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On character identities in some enlarged L-packets for SU(2,2)
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Introduction.

Let G be a connected reductive linear algebraic group defined over R and G =
G(R) the group of R-rational points on G. For an irreducible representation 7 of
G, we denote by Oy its character. In the Langlands classification of irreducible
admissible representations, they (to be more precise, their equivalence classes)
are partitioned into finite sets, called L-packets. Then an L-packet II consists of
only tempered representations or only non-tempered ones. When II is a tempered
type, the sum 3°_ ciiOrisa stable tempered invariant eigendistribution. Moreover
Shelstad defined the operation ‘lifting’ for such eigendistributions and established
functoriality with respect to L-groups.

In connection with her theory, we obtained the following theorem for G =
Sp(n,R)or SU(p,q) in [6] and [7].

Theorem. Let T, and T, be a maximally R-split and a compact Cartan
subgroup respectively. Put @ = ¥ cOx (7 € f[, cx € C), and suppose that © has
a regular integral infinitesimal character. Then the following two conditions are
equivalent:

1) © is identically zero on 7, N G,

2) O satisfies the property (P) on T. N G'.

Here G’ denotes the set of all regular elements of G. (For the definition of the
property (P), see §3.) Furthermore, character identities of type 1) are essentially
exausted by what Shelstad obtained in [9].

Now we turn the topic into non-tempered cases. Then the situation is quite
different. For example, a non-tempered regular character ©, is not completely
determined by the restriction on its highest Cartan subgroup. Furthermore, the
sum )} 13 O is not stable in general. But stableness is very important to extend
our theorem to non-tempered cases. In [1], Adams and Johnson constructed an
enlarged L-packet II such that 3 ,epex©y is stable where the sign e = +1 is
determined explicitly by 7. (They also defined lifting for such sums.) Therefore
we start studying character identities of type 1) in the enlarged L-pachet II. For

groups of R-rank 1, the problem is automatically reduced to tempered cases. So
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we treat the cases G = Sp(2,R) and SU(2,2) of R-rank 2 as a starter and we get
our main therem for the enlarged L-packet II (see §3).

Theorem. Put © = ¥ c,0, (7 € II). Then O is identically zero on T, N G’ if
and only if © satisfies the property (P) on any Cartan subgroups not conjugate to
T,.

In this note, we describe only the case G = SU(2,2), but in exactly the same
way, we can obtain similar results for Sp(2, R).

To the proof of this theorem, Propositions 3.1 and 3.2 are essential. The former

is proved for SU(p,p) (p > 1). The latter states character identities among discrete

series for SU(p, ¢), and this ia a part of the results in [7]. Here we remark that
results for tempered invariant eigendistributions play an important role for non-
tempered ones.

§1. Cohomological parabolic induction and a (g, K) -module A4 ())

In this section, we review some definitions and properties about (g,K)-modules
and cohomological parabolic induction.

1.1. Construction of a (g,K)-module Aj(2). Let G be a connected re-
ductive linear algebraic group defined over R and G = G(R). We assume that G
is connected and contains a compact Cartan subgroup 7. We fix K a maximal
compact subgroup such that K O T'. Let gg be the Lie algebra of G and g its com-
plexification. In what follows, we will denote a Lie group with roman upper case
letters and its Lie algebra with corresponding German lower case letters and will
use analogous notations to distinguish the real Lie algebra and its complexification.
For an element )y € v—1t*, we put

(1.1) L = L(X) = {9 € G; Ad(9)* )0 = Mo}

Obviously, L is a reductive Lie group and contains T' as its compact Cartan sub-
group. Now denote by A(g, t) the root system of (g, t). Then

(1.2) [=1do)=t+ ) g%
(Ao,d):O

where g% is the root space for a. Put

(1.3) u=u(do)= Y 9%
(M,a)>0



then q = q()¢) = [+ u is a parabolic subalgebra of g. Let g =t + p be a Cartan

decomposition of g and we denote the corresponding Cartan involution by 6. Then
weget 0q=q, 0l =L1{=L4=I[+1u,i= 2 (,a)<0 8% By the upper bar we

indicate the complex conjugation in g with respect to go. Apparently, q is the
parabolic subalgebra of g opposite to q.

Let 7 be a one-dimensional representation of L. By differentiating the represen-
tation myp (restriction of 7 to T'), we get an element A € v—1t*. We canonically
view 7 as a one-dimensional ([, L N K)-module. Then we get a (g, K')-module by
the method of cohomological parabolic induction:

(1.4) Aq(X) = (RE)'(m),

where i = dim(u N ¢). We write 'R,f‘ () instead of (R§) () when it is clear that
we consider (g, K')-modules.

Here we state a brief explanation of cohomological parabolic induction. For
more precise definitions, see [10]. The functor R is composed of two steps. The
first one is as follows. For a Lie algebra g, we denote its universal enveloping algebra
by U(g) as usual. Then U(g) turns out to be a U(q)-module by left multiplication.
Let W be a (I, LN K')-module. Making u operate trivially, we regard the ([, LN K)-
module W ® A%™"y as a U(q)-module. Then we get a (g, L N K)-module pro(W)
in the following way: |

di
(1.5) pro(W) = Homy(q)(U(8), W ® A™" W) LnK-fnite-
The (g, L N K)-module structure of pro(W) is given by

(1.6) (X - )(Y) = f(YX),

(z- f)Y) =z (f(Ad(z"")Y)),

where X € g,Y € U(g) and z € L N K. We also require that f satisfies L N K-
finiteness condition. That is, the elements z - f for all £ € L N K span a finite-
dimensional subspace.

The second step is an induction from (g, L N K)-modules to (g, K)-modules.
For brevity, we describe it only for the case that K is connected. For a (g, L N K)-
module V, put

(1.7 To(V)={veV;dimU(¥) v < +oo}.

Let K be the universal covering group of K and p its covering map. Set Z = {z €
K; p(z) = 1}. Then T'g(V) becomes a (g, K)-module by lifting the action of ¥ up

77



78

to K. Put
(1.8) I'(V) =To(V)? = {v € To(V); 2v = v for any z € Z}.

Thus we get a (g, K)-module I'(V), and T' becomes a functor from the category of
(g, LN K)-modules to that of (g, K')-modules. Clearly, I is a left exact functor and
we denote its j-th derived functor by IV, After these prepararions, we can describe

the Zuckerman functor or cohomological parabolic induction as follows.
For a (I, L N K)-module W, put

(1.9) RY(W) = T'(pro(W)).

Since the functor pro is exact, we get that (R§{)} (W) = IY(pro(W)). Put i =
dim(u N¢t). Replacing W by , we obtain the (g, K)-module A4(}).

Now we fix a positive system At(l) of A(l,t) and put
(1.10) A(u) ={a € A(g, t);8" Cu},

At(g,t) = AT(HUA(v).

Obviously, A*(g, t) is a positive root system of A(g, t) and we define p(A*(1)),p(u)
and p(q) as follows:

(1.11) p(A+(l))=% 2 a,p(u)= 5 ), «a
€A(u

aeA*(1) (w)

p(a) = p(A*(5,1)) = H(A*(D) + p(u).
Then the following proposition holds (cf.[10]).

PROPOSITION 1.1. Let Aq()) be a (g, K)-module obtained as above. Then it has
infinitesimal character )\ + p(q) € t*.

1.2. Enlarged L-packets. Next we will define an enlarged L-packet. Denote
by W (g, t) the Weyl group of A(g, t). For any w € W, w) also belongs to /=1t
So we can construct a §-stable parabolic subalgebra g,, just in the same way as q.
That is, we put

(1.12) Ly = L(wXo) = {g € G; Ad(g)*who = who}.



Then its complexified Lie algebra and the nilpotent radical u,, of q,, are expressed

as follows:
(113) L, = [(on) =t+ Z ﬂa =t+ Z gwa :
(wo,a)=0 (Xe,a)=0
w=u(wl)= 3 ¢*"= 3} "%,
(whe,a)>0 (Xo,@)=0

qu = q(wlio) = (wlo) + w(wlo).

In [1], Adams and Johnson proved that there exists a one-dimensional rep-
resentation 7, of L, such that w) coincides with the differential representation
of myjr. (They showed that this proposition holds true for not necessarily con-
nected group G.) So we can construct a (g, K')-module Ay (m,) which is induced
from (ly, Ly N K)-module 7,. (In the sequel of this note, we also denote this
(g, K)-module by A(w), xy).)

Definition. An element )\ € t* is called u-admissible when it satisfies the
following two conditions:

1) There exists a one-dimensional unitary representation 7 of L such that X is
the differential of m;
2) (A, @) > 0 for all o € A(u).

Put Wg(T) = Ng(T)/T, where Ng(T) denotes the normalizer of T in G. We
will consider Wg(T') as a subgroup of W(g, t). Vogan proved the next proposition

(cf. [10],[11)).

ProrosiTION 1.2.

1) The (g, K)-module A(w),,) is irreducible and unitary when ) is
u-admissible. |

2) For w,w' € W(g, t), A(w, my) = A(w'), 7y) if and only if Wg(T)wW (I, t)
= We(T)w'W(l, t).

Thus it makes sense to write A(w), ny) for w € Wa(T)\W(g, t)/W(I, t). Put
I = {A(w), my);w € We(T)\W(g,t)/W(l,t)} , and we call it an enlarged L-
packet.

We remark that when L = T, II is nothing but an L-packet consisting of
discrete series representations with a same infinitesimal character. In this note, we
will study character identities in certain enlarged L-packets for SU(2, 2).
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1.3. Before doing that, it is necessary to explain some properties of cohomo-
logical parabolic induction.

At first, we review how discrete series representations are related to coho-
mological induction. Let G be a reductive Lie group with a compact Cartan
subgroup T. Take a regular element u € t* such that u — p is integral. Here
p is half the sum of positive roots for certain positive system of A(g,t). Put
A} = {a € A(g, t); (o, ) > 0}. Then A} is a positive root system of A(g, t) and
we denote by b, the Borel subalgebra of g corresponding to At. That is,

(1.14) bu=t+ ) g%
acA}

Obviously, u, = ¢ at g“ is its nilpotent radical. We denote by p, instead of
p(b,) = p(A}). Since pu — p, is integral, we regard C as a (b,, T')-module in the
following way:

(1.15) (X+Y)r=(—p)(X)s, X €LY €y,
t-z=-exp(p—pu)(logt)z, teT,z€C.

We write C,,_,, for this one-dimensional (b,, T)-module. Then we get a (g, K)-
module Ry, (C,-,,). Here i = dim(u, N ¥) and this is equal to the number of
positive compact roots. This module has infinitesimal character y4 and Theorem
6.3.12 in [10] tells us its lowest K-type. Thus we get that ’Rg“ (Cu-p,) is equal
to Harish-Chandra module of discrete series representation 8C(y, C). Here C is a
unique Weyl chamber in v/—1t* with respect to which x4 is dominant.

Secondly, we introduce a lemma on induction by stages (cf.[10],Lemma 6.3.6).

LeMMA 1.3. Suppose we are given two 0-stable parabolic subalgebras d‘ =l+
w(i = 1,2) as in (1.2) and (1.3). We assume that q' C q%,1! C 2,u! D u? and
I’NKCL*NK. Put w> =u' NP and q° = ' + u0. Then q° is a O-stable
parabolic subalgebra of [? and ! is its Levi part. For an (!, L' N K)-module W,
we assume (’Rfa )¥4(W) = 0 unless ¢ = qo. Then

(1.16) (RS, )P(RE)® (W) = (RS, JP+o(W).

Now we consider the following case that ¢ = q = q(Ao) = [+ 42, and q! = b
= t+L eat(g, 98° is a Borel subalgebra contained in ¢*. In this case, W’ = INu, )
and q° = t+uC. Let u be an integral element in t* such that (i,a) > 0 for any a €



At(g,t). Put W =C,, A*(l,t) = At(g, ) N A(L, 1), and go = dim(INu,;) NE).
Then as mentioned above, we get that

(Ry)®(W) = 6L (u + p(1), CF),

where p([) = % Laeat(n @ and CL is the Weyl chamber in /=1t for [ with respect
to which p + p([) is dominant. Moreover ('Rgo )4(C,) = 0 unless ¢ = go. Therefore
we can apply Lemma 1.3 to this case. Hence we conclude that

(1.17) (R§Y(©% (1 + p(1), C1)) = (RE)P(Ryp)*(Cp)
= (R§,)+*(Cy).

Put p = pg = dim(u N ¥), then po + go = dim(u,(p) N ¢¥). Then we have the next
proposition.

ProPoOSITION 1.4. In the above setting, let C be the Weyl chamber in /—1{j for
g with respect to which y + p(b) is dominant. Then,

(R§)P (8% (1 + (1), C*)) = 6% (1 + p(b), C).

§2. A resolution of A;(}) for SU(2,2)

In this section, we study a resolution of A¢()) by standard modules for SU(2, 2).
2.1. Cartan subgroups of SU(p,q). Let SU(p,q) be the group of matrices
g in SL(p + ¢, C) satisfying *gl, o9 = I, 4, where I, , = (10’ _01') and 1, is the
identity matrix of order p. Then the Lie algebra gy of G = SU(p, q) is as follows:

go={X €sl(p+4q,C); ‘XIp o+ I, ;X = 0}.
We assume p > ¢q and put n = p+ ¢. For any k such that 0 < k¥ < ¢, put

Ty = T; T ,where T; and T; are subgroups consisting of all matrices of the
following forms respectively:

(21) Ty = { diag(e™!,... ,e"0rt ¢ e o i e ,e"l")},

81
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(2.1)
. (lp—k | 0 \ Y
Chtk 0 cen eoe cee cee 0 Shtk
0 Chtk—l ces cee ees Pee Shtk—l 0
T:_ .y cht; sht; -
sht1 ,chtl
0 Shtk—l e e ces e Chtk—l 0
Shtb 0 eee eee e cee 0 ' Chtk
\ \ 0 lq—k} J

where the blank spaces of matrix (2.1)’ must be filled with 0’s. Then Tj’s are not
conjugate to each other under G and any Cartan subgroup of G is conjugate to
one of them. We fix a maximal compact subgroup K of G as follows:

k={s=(3 p)esvta; acve) Bev@}.

Then its Lie algebra ¥, is given by

t°={X=()(()1 )‘(’2); Xi=-Xi(i=1,2), Ztr(X,-)=0}.

Then the mapping §: X — I, ;X I, 4 is the Cartan involution. It is obvious that
To € K. In the rest of this section, we denote this compact Cartan subgroup by
T instead of Ty. Then the Lie algebra of T' and its complexification are as follows:

to = {X = diag(vV=111,---,V=1yn); 5 €R, Y yj =0}
t = (to)c = {X = diag(zy,+-+ ,2p);2; €C, sz=0}.

We define an element e; € t* by ¢;(X) = z;. Then the root system A(g, t) is given
by
Ag,t) ={x(ei—¢j); 1<i<j<n}

2.2. The reductive subgroup L for SU(2,2). In the rest of this section,
we put p = ¢ = 2, and in this subsection we construct the reductive group L
explicitly. For G = SU(2,2), the set {T'= Ty, T} and T3} is a complete system of
its Cartan subgroups. At first, put A\g = e¢; — ¢4 € t*. We write L and q instead of
L(Xo) (in (1.2)) and q(Xo) (in (1.3)) respectively.
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It is easy to see that only the roots (e — e3) are perpendicular to 9. Also,

A(u) = {a € A(g, 1) ; (@, 20) > 0}
={e1—e; (2<j<4), ei—e;(2<i<3I)})

So we have that

e“pl
(22) L= g= ( n ) € SU(272): g1 € U(lv l) ’
W
e v, 1 €ER
[=t+g" ™™ +g%7™", u= )} g%
a€A(u)
q=[+u

Obviously L is isomorphic to the direct product of U(1,1) and T! = {z € C;

| = 1}

Let 7 be a one-dimensional representation of L defined as
(2.3) m(g) = €™ (det g1)".

Then ) € t*, the differential representation of my, is given by

(2.4) A =m(e1 — e2) + (m + n)(e2 — e3) + (m + 2n)(e3 — e4)

= me; + nez + neg — (M + 2n)ey.

We also denote this A by (m, n, n, —(m+2n)) for brevity. Now fix a positive system
At(I,t) = {es—e3}, and assume that ) is u-admissible. With our parametrization,
this condition is equivalent to m > n > —2t. ’

Next we consider the case that A\; = e; — e3. Choose such an element w €
W (g, t) that who = A;. Then we easily get that

9
Ly, = L(Al) =({g= ( e'Vs ) € SU(Z, 2), 5 € U(2) ,
i
et Y1, 2 €ER

b =t+g""%+¢%7", wy= 3 "%
a€A(u)

Ju = lw + Uy.
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As mentioned in §1, there exists a unique one-dimensional representation =, of L.,
such that w) = (n,n,m, —(m + 2n)) is equal to the differential representation of
7w|T. In fact the explicit expression of 7y, is given as

: g
Ww(g) = (det gl)m cm‘b’) 9= ( e"lh sy ) y 1 € U(2)’¢1’ ¢2 €R.
et

We remark that L,, becomes compact when w)g is a compact root. In our setting,
these two cases are typical ones and for elements in the W-orbit of Ay = e; — eq4,
the following lemma holds.

LeMMA 2.1. Let we W = W(g,t) and Mo = ¢; —eq € t*. Then L, X U(2) x T!
ifwlg € A%, t) and L, ¢ U(1,1) x T if wg € A(g, )\A(Y, 1).

ProOF: Let { ¢,5} be a subset of { 1,2,3,4 } such that wlg = e; — ¢;. It is easy
to see that A(ly,t) = {*(ex — €;)}, where {k,{} is the complement of {3, ;} in
{1,2,3,4 }. Since A(Y, t) = {£(e1 — e2),E(e3 — e4)}, we get the conclusion.

2.3. Now we will proceed to construct a (g, K')-module A(w), 7y) = Rq, (7w)
concretely. At first we treat the case that L, is not compact. To study A(wl, 7y)
for these w’s, it is sufficient to consider the case w = 1 ,that is, \g = wlg = ¢; — ¢4
and wA = A. Put

1
S= {57 = ( q ) € L(AO))gl € SU(LD}’
1

Ts= KNS ={ty=diag(1,¢",e 1)} .

By identifying § with g,, we view SU(1,1) as a subgroup of L(Ao). It is apparent
that T's is a maximal compact subgroup of S as well as a compact Cartan subgroup
of S. We set

(2.5) A= {a, = (::: :::)}(c S).

Then A is the vector subgroup of a maximally R-split Cartan subgroup of L(\o).
Let Ms be the centralizer of Ain Tg and P = Mg AN a minimal parabolic subgroup
of S. Here N is chosen such that it satisfies the following condition. Denote by o
the unique positive (restricted) root in A(s, a) corresponding to N. Then pp = §
can be lifted up to a character of A, which is denoted also by pp. In our setting
pp(a¢) is assumed to be expressed as pp(at) = ¢€'.



Define a one-dimensional representation of P = MgAN as (1 ® (—pp) ® 1)
(magn) = e~* and induce it up to a (non-unitary principal series) representation
of S. As is well known, Ind§(1® (—pp) ® 1) contains the trivial representation 1
of S as a subrepresentation.

On the other hand, the root system A(s, t;) consists of two elements =4 and
we will identify B with e; — e3 € A(g, t). Put yo = g Then we get the following
exact sequence:

(2.6) 0—1—Indi(1®—pp®1)
— 85 (ug; C%) ® 85 (wopo; prS) — 0.

Here wp = sg denotes the reflection with respect to the hyperplane defined by
B(X) = 0 and C* is the Weyl chamber in v/—1(t;)5 with respect to which g is
dominant regular. Let us recall that discrete series repersentations ©°(ug; C°) and
©5(wouo; woC?) have the same infinitesimal character with the trivial representa-
" tion of S. Denote by D the center of L = L()g) and put x = Alp- Since L = S- D,
« can be expressed as m, = 1® x. Multiplying the character x of D to the sequence
(2.6), we get the following exact sequence of representations of L.

(2.7) 00— 7 — Indjso(l ®(-pp)®1)® X

— Gs(po;Cs)®x®es(wgpo;w005)®x — 0.
Put P, = (DMs)AN, then it is a minimal parabolic subgroup of L. Let us
denote by CT the Weyl chamber in /—1t} for [ determined in the same way as

C5. Since Ind3(1® (—pp) ® 1) ® x Indf’,b(x ® (—pp) ®1) and 8% (uo; C®) ® x
> OL(\ + pg; CL), the sequence (2.7) is rewritten as

0 — 7 — Indp,(x® (—pp) ® 1)
— 0L (A + o, CF) ® 6L (A + wopo, woCY) — 0.

We regard each of these representations as (I, LNK')-modules, and apply the functor
R to this sequence. Then we obtain the next long exact sequence:

(28) -+ — RiTH(OF(A + po, CF)) @ R (65 (X + woio, woCF))
— Rij(x) — R} (Ind £, (x ® (—pp) © 1))
— R (85(A + o, CF)) @ R (6% (A + wopo, woCF))

— R'g+l(1r) —_ e
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~ Now we put i = dim(u N ¥). Vogan showed that for any j > i and any ([, L N K)-

module W, 'R:I; (W) = 0([10], Cor.6.3.21), On the other hand, by virtue of Theorem
6.3.12 in [10] and Proposition 1.4 in §1, we have that

(2.9) Ry (6% (A + po,Ch)) =0,
R} (6% +10,0%) = (R8)' (Re)" (C2) = (RE,)"(C)
’ =0%(\+p,0).

Here ° =t+gf, b = t+gf +uand p = %(ﬂ+2a€A(u) a) . We choose th
Weyl chamber C in v/—1t} for g with respect to which p; is dominant. '
Similarly, we get that

(2.10)
Ri~1 (©X( + wopo, woC)) = 0,

R (6E(A + wopo, woCE)) = (RE, )" (Cupn) = OF(A + p2, weC).

Here by =t + g‘ﬂ +u,p2 = % (—ﬂ + Laea(w) a) and let us recall wp = sg.
‘Combining these relations, we obtain the following short exact sequence:

(2.11) 0 — Ag(}) — R (Ind fn(x ® (—pp) ®1))
— 8%(A +p1,C) ® (A + pa, woC) — 0.

2.4. Finally, we will state the relation between cohomological parabolic induc-
tions and (usual) parabolic inductions. In order that, we introduce some notations.
We assume that L = L(}) is quasi-split and fix a §-stable maximally R-split Cartan
subgroup H of L. Then H is decomposed as H = T A, so that T is contained
in K and Ap is a vector subgroup. Put MgAy = Zg(AL) = {9 € G; ga =
ag for any a € Ar}. Let us denote by Ty, the totality of characters of T, and take
a & € Tr, which is fine with respect to L. (For the definition of ‘fine’, see [10],p.173. -
In our case every 6 € Ty, is fine because L is split.) We fix a v € Ap > ay and
choose a cuspidal parabolic subgroup P = MgALN of G such that v is negative
for the roots of ay in n. Pick up Ny C N as explained in §2.3, then P, = TLA N,
is a minimal parabolic subgroup of L.

LeMMA 2.2. (Vogan [10]) In the above setting, there exists a discrete series rep-
resentation 74 of Mg such that the following two (g, K)-modules are equivalent:

'R,: (Ind ﬁL(6 re® 1)) & Ind G, 4, n(Ta® v ® 1)



It is explicitly known how the discrete series 74 is parametrized. But we omit
an explanation of it because it is not necessary in the following consideration.

Now we return to the case that G = SU(2,2),L = L()\g) and Ao = e; — e4.
We choose T} as a maximally R-split Cartan subgroup H of L. That is, T =
”iNK = {dlag(e""‘ et ei¥1) € SU(2, 2)} and A; = A as in (2.5). Since
p(w) = (3,0,0,—3), it is easy to see that

(31 1 3) _(3 11 3)
P1L= 2’ 9! 2) 2 y P2 = 2’ 2;21 2/

3 1 1 3
A4p = (m+§,n+-2-,n-— —(m+2n+-—))

3 1
)«+pz=(m+§, 2,n+ y,—(m+2n+ ))'-Sp()\+p1)

Let us apply Lemma 2.2 to R} (Ind . (x ® (—pp) ® 1)) in (2.11). Then the exact
sequence (2.11) is rewritten as follows:

(212) 00— A(N) — Ind o4, n(7e ® (—pP) B 1)
— 0%(\ + p1,C) ® O%() + p2, woC) — 0.

Therefore the caluculation of the character of Aq()) is reduced to that for standard
modules and discrete series. Since Ind ff{a. A N(ma ® (—pp) ® 1) is not tempered,
neither is Aq()). When L(w)g) is isomorphic to U(1,1) x T!, A(w), 7y) has the
same structure as Aq(A).

On the contrary, when L(w)) is 1somorplnc to U(2) x T, A(w),my,) =
Ag, (7w) corresponds to a discrete series representation of G which has infinitesimal
character A + p(quw) (see [1], p.281).

In the next section, we will study character identities in the enlarged L-packet
I = {A(w), 7y); w € Wg(T)\W(g, t)/W (I, t)}. We note here again that II consists
of both tempered (g, K')-modules and non-tempered ones.

Remark. Johnson constructed a resolution of Aq()\) by standard modules in
[5], and the sequence (2.12) is a special case of his resolution. But in our case,
L(Xg) has only two types of Cartan subgroups, so the length of the resolution is
at most three. For this reason, we drew out the sequence (2.12) directly using the
properties of the functor R.

§3. Character identities in the enlarged L-packet

3.1. Analytic functions ' and &'. In this subsection, we review some
general theory about invariant eigendistributions. Let G be a connected semisimple
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Lie group with finite center and © an invariant eigendistribution on G. We denote
by G' the set of all regular elements in G. Then © is not only a locally summable
function on G but a real analytic one on G', which we denote by the same letter
e.

Let T be a Cartan subgroup of G. For a root o € A(g, t), we choose a root
vector X4 in g* and define a character £, on T as

(3.1) §a(t)Xa = Ad(t)Xq (teT)

We fix a positive root system A*(g,t) and put p = %Eae At(g) @ Under the
assumption that G is acceptable (cf. [2], p.33), there exists a character {, on T
such that its differential is equal to p € t*. Now let us define the following functions
onTNG as

At =6t I (1-&®™),

aeAt(g,t)

hlt) = sgn ( M - ea(t)-l)) (teTnd).
aGAﬁ(a,t) .

Here A}(g, t) denotes the set of all real positive roots. For each Cartan subgroup

T and a given invariant eigendistribution 6, we put

(3.2) RY() = A'r)e(t),
k'(t) = eh(t) Att)O(t) (teTNG).

Since © is analytic on T' N G/, so are &t and x!. Furthermore, they can be extended
to analytic functions on T'(R), where T/(R)={t € T'; £&4(t) # 1,Va € Ak(g, 1)}
Now we list up their properties.

1) Let F be a connected component of T'(R) and take an element ag in CI (F),
the closure of F. We choose an element u € t* which corresponds to the infinites-
imal character of © through Harish-Chandra isomorphism. Then & is expressed
as:

(33) R'(aoexpX) = Y pu(X,F) exp(wp, X),

weW(a,t)
for apexpX € F and X € t5. We say O is regular when wu # u for any w #
1in W(g, t). In general, p,,(X, F) is a polynomial function, but when © is regular,
it is a constant. In the following, we will treat only regular cases, so we write p,,(F)

instead of py(X, F). The function x'() has a similar expression as &‘.



2) Put Wg(F) = {w € Wg(T); w(F) C F}. For w € Wg(F) and t € F, we
define a function e(w,t) by (eLAt)(wt) = e(w,t)(cLA)(2). Since © is invariant
under inner automorphisms of G, x' satisfies the same symmetry condition as
e}tA‘, that is,

Kkt (wt) = e(w,t)x(2).

3) For a real root a € A(g, t), let us denote by v, the Cayley transformation
with respect to . (For definition, see [3], p.41.) Put 8o = vq(t) N go. Then so
is another Cartan subalgebra of go which is not conjugate to to under G, and we
denote by S the corresponding Cartan subgroup of G. For a root vy € A(g, t), we
define vy by (VaY)(X) =« (u;‘ (x )) for X € s. Obviously, it is a root of (g, 8).
We take v, (A+ (g, t)) as fixed positive system of A(g, s). Let H, be the element
of t such that B(H,, H) = 4(H) for H € t, where B is the Killing form of g. Note
that H. belongs to ty or v/—1ty according as v is real or imaginary respectively.

We put f = va, and regard H, and Hy as differential operators in the follow-
ing way.

o d '
(3.4) HoR'(9) = ZR'(9exptHa)y=0 (9 €TNG),
- 1 d_ .
Hgk*(g) = ﬁ'&;ﬂ'(g exp v -1tHg)y=0 (9€SNG).

Then for any semi-regular element a € TN S, &t and &* satisfy‘the next boundary
condition: '

(3.5) (Hak')(a) = (HpR*)(a).

We remark that the both sides denote the limit values at a.
4) We assume that © is tempered. Then so is &' on T. In particular, & is
bounded if © is regular tempered. '

3.2. Heredity of the property (P). In this subsection, we investigate the
case G = SU(p,p). Then the set Car(G) = {T = Ty, T}, ,Tp} is a complete
representative system of Cartan subgroups of G. We write i/ and &’/ instead of
kY and kY respectively. As is easily seen, tj_, = vq,(t;), where a; is a real root
of (g,t;) defined in the following way: Let ¢ = t~t* be an element in T; such that
t- € T; and tt € Tj+ are expressed as in (2.1),(2.1)’ respectively. Then «; is
given by a;(logt) = 2t;.

We say that 7; > T; when ¢ < j. For an invariant eigendistribution ©, we put
Supp© = {T; € Car(G); O 1;ng' # 0}, and call the highest element in Supp© its
height. ,
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Let us denote by Af(g,t;j),Ac(g,tj) and A,(g,tj) the set of all imaginary,
compact imaginary and singular imaginary roots respectively. In the rest of this
note, we fix a positive system At (g, ;) such that

Sa (At(ﬂ, tj)) c At(g: t)) (Va € Ac(g’tj))’

where A (g,4) = At(g, 4)NA,(g,¢;). Let Wi(g, tj) be the subgroup of W (g, t;)
generated by s,’s (a € A[(g, t;j)). We denote by w; the longest element in W(g, t;)
with respect to the above positive system. Then w; acts on T; by wj(exp X) =
exp(wj X) (X € (t)o).
Definition. We say that © satisfies the property (P) on Tj if the following
equation holds:
O(wjt) =—-6(t) (teTjnG').

Now we show a fundamental proposition about regular tempered invariant
eigendistributions.

PRrOPOSITION 3.1. Let © be a regular tempered invariant eigendistribution on
SU(p,p). Suppose © satisfies the property (P) on Tj. If T; is equal to or lower
than the height of ©, then © satisfies the property (P) on T; for any i > j.

ProoFr: We will show that © satisfies the property (P) on Tj4;. Let F* be the
connected component of T}' +1(R) which is characterized as

Ft = {t € T{;;(R);£x(t) > 1 for any real positive root a}.

Then for any connected component F of Tj;(R), there exists a sequence of real
roots ay,- -« ,ay such that sq, «+-8q,F* = F. Since sq; belongs to Wg(Tj41) and
Sa;Wj41 = Wj4184;, We get that

O(wjt13a; *** Sa,t) = O(3q, * - - S, Wjt1t) = O(wj11t),
O(3a, "+ 34,t) = O(t), (t€ FtNG")
Therefore it is sufficient to to show that O(w;41t) = —6(t) for t € F* N G'.

Put ., = {X € (tj41)0; expX € F+}. As mentioned in (3.3), &/ +! is
expressed on F't as

&I+ (exp X) = Y pu(F*) exp(wp, X) (X € tj"+1),
weW(g,ti41)

with ap = 1. Here we can assume that u satisfies the condition (u,a) > 0 for
any a € AF(g, tj+1) (= A*(g, tj+1) N Ar(g, tj+1)). Now we fix an element w in



W(g,tj+1). I R(wp, Ha) = 0 for any real root a € A(g,tj41), the height of ©
cannot exceed Tj41. (For z € C, Rz denotes its real part.) Therefore we can choose
a positive real root a such that R(wpu, Hy) # 0. Then vq(tj41) N go is conjugate to
| (tj)o under G.

We first consider the case R(wu, Hy) > 0. Then exp(wp, X) is unbounded on
t}”ﬂ. Since the set {exp(wp, X);w € W(g,tj41)} is a family of linearly indepen-
dent functions on t}:{-l and #/*! is a bounded function, p, (F1), the coefficient of
exp(wp, X) in &7+, must be zero. On the other hand, since

a(wji—lw“: HC!) = R(w“) wj+1Ha)
= R(wp, Hq) > 0,

the function exp(wj4iwp, X) is unbounded on tfﬂ. S0 puw;w(F*) = 0. In this
case,

(3'7) pW(F+) = ij+xw(F+) =0.

Next we consider the case R(wu, Hy) < 0. Now we write down the boundary
condition (3.5) in our case explicitly. Let TJ be a Cartan subgroup corresponding
to ()0 = va(tj+1) N go and F* the connected component ofj’;(R) just as F't.
We denote by A the totality of semi-regular elements in F* N F'+. Let X be an
element in ¢4, ﬂij such that exp X € A. Then we get the following equation:

(3.8) Y pul(F*yup(Ha) exp(wp, X)
weW (g,tj41)
= Y pu(F)uwp(Hg)exp(wis, X),
weW (g,t;)

where 8 = v,a € A(g,nt,') and i = vopv,"! € t}‘. Apparently, exp(wy, X) =
exp(sqwp, X) and exp(wfi, X) = exp(sgwji, X). In addition, it is easy to see that
under the identification of the preceeding pairs, the set { exp wu; w € W(g, tj41)}
gives a family of linearly independent functions on A. Thus we get that

(3.9) Pw(F+) "P:.w(F+) = Pu”;(ﬁﬂ.) _P:pni:(j'-'-'-)-

Here the mapping w — % is an isomorphism from W(g, tj41) to W(g, i,) deter-
mined by 3, = s5 where § = vy, € Ag, &)
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Since R(sqwy, Ha) > 0, we get p, o (F*) = 0 as proved above. Therefore by
(3.9), we obtain

Pu(F¥) = po(F¥) = pypa ().
Furthermore, R(sqwj1wp, Ha) = —R(wjjrwp, Ho) = —R(wp, Ha) > 0, s0 we get
Psawjpw(F1) = 0 similarly. Since we choose A*(g,t;) compatibly for each j, we
see that dj4188 = sgj41 = wj, where w; is the longest element in Wiy(g, t;).
Combining (3.9) with this relation, we have

(310) pw,'+|w(F+) = pu":;-,.x&o(ﬁ‘-*.) - Ps,w,+,a(i7’+)
= —Pw,-GJ(F+) +Papw,-a‘a(F+)’
= —pwjéa(F+) +pw,-:pu‘)(F+)'
By the way, we assumed that © satisfies the property (P) on TA’J' O(wjt) =

-6(t) (t € T;NG'). We denote by {(w) the length of w, then this equation
easily can be transformed into

#(wjt) = (-1){@HP (@) (teT;nG).

So equalities py,(Ft) = (=1)"®i+1p;(F+) hold for any & € W(g, ;). Hence
we get
(3.11)
(_l)l(wj+l)+lpwi+|w(F+) = (—l)l(wH‘) {Pw,'w(ﬁ‘+) - pw,'ap(b(j'-‘-‘-)}
= (=1)s O g (F) — pyya(FH))
= Pw(F+)°

Combining (3.7) and (3.11), we obtain
A (wjat) = (-1)emItgitly)  (te FYn@).

This means that © satisfies the property (P) on Tj4i.
We can repeat the above process as many times as necessary. So this completes
the proof of Proposition 3.1.

3.3. Character identities among discrete series for SU(p,q). In this
subsection, we assume that © is a linear combination of the characters of discrete
series representations of G = SU(p, q) (p 2 ¢). Let us recall that T, is a maximally
R-split Cartan subgroup of G and Ty a compact one. Then the next propsoition
is proved in [7].



ProroSITION 3.2. In the above setting, suppose that © is identically zero on
T, NG'. Then © satisfies the property(P) on Ty, that is,

O(wot) =-6(t) (te€TonG').
Here wg denotes the longest element in W (g, o) = Wi(g, to).
In this paper, we use this proposition only for G = SU(p,p) and p = 1 or 2.

We review the case p = 1. We fix a root § € A(g, to), then the complete list of
discrete series representations are as follows:

eG(zﬂ ), e"'(—ﬁzé,spc) (n=1,2---)

Here C is the Weyl chamber in v/ —11§ with respect to which S is dominant. To
be more concrete, put ty = (‘“ e_“) and choose 3 such that £g(t9) = ¢, Then

(o () -
(o ()=

As is well known, on T'NG’, both 6¢ (l‘zﬁ, C’) and 6¢ (—ﬂzﬁ, sﬂC) have the same
expression.

Since only e’ (—2 C) and 66 ( —-25, spC) have the same infinitesimal charac-
ter —22 (or sp-zﬁ = —{2), © is expressed as 6 = ¢, 09 (—ZE,C) +c,09 ( %E, spC).
Therefore, if © is identically zero on T3 N G, it follows that ¢; = —c; so © =
c1 {GG (EE C) - 6¢ (—M spC)} . On the other hand, 6¢ (L‘zﬁ, C) (wot)
e¢ ( -ﬁ spC) (t) fort € ToNG'. So we get that

0unt) = {0 (%,6) (w) 09 (~2£,550) (wnt)}
— e {eG (-%s c) () - eG( )(t)}
- _e(1).

Hence O satisfies the property (P) on Tp.

In [7], we proved this proposition by induction on rank of G and we can apply
this method naturally to the case p = 2. But when p = 2 we can also obtain this
proposition directly from the explicit expression of characters for SU(p, ¢) in [2].
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3.4. Main theorem. Now we return to the non-tempered case considered
in §2.4 for G = SU(2,2). Let us recall \g=¢; — e4, A = (m,n,n,—(m + 2n)) and
the enlarged L-packet Il = {A(w), 7y); w € Wa(T)\W(g, t)/W((,t)}. Denote by
O, the global character which corresponds to A(w), 7y).

Now we state our main theorem.

THROREM. Let© = ¥ ¢,,0,, be alinear combination of the characters of represen-
tations in the enlarged L-packet Il = {A(w), 7y);w € Wg(T)\W (g, t)/W(I,t)}.
Then the following two conditions are equivalent:

1) © is identically gero on T; N G,

2) © satisfies the property(P) on both Ty and T.

Before describing the proof, we need some preparations. Suppose Ly, = L(w)
is not compact. In this paragraph, we omit subindex w in ©,,. Then by (2.12),
we easily see that © is decomposed as © = O + ;. Here —6y is a sum of the
characters of discrete series and O is the character of Indga( X®(—pp)®1) in the
sequence (2.12). So the function &' is also decomposed as &* = Ky+%} (1 =0,1,2)
according to the above decomposition. Furthermore, T; is the height of ©; for
j = 0,1 respectively. Therefore on T{(R), &} is bounded while %} is unbounded
because Indga (x ® (—pp) ® 1) is a non-tempered representation.

As for the behavior of x on the height of 8, Hirai proved the following propo-
sition in [3].
PROPOSITION 3.3. Let © be an invariant eigendistribution and T' a Cartan sub-
group. Then the function k' can be extended to a continuous function on the
whole T. In particular, if T is the height of ©, this function becomes analytic on
the whole T.

3.5. Now we state the proof of our main theorem.

Proovr: First suppose condition 1) holds. As noted above, 8,, is decomposed as
Oy = (Buw)o + (Ow)1. (When L, is compact, (8y)1 = 0 of course.) Put 8; =
¥ cw(Ow); for i = 0,1. Let Ft be the connected component of T{(R) determined
as in (3.6). As mentioned in (3.3), the function &! is expressed as

ilexpX)= Y . pu(F*)exp(wp,X) forexpXeFt(Xe ).
weW(g,t)

Let a be a real root in A(g, t2) such that v,(t) = 4; and put § = v4a. Combining
the boundary condition (3.9) with the assumption that % is identically zero, we



obtain that
Papw(F+) = Pw(F+)

for any w € W(g, t;). Therefore we see that

FopexpX)= T pulF) explup 3pX)
wGW(F,tl)

E Pa,w(F+) exp(wp, X)
WEW(FM)

= Y pu(FY) exp(wp, X)
weEW(g,t1)
= &!(exp X).

This means that © satisfies property (P) on Tj, because sg is the longest element
in Wi(g, ;). Since 8 is a singular imaginary root, the same equality holds for x!,
that is,

k'(spexpX) = k'(expX) (X € (t1)o)-

Therefore we get
(3.12) K5(3p exp X) — rg(exp X) = ' (exp X) — k§(sg exp X).

Let us recall that s} can be extended to a bounded continuous function on the
whole T}, whereas x! can be extended to an analytic but not bounded function on
it. In addition, © has regular infinitesimal character A + p(q). So the both sides of
(3.12) must be equal to zero. Hence the equation «}(ssexp X) = «}(exp X) holds
for each i.

By definition, 8, is a linear combination of the characters of induced represen-
tations from Pg in (2.12). Therefore &} is expresed as '

(3.13) ki(trar) = Ek: kEmi(tr)ép(ar) (L €T, ag € Ar).

Here Rpqx denotes a function corresponds to a tempered invariant eigendistribu-
tion ©; on Mg and §,, belongs to A L- Furthermore we may assume that £,,’s are
distinct from each other. Therefore it is easy to see that each O} satisfies prop-
erty(P) on T for L. Hirai gave the explicit expression of the characters of induced
representations in [2] and [4]. And we also recall that T, is a compact Catan sub-
group of M. Hence combining his formula with Proposition 3.1, it follows that &3
is identically zero. Therefore %2 also becomes identically zero. Since Oy is a linear
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combination of characters of discrete series, we can apply Proposition 3.2 to Gy.
So we obtain that
Bo(wot) = —6p(t) (t€ToN G'),

where wg is the longest element in W(g,ty) = Wy(g, o). This proves that the
condition 2) holds.

Next, suppose the condition 2) holds. Then we can apply Proposition 3.1 to

2

Oy, because i? = k. Therefore we have 3 = 0 and &}(sg exp X) = &j(exp X). So

R} = k! —F&} satisfies the same condition on T3, that is, ©, satisfies the property(P)
on Ti. In the same way as above, we obtain that %3 is identically zero on T3. Hence
k? = k? + k3 = 0. This proves the condition 1).

Now we have completed the proof of our main theorem.

Remark. In this note, we treated only the case that A\g = e; —e4. For other Ag’s
the situation is quite similar. When )¢ is regular, then L(Ao) = T'. So II is nothing
but a tempered L-packet of discrete series with a same infinitesimal character.
When ); = (1,1,1,-3), for example, L(};) is isomorphic to U(2,1) x T!. But
L(}A;) also has the same types of Cartan subgroups as L(\g) considered in §2.
Consequently, in a resolution of A(w), 7,), only similar members as we considered
in this note appear. When )\; = (1, 1,1, —1), for example, L(}\;) is of R-rank 2.
But since we consider only an invariant eigendistribution which is identically zero
on T3, non-unitary principal series representations of G do not effect our process.
So we also get similar results for these cases.
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