is Well known that if the
logarithmic capacity of E(f,k) is positive for a k > 0, then f € BC
[N, p. 213]. We can further show that f € UBC [Y19].

We propose here relations among three families, UBCX, BX’ and

BCX for X = P, E, respectively.
. Theorem IV. Let X = E, P. Then UBCX 18 sitriectly contained in
the intersection BX n BCX .
The case X = P is in [CCS]. For the case X = E we have a
holomorphic function f in D such that (1) f € N; (2) 7 is in all the

Hardy class Hp, 0 <p < +»; (38) f is not in UBC [Y19].

For w € D, w#= 0, we consider the annular trapezium:

®(w) {z; |lul < |lz] <1 and |arg(z/w)] < n(1 - |w|)}

and ®#(0) = D. Then |8D n &k (w)| = 2r(1 - |w|). A measure m ( > 0 ) in

D is then called a Carleson measure if

zgg m(ﬁ(u))/[Zn(l - Iul)] < +o,
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We then have

Theorem V. fetl f: D - SX be meromorphic. Then f € UBCX if and
only if the measure (1 - Izlz)(exf)(z)zdxdy (z =2 + iy; in the

differential form) i8 a Carleson measure.

Case X = P: See [Gr, p. 240], for example. Case X = H: [Y31,
Theorem 1]. Case X = E: "only if" [Y24, Theorem 2]. Depending on some
results of the present author, %. Pavicevic [P, Theorem 3] found a

proof of the "if" part; see [Y27, Problem (VI)].

6. Relation between ax—boundedness and local X-boundedness, Let

Dw,r) {z; |z - wl < r(1 - Iwl)}, weD, o<nr < 1, and set

.
O I I MERICROPEL

for f: D - SX' This is just TX(O,g,r) for g(z) = f((l - jul)z + u), z

€ D.

Theorem VI. [Y289] Let f: D =» SX be meromorphic, X = E, P. Then f

€ BX if and only if one of the following holds:

(6.1) For each ¢ € (0,1),

sup T;(w,f,l) < 4o,
e<lwl<1

(6.2) There exist e and r in (0,1) such that
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sup T;(u,f,r) < +o,
e<lw|<1

Thus a meromorphic function f in D is normal if and only if f is
of BC "uniformly"” in each disk D(w,1) when w is near 9D. We have the
similar characterization in terms of Hz-for a holomorphic f to be
Bloch, f € B. How is the situation in case X = H ? If f: D > D is
holomorphic, then for each ¢ € (0,1) we have

*

- sup Ty(w,f,1) <ec
e<|w|<1

—1/2(1 + c)—l.

Thus f is in the hyperbolic Hardy class Ha "uniformly"” in each D(w,1)
when w is near &D. The right-hand-side constant appears to be not

sharp.

7. Table. We summarize the quantities and families we have proposed

in the
TABLE
X E p H
9,-bdd N B SPL
X-bdd BC - 2 iy
un X-bdd UBC BHOA BMOA,,
8yt 171/(1 s 1017 e aesfa - 1012
2Fy 1og(|f1]2 + |f2|2) I —1og(1 - Iflz)
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There are analogues Hg of HP in the hyperbolic case, yet there

is essentially no analogue of HP in the elliptic case [Y9].

8. Functional-analytic research, Functional-analytic research, or

"Algebra + Analysis" research in the field of Complex Analysis has
succeeded in obtaining many results in many parts. However, among the
families significant in Complex Analysis, even restricted to the ones
we ha&e hitherto proposed, which is a linear space over C ? The

families B, (trivially), By = N, BCy = H., UBC; = UBC and UBCy
BHOAO all are not closed even for the usual sum f + g. As a decisive
example one can obviously propose the most important family of
univalent meromorphic (of holomorphic) functions in D, which is not
closed for the summation. (The functions f(z) = z(z - 2) and g(z) =

2z are univalent in D, yet f(z) + g(z) = z? 1is not.) Thus, analysts
have been storing many purely analytic methods in Complex Analysis. P.
Montel's normal family research is typical. "Non-modern"” or "really

analytic" methods are still alive and main roles are, of course,

played by them.

The present survey article partially depends on the author's
lecture, held on May 21, 1987, at Department of Mathematics,
University of Helsinki, sponsored by the Finnish Mathematical Society.
He would like to express his gratitude to all the staffs who organized
the lecture. '
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