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Nonlinear waves in Flagella
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A flagellum swimming in a viscous medium is modelled by a one-dlmensional

array of opposed-active elements. The resultant model is mathematically described

by a forth-order partial differentlal equation. In the model, the active element is

characterized by both hystere$s$ is and excitabttity with respect to the sliding motion

between the filaments. Hysteresis means that the element is either turned “on“ or
“off‘, depending on the history of the slldlng motion. Excitability is defined when

active slidin$g$ is triggered by pass$ive$ sliding over a threshold. CombinaUon of these

properties leads to a spatio-temporal sliding pattern within the flagellar system,

which in turn causes a bendlng pattern. Numerical slmulations for the present model

reveal that (i) intrmsic instability arises from this model system, (ii) the direction of

propagatin$g$ waves is reversed, (111) such dlrection-reversing propagatMg waves are
replaced by unidirectional waves after the insertlon of a passive region at one end,

and (iv) the increase in the system size leads to the chaotic behavior.

1. Introduction

Flagella are hair-like projections which are found on eukaryotic

cells’. Their primary function is to move single cells throu$gh$ a fluid

for locomotion. Most flagella show regular base-to-tip bend

propagation as illustrated in Figure 1. However, others show quite

complex dynamical behavior such as the reversal of the direction of

propagating $waves^{2- 4\}}$ , collision of waves which travel in the opposite

$directions^{4- 5I}$ , \ddagger ntermi $t$ tent movements with $s$ topping and starting

transients6), co-existence of different waves on different sections of a

long insect $flagellum^{7)}$ .
Surprisingly, there is no essential difference in the structure of

these flagella. The problem is, thus, to clarify the underlying

mechanism leadin$g$ to various modes of complex behavior. Although

Confusingly, bacterial !lagella share the same name as those of eukaryotes. They
are, however, completely different in the structure and function.
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many theoretical studies have been performed, they have focused on

the regular base-to-tip bend propagation $only^{8- 16)}$ . No attempt has

been made to understand the potentially important complex

behavior.

In the present paper, I will solve the above problem based on

recent theoretical studies.

2. The sUdlng fllament mechanism

It is now established that bending waves $\ln$ flagella are caused

by the slidlng filament $mechanism^{22- 24)}.$ Athough actual flagella have

nine outer $m\ddagger crotubules^{25)}$ , they are approximated by a two-filament

system on the assumption that bendlng occurs in a single plane. As

illustrated in Figure 2, bending does not occur when any parts of

filaments slide equally (Fi$g.2B$). If, however, slidin$g$ is restricted on

local regions, bending Is generated between the sliding and non-

sliding region $(Fig.2C)$ . For such bending to be reversed, the

direction of sliding must be reversed (Fi$g.2D$) $.$ The flagellar system

is, thus, modelled by a one-dimensional array of opposed-active

elements, each of which has its own “preferred“ direction.

3. Derivation of the basic equation

An arc length, $s,$ $1s$ introduced to measure the distance along

the flagellum from the base. Then, the sliding displacement, $\sigma$ , is

defined as a function of time, $t$ , and space, $s$ . Under the condition

that sliding is restricted on local regions, we can assume that the

sliding displacement, $\sigma,$ $1s$ proportional to the bending angle, $\Theta$ ,

between a horizontal axis and a line tangent to the flagellum. Once $\sigma$

is specified, we can easily obtain the flagellar shape by the simple

integration (cf. $Flg.4$). For convenience, $\sigma$ is defined as a

dimensionless sliding displacement and Is allowed to vary between $0$

and 1.



114

The moment-balance equation for a flagellum is writte\v{n} by

$Mv+M_{S}+M_{E}=0$ (1)

where $M_{V},$ $M_{S}$ and $M_{E}$ are the external viscous, internal shear and

internal elastic moments, respectively. To obtain the basic equation,

let us $spec\ddagger\Psi$ each moment in equation (1).

Firstly, the external viscous moment, $M_{V}$ , Is given by the

external viscous force, $F_{N^{16)}:}$

$\frac{\partial M_{V}}{\partial s}+F_{N}=0$ . (2)

The external viscous force, $F_{N}$ , In turn obeys the following force-

balance equation 26):

$\frac{\partial F_{N}}{\partial s}+C_{N}V_{N}=0$ (3)

where $C_{N}$ and $V_{N}$ are normal components of the external viscous

drag coefficient and the velocity, respectively. In equations (2) and

(3), inertial terms are ignored because Reynolds numbers of flagella

are extremely small. The normal component of the velocity, $V_{N}$ , is,

then, specified under the condition of continuation:

$\frac{\partial V_{N}}{\partial s}=\frac{\partial\sigma}{\partial t}$ . (4)

In equations (3) and (4), translational movements of the flagellum as

a whole is neglected based on the small-amplitude assumption7).

This simplifies the algebra and the essential results should not be

affectedl6).

Secondly, the internal shear moment, $M_{S}$ , is defined by the

internal shear force, $S8$):

$\frac{\partial M_{S}}{\partial s}=S$ . (5)

Lastly, the internal elastic moment, $M_{E}$ , is proportional to the

curvature:
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$M_{E}=E_{B^{\frac{\partial\sigma}{\partial s}}}$ (6)

where $E_{B}$ is the bending resistance.

Combining the above equations, we obtain the following basic

equation:

$C_{N}\frac{\partial 0}{\partial t}+\frac{\partial^{2}S}{\partial s^{2}}+E_{B}\frac{\partial^{4_{0}}}{\partial s^{4}}=0$ . (7)

4. The model

The problem Is how to specify the internal shear force, $S$ , in

such a way that equation (7) gives rise to various modes of wave
phenomena. In the present model, the internal shear force, $S$ , Is

defined as follows:
$\partial\sigma$

$S=F_{I}n_{I}+F_{l1}n_{II}- K_{e}(\sigma- 0.5)-\gamma-$ (8a)
$\partial t$

$F_{I}=Q(0- 0.1)(0- 0.3)$ ( $1$ -o) (8b)

$F_{lI}=Q(0- 0.9)(\sigma- 0.7)(-\sigma)$ (8c)

1 $0<s\leq 0.2$
$n_{I}=$ (if initially $n_{I}=0$ for $\sigma>0.2$) (8d)

$0$ $0.2<s<1$
1 $0<s<0.8$

$n_{I}=$ (if initially $n_{I}=1$ for $\sigma<0.8$) (8e)
$|0$ $0.8\leq s<1$

where $F_{I}$ and $F_{II}$ are two opposing force-distance functions, $n_{I}$ and $n_{II}$

are two switching functions”, $K_{e}$ the force constant of the passive

elastic component, and $\gamma$ the internal viscous resistance. In the

following simulations, $\gamma 1s$ taken to be zero except for Section 5. 1

because It is negligible in experimental condItions. Excitability is

represented by equations (8b) and (8c), where $g$ is their force

constant. See Figure $3A$ for details. Hysteresis Is represented by

equations (8d) and (8e). To avoid the competition between the two

opposing elements, lt is assumed that $n_{I}+n_{II}=1$ . See Figure $3B$ for

details.

$*$

Subscripts I and II indicate two opposing subsystems I and II, respectively.
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EquatIons (7) and (8) are solved on the assumption that

moments and forces vanish at both ends. These free-end boundary
$cond\ddagger t\ddagger ons$ are:

$\frac{\partial\sigma}{\partial s}|_{s=0.L}=\frac{\partial^{2_{0}}}{\partial s^{2}}|_{s=0.L}=0$ (9)

where $L$ is a length of a model system.

5. SlmulaUon results

5.1 Intrinsic instability

Although the internal viscous resistance, $\gamma$ , has been

considered to be negligible, large values of $\gamma$ are empirically

introduced to stabilize the wavelength of simulated waves in some

modelslo. 17). This section investigates the effect of changing the

ratio between the internal viscous resistance, $\gamma$ , and the external

viscous drag coefficient, $C_{N}$ , on the stability of solutions to equations

(7) and (8). For this purpose, three sets of values of $\gamma$ and $C_{N}$ are

used: (i) $\gamma=50pNms/24$ nm, $C_{N}=0$ , (ii) $\gamma=50pNms/24$ nm, $C_{N}=$

0.5 $pNms/\mu m^{2},\cdot$ and (iii) $\gamma=0$ . $C_{N}=5pNms/\mu m^{2}$ . A $50-\mu m$ long

model flagellum is set to be homogeneous along the length of the

system except that forced periodic oscillations are applied at one

end in order to generate propagating waves.

Figure 4 shows the simulation results. In each case, the sliding

displacement, $0$ , is plotted against space, $s$ , in the left, and the

corresponding bending pattern is shown in the right. The time

interval between the two successive patterns is 5 ms. As the ratio of
$\gamma/C_{N}$ is decreased, the sliding pattern is deformed $\ln$ two ways (see

left panels) though its corresponding bending pattern does not

chan$ge$ so much (see right panels). First, the plateau phases of the

sliding pattem become spiky at local regions. Since spiky regions

are localized, they are caused by the second-order space derivative
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term in equation (7). Second, the plateau phases are globally

inclined. These global changes result from long-range interactions

which are described by the forth-order space derivative term in

equation (7).

The system described by equation (7) is highly subjected to

intrinsic instability when $\gamma=0$ and $C_{N}=5pNms/\mu m^{2}$ (see Fi$g.4C$).

In the following simulations, solutions to equations (7) and (8) are

obtained under these conditions as they are corresponding to the

experimental $condit\ddagger ons^{18)}$ . Because of the instability inherent $\ln$

this model system, the dynamical behavior must be studied for long

time. For this purpose, two types of representations are used. One

Is the energy dtssipation which is obtained by integrating $(\partial\sigma/\partial t)^{2}$

with respect to space, $s$ . This simply indicates the intrinsic

instability. The other is a space-time diagram of $0$ in which the

regions for $\sigma>0.5$ are plotted by bars against space, $s$ , at 5-ms time

intervals. This plot reflects the spatio-temporal sliding pattem.

5.2 Reversal of propagating waves
A $50-\mu m$ long model flagellum has a homogeneous structure, in

which opposed-active elements are arranged along the system from

one end to the other. This model system is initially set to be straight

except for the one end ($i.e$ . the left end). Such an initial bend is

developed and propagates toward the other end (i.e. the right end).

Figure $5A$ shows the energy dissipation. A number of spiky

patterns exist which correspond to intrInsic instability. There are

two minima In the time course of the energy dissipation: one Is at $t=$

1120 ms and the other is at $t=2340$ ms. Figure $5B$ shows the

space-time diagram of $\sigma$ . Waves which propagate toward the right

are represented by successive bars moving in the rightward

direction. As indicated by the first arrow at $t=$ 1120 ms, the



118

direction of propagating waves is reversed. This reversal occurs as

follows. The trailing edge of the original wave first slows down,

while the leading edge does not significantly change its propagating

velocity. Then, the wave changes its form and th$e$ deformed part

sends out a wave which propagates $\ln$ the direction opposite to the

original direction (I.e. wave $splittlng^{27}$)). This new wave $coll\ddagger des$ with

the subsequent wave. Since the new wave is large enough, it can

destroy the other. As a result, there are only waves which propagate

toward the left. ‘lhe next reversal of these propagatIng waves occurs

at $t=2340$ ms as indicated by the second arrow.
If two waves which propagate in the opposite directions are

identical, they pass through on colllsion. Non-annihilating

propagating waves of this kind are known as solitons. Non-

annihilating waves are also observed in real $flagella^{4.5)}$ .
5.3 Insertion of passive region at one end

The model system examined in the previous section

demonstrated the reversal of propagating waves and soliton-like

behavior. The problem still remaining is how to demonstrate

unidirectional waves typical of “normal“ flagella. To solve this

problem, let us consider the fine structure of sea urchin sperm

flagella which show the regular waves. These flagella are $41arrow 43$ pm

long. Each flagellum has an inert termtnal piece of 5-8 pm long at

the distal $end^{7)}$ and has a basal plate at the basal end28). Based on

these observations, opposed-active elements are removed from the

distal 10 $\mu m$ of the $50-\mu m$ long model flagellum, and a strong elastic

component is placed at the base. Mathematically, this situation Is

modelled when $g=0$ for $40<s<50$ pm and $K_{e}=50pN/24$ nm for

$s=1\mu m$ .
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Figure $6A$ shows the energy dissipation. The peaks of spiky

patterns are reduced extensively. The passive terminal region works

like a bulk system which can absorb the instability arising from the

active region. Figure $6B$ shows the space-time diagram of $\sigma$ . As a

result of the reduction of the intrinsic instability, only unidirectional

propagating waves are demonstrated.

5.4 Increase in the system size

The model system is set to be homogeneous again, but its

length is set to be 100 $\mu m$ . A single propagating wave Is initially

present in the system. It propagates to the right and two waves are

reflected at the right end based on the wave splitting mechanism

(see Section 5.3). The first one is propagating slowly, while the

second fast. Since the system size Is doubled, the average value of

the energy dissipation is almost doubled as indicated by Figure $7A$.
Figure $7B$ shows the space-time diagram of $\sigma$ . As indicated by the

first arrow, the second wave collides with the first one at $t=425$ ms.

After the collision, they continue to propagate. Collision of two waves

which propagate in the same direction is experimentally observed.

Following the collision, the system shows unidirectional propagating

waves for a while. However, as indicated by the second arrow, the

spatio-temporal sliding pattern begins to be chaotic at $t=1260$ ms.

There are different sections which show quite different wave

parameters such as the wavelengths and wave frequencies. This

chaotic behavior may correspond to the wave patterns observed in a

long insect flagellum7).

6. Discussion

The most important problem is how to $speci\Psi$ the internal

shear force, $S$ , in such a way that equation (7) gives rise to various

types of wave phenomena. In the present paper, the shear force, S.
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was defined as a function of $\sigma$ under the $cond\ddagger tion$ of $\gamma=0$ in

equation (8a) as in Sections 5.2 - 5.4:
$S=S(0)$ . (10)

It is $veI3^{r}$ difficult to solve the above problem because the system

described by equations (7) and (10) is subjected to the intrinsic

instability. To understand this situation, let us consider a simple

case that the internal shear force, $S$ , is proportional to the sliding

displacement, $0$ . Then, the second term in equation (7) corresponds

to the negative diffusion leading to destabilizatio$n$ , while the third

term causes stabilization. The competition between the two

properties leads to intrinsic instability. Furthermore, there are only

even powers of the space derivatives. This means that symmetry

holds with respect to space, $s$ ; that is, the equation is invariant under

the spatial inversion $sarrow$ -s. As a result, both distally propagating

and proximally propagating waves were equally developed.

To get unidirectional waves, the structural asymmetry such as

the terminal piece without active elements was taken into account.

The passive region absorbed instability arising from the active region.

The passive region in isolation does not show any function. But it can

work to control orders when $\ddagger t$ coexists with the active region. By

analogy with this model behavior, it is important to study any

network systems (e.g. gene network, immune network, and nerve
network) which involve non-active elements.

Besides the present model, two other types of models have

been proposed in order to account for normal base-to-tip bend

propagation: $cu$rvature-controlled $models^{8- 9},11- 16$) and sef-oscillatony

models. Curvature-controlled models assume that the shear force,

$S$ , is defined as a function of the curvature, $\partial\sigma/\partial s$ :
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$S=\ovalbox{\tt\small REJECT}\frac{\partial 0}{\partial s})$ (11)

To understand the meaning of equation (10), let us consider a simple

case that the shear force, $S$ , is $proportio,nal$ to the curvature, $\partial 0/\partial s$ .
Then equation (7) does not hold the symmetry with respect to

space, $s$ , because of the presence of odd power of the space

derivative. As a result, either distally or proximally propagating

waves are present depending on the sign of the proportionality

constant. However, once the si$gn$ of the constant is specified, these

models can not account for two waves propagating in the opposite

directions. Furthermore, there is no direct experimental evidence

which supports equation (11).

Self-oscillatory models assume high internal viscosity, $\gamma$, to get

unidirectional propagating waves. Here, the shear force, $S$ , is

eonventionally represented as follows:
$\partial\sigma$

$S=S-\gamma_{\partial t}-$
. (12)

Let us consider the extreme case of $C_{N}=0$ . Equation (7) can be

reduced to the
$followingeactiod1ffusion\gamma\frac{\partial_{0}^{r}}{\partial t}=E_{B}\frac{\partial^{n_{2}-}0}{\partial s^{2}}+S$

equation:

(13)

In this case, it is easy to get unidirectional propagatin$g$ waves If an

appropriate pace-maker is placed at one end of the system.

However, the internal viscosity, $\gamma$, is generally considered to be

negligible, which is inconsistent with $e$quation (12). It is now clear

that any models except for the present model are based on $ad$ hoc

assumptions to account for regular wave phenomena.

Intrinsic instability has not been discussed in the field of

cellular motility. One $re$ason for this is that theoreticians have

focused on the regular behavior though there are experimental
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observations for irregular modes of wave phenomena. Another

reason is that it is very difficult to grasp the deformed patterns from

the flagellar shape only (see right panels of Fig.4). For these reasons,

the observed irregularity has been ascribed to random noise.

Equations similar to equation (7) have been discussed in

different physical contexts. For example, the $Ku$ramoto-Sivashins $lcy$

equatIon and the $ge$neralized reaction-diffusion $equation32$ ) have

this class of intrinsic instability. Numerical simulations for these

equations show complex dynamics. Despite the diversity of

dynamical systems, lt is very interesting to notice that there may be a

common principle behind them. I hope that the present study

stimulates the investigation of such a principle.
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Flgure Captions

Figure 1

Propagating waves typical of ”normal“ flagella. Successive waves $(1arrow$

3) propagate toward the tip of a flagellum as indicated by the arrow.

Figure 2

Diagrams showing how sliding motion causes bending motion in a

two-filament system. (A): The flagellum is straight and no bending

occurs without sliding motion. (B): No bendIng is initiated when

sliding occurs equally throughout the length of the flagellum. (C): If

sliding is localized, bending occurs between th$e$ sliding and non-

sliding regions. (D): When the direction of sliding ls reversed, the

flagellum bends in the direction opposite to the previous direction as

shown In $(C)$ . The arrows indicate the directions of relative sliding.

Figure3

The cubic force-distance and hysteresis switching functions. (A): $F_{I}$

and $F_{II}$ are represented by solid and dotted lines, respectively. They

are defined as a function of the slIding displacement, $0$ . The force

constant, $g$ , is taken as 250 $pN$ . (B): The binary function is defined

in the region $0.2<\sigma<0.8$ . $n_{I}$ and $n_{II}$ give either the discrete values

$0$ or 1 under the condition of $n_{I}+n_{II}=1$ .

Figure 4

The sliding displacement, $0$ , as a funcUon of the space, $s$ , shown in

the left, and the corresponding bending pattern shown in the right.

The model flagellum is set to be homogeneous ($g=250pN$ and $K_{e}=$

$1pN/24$ nm for $0<s<50\mu m$ ) except that forced oscillations are
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applied. The period of the oscillations is 60 ms. The flagellar shapes

in the $(x, y)$ coordinate are obtained by:

$x(s)=\int_{0}^{s}\cos(\sigma-0.5)ds$ , $y(s)=\int_{0}^{\epsilon}s\ln(0-0.5)ds$ .

Two successive patterns In each panel are shown at 5-ms time

intervals. Parameters are: $\gamma=50pNms/24$ nm, $C_{N}=0$ in (A); $\gamma=50$

$pNms/24$ nm, $C_{N}=0.5pNms/\mu m^{2}$ in (B); and $\gamma=0,$ $C_{N}=5$

$pNms/\mu m^{2}$ in (C).

Figure 5

The energy dissipation (A) and space-time diagram of $\sigma(B)$ . The

flagellum is set to be homogeneous. Parameters are: $\gamma=0,$ $C_{N}=5$

$pNms/\mu m^{2},$ $g=250pN$ and $K_{e}=1pN/24$ nm for $0<s<50\mu m$ .
Simulation results are shown up to $t=3000$ ms.

Figure 6

The energy dissipation (A) and space-time diagram of $o(B)$ . The

flagellum Is set to be inhomogeneous. Parameters are: $\gamma=0,$ $C_{N}=5$

$pNms/\mu m^{2},$ $g=250pN$ and $K_{e}=50pN/24$ nm for $s=1\mu m,$ $g=$

$250pN$ and $K_{e}=1pN/24$ nm for $1<s<40\mu m$ , and $g=0$ and $K_{e}=$

$1pN/24$ nm for $40<s<50\mu m$ . Simulation results are shown up to

$t=2000$ ms.

Figure 7

The energy dissipation (A) and space-time diagram of $\sigma(B)$ . The

flagellum is set to be homogeneous. Parameters are: $\gamma=0,$ $C_{N}=5$

$pNms/\mu m^{2},$ $g=250pN$ and $K_{e}=1pN/24$ nm for $0<s<100\mu m$ .
Simulation results ar$e$ shown up to $t=2000$ ms.
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Sliding Filament Mechanism

(A)

(B)

(C)

(D)

Fi$g.2$
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