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Abstract. -In order to gain insights into the process of coevolution in brood parasitism,
a mathematical model is constructed in term of population dynamics together with
population genetics of a rejection gene in a host population. The model analyses show
that both the dynamical change in the cuckoo-host association and the establishment of
the rejecter gene in the host population crucialy depend on the product of two factors,

the carrying capacity of the host and the cuckoo’s searching efficiency. Based on these
results, various quantities at the evolutionary equilibrium state in the cuckoo-host
associations are discussed.

Introduction
The cuckoo Cuculus canorus does not build a nest and does not rear its

chick by itself. Instead, a female cuckoo lays eggs in the nest of several
other bird species and lets them rear the chicks. The cuckoo can not obtain
reproductive success if the para-sitism is rejected by the host. On the other
hand, a parasitized host gets no reproductive success if it accepts the
cuckoo egg, because the cuckoo chick ejects the host’s eggs and nestlings
out of the nest. Therefore, it is thought that the cuckoo has been selected
for sophisticated egg mimicry to deceive the host, and the host species
have been selected for developing counteradaptation to avoid the
parasitism such as an ability to recognize the cuckoo eggs. Although it is
believed that the host’s rejection behavior has evolved in response to the
cuckoo parasitism, what triggers the rejection behavior remains
unknown. Since some host populations which are not parasitized at
present show high abilities to discriminate the cuckoo parasitism, it is
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likely that genetic factors determine the host behavior toward parasitism
and the rejection behavior is inherited within one host population.

Recent studies have shown that host species, in general, differ in their
abilities to avoid the cuckoo parasitism from population to population
even within one host species. A host population with a long history of
parasitism seems to have a high ability to reject parasitism, compared with
the populations which seem to have no experience of the cuckoo
parasitism (Nakamura 1990, Davies&Brooke 1989. Soler 1991).

Nakamura (1990) compiled the records of the brood parasitism by the
cuckoo during the last 60 years at Nagano prefecture located in the
central Japan and showed that the parasitic relations between the cuckoo
and hosts have changed. Siberian meadow bunting Emberiza cioides,
which was the main host about 60 years ago, is currently seldom
parasitized, while a new host, Azure-winged magpie Cyanopica cyana, has
become parasitized for these decades. Because Azure-winged magpie did
not show rejection behavior at all in the beginning, it has suffered severe
parasitism. However, some magpie populations has been establishing the
rejection behavior. Magpie population at Azumino, which has been
exposed to cuckoo parasitism for about 20 years, shows a rejection rate of
41.7% (rate at which a magpie rejects parasitism) and the magpie at
Nagano city with parasitism history of about 15 years shows a rejection
rate of 34.7%.

Imanishi (personal communication) recorded temporal changes in the
parasitism rate (rate of a nest being parasitized) and rejection rate at
Nobeyama height, where the magpie population has been exposed to
severe parasitism for about 10 years (Fig. 1). These evidences support the
idea that the host rejection behavior establishes in response to the cuckoo
parasitism and that the cuckoo-host association can change dynamically
within a short period. In order to explore the process of such dynamical
phenomena, a mathematical model is constructed.



148

1965 1970 1975 1980 1985 1990
Fig. 1. Changes in the parasitism rate on Azure-winged magpie (rectangle) and the
rejection rate of naturally deposited cuckoo eggs (triangle) at Nobeyama height recorded
by Imanishi. In 1989, a number of cuckoos were captured for research so that the
parasitism rate and the rejection rate decreased temporarily.

Assumptions
The cuckoo and majority of its host species are migrants and it is known

that they come back to the same area in the next breeding season. We
consider population densities of female cuckoo and femal\’e host in one
locality. The rejection behavior of the host is determined by two alleles at
one locus, allele $R$ causing the rejection behavior, allele A causing no
rejection behavior and $R$ is dominant over A. Genotypes RR, RA are
rejecters and that of AA is an accepter. Let $P_{t}$ be the population density of
female cuckoo and $H_{t}$ be that of female host in year $t$ . Let $x_{f},$ $y_{t}$ and $Zf$ be
the frequencies of RR, RA and AA genotypes in the host population in
year $t$ , respectively. Newly bom offspring are recruited into adulthood at
the end of their first year.

The probability that a given host nest escapes from the cuckoo
parasitism is given by the zeroth term of Poisson distribution, $\exp(-aP_{t})$ ,

where parameter $a$ measures the cuckoo’s ability in searching the host
nest. The cuckoo parasitism succeeds if both of breeding pair are
accepters, which we call an accepter pair, and the parasitism fails if at
least one of the pair is a rejecter, which we call rejecter pair. If a cuckoo

$-\lambda$

egg is accepted, it reares and survives to the next breeding season with
probability $\Gamma$. $\Gamma$ remains constant even when a nest is parasitized
multiply, because only one cuckoo chick usually monopolizes the nest. An
adult cuckoo survives to the next breeding season with probability $s_{P}$ .

A host accepter pair rears $f$ female chicks only if it escapes from
parasitism and a rejecter pair rears less chicks of $\epsilon f$ by a factor of $\epsilon(\epsilon<$
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1). The parameter $\epsilon$ measures the rejection cost. The host density in the
absence of the cuckoo is regulated by availabilities of limited food
recourses or territories. An adult host survives to the next breeding
season with probability $s_{H}$.

In Table 1, 2 and Fig. 2, we summarize the above assumptions.

Tablel. Variables and parameters used in this model.

$\frac{\frac{Variab1esParameters}{}}{Femalecuckoodensityp_{t}CuckooHost}$

Female host density $H_{t}$ Survival rate $SP$ Survival rate $s_{H}$

Frequency ofRR $x_{t}$ Searchin$g$ efficiency $a$ Net breeding rate of $f$

RA $y_{t}$ Surviral rate of egg $\Gamma$
accepter pair

AA $z_{t}$

Rejection cost $\epsilon$

Intra-specific competition $k$

Table. 2 Breeding rate of the host. Fig. 2 Fitness of rejecter&accepter pairs

A Model
The cuckoo parasitism succeeds only when she lays an egg in the nest of

an accepter pair, whose frequency is $z_{t^{2}}$ . Then, the cuckoo density in the
next year, $t+1$ , is related to $P_{f},$ $H_{f}$ and $Zf$ as follows:

$P_{t+1}=s_{P}P_{t}+(1-e^{-aP_{t}})_{z_{t}^{2}H_{t}\Gamma}$ , (1-a)

where the first term represents the survivors and the second term the
recruitment to adulthood. The parasitism rate is given as

$(1-e^{-aP_{t}})_{Z_{t}}^{2}$ .
With respect to host dynamics, the density of rejecter pair is $(1-z_{l}^{2})H_{t}$ ,

each of which produces $\epsilon f$ offspring, while the density of accepter pair is
$z_{t}^{2}H_{t}$, each of which breeds $f\exparrow aP_{t)}$ offspring, to yield the intrinsic
total density of offspring as

$\{(1-z_{t}^{2})_{\mathcal{E}+z_{r^{2}}e^{-aP_{t}}}\}fH_{t}$ .
Then, the density of host in the next year is obtained as follows:

$H_{t+1}= \frac{1}{1+H_{t}/k}[s{}_{H}H_{t}+\{(1-z_{t}^{2})_{\mathcal{E}+z_{t}^{2}e^{-aP_{l}}}\}_{f}H_{t}]$ . (1-b)
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The term $1/(1+H_{t}/k)$ represents the density effect by intra-specific
competition and the degree of the $densit_{\wedge J}y$ effect is measured by a
parameter $1/k$ .

Next, we derive equations that relate the frequencies of genotypes in
year $t+1$ to those in the previous year. From Table 2, the densities of
offspring with genotype RR, RA and AA are derived as follows.

Genotype RR: $(x_{t^{2}}+x_{t}y_{t}+y_{\iota^{2}}/4)\epsilon fH_{t}$

Genotype RA: $(x_{t}y_{t}+2x_{t}z_{f}+y_{t}z_{t}+y_{l^{2}}/2)\epsilon fH_{t}$

Genotype AA: $(yt^{2}J/4+yt^{Z}t)\epsilon fH_{f}+z_{t^{2}}f\exp(-aP_{t)H_{t}}$

Then, the frequencies of RR and RA in the next year in the host population
are given as

$x_{t+1}= \frac{s_{H}x_{t}+(x_{t}^{2}+x_{t}y_{t}+y_{t}^{2}/4)_{\mathcal{E}}f}{s_{H}+(1-z_{t}^{2})_{\mathcal{E}}f+z_{t}^{2}fe^{-aP_{t}}}$ (1–c)

$y_{t+1}= \frac{s_{H}y_{t}+(x_{t}y_{t}+2x_{t}z_{t}+y_{t}z_{t}+y_{t}^{2}/2)_{\mathcal{E}f}}{s_{H}+(1-Z_{t}^{2})_{\epsilon f+z_{t}^{2}fe^{-aP_{t}}}}$ . (1-d)

Possible nontrivial equilibria $(P^{*}, H^{*}, x^{*}, y^{*})$ of equations (1) are
obtained by setting $P_{t}=P_{t+1}=P^{*},$ $H_{t}=H_{t+1}=H^{*},$ $Xf=x_{t+1/}=x^{*}$ and $y_{t}=$

$yt+1=y^{*}$ , to get $(P^{*}, H^{*}, x^{*}, y^{*})=$

$(0, k(f+sH-1),$ $0,0$ ) (2-a)
$(P^{\sim}, H^{\sim}, 0,0)$ (2-b)
$(0, k(\epsilon f+sH-1),$ $1,0$ ) (2-c)

$( \frac{1}{a}\log\frac{1}{\epsilon} , k(\epsilon f+s_{H}-1),(1-D^{\frac{1}{4}})^{2},2(D^{\frac{1}{4}}-D^{\frac{1}{2}}))$ (2-d)

where $(P^{\sim}, H^{\sim})$ is a unique solution of the following equations
$H^{\sim}= \frac{(1-s_{P})P^{\sim}}{\Gamma(1-^{aP^{\sim})}}$ and $H^{\sim}=k(fe^{\neq P^{-}}+s_{H}-1)$

and $D= \frac{(1-s_{P})\log\frac{1}{\epsilon}}{ak\Gamma(\epsilon f+s_{H}-1)(1-\epsilon)}$ .

The population density of the host before parasitism starts, $K$ , is
obtained by setting $P_{t}=0$ and $Xf=y_{t}=0$ in (1-b) as

$K=k(f+sH-1)$ . (3) ’

This quantity is the carrying capacity of the host population, i.e., the
equilibrium density of the host population before the cuckoo starts
parasitism. The value of $K$ will vary from place to place, depending on
environmental conditions and host species. Since $K$ is proportional to $k$,
we treat $K$ as a new parameter instead of $k$. The dynamical properties of
(1) are analyzed by linearization around each equilibrium together with
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numerical calculations (see Appendix for details). The result shows that
the dynamical behaviors are characterized by the product of $K$ and $a$ and
there are two critical values for $a$ $K:A_{l}$ and $A_{2}(>A_{l)}$ which are defined
as

$A_{1}= \frac{1-s_{P}}{\Gamma}$ and $A_{2}= \frac{(1-s_{P})(\gamma+s_{H}-1)\log\frac{1}{\epsilon}}{\Gamma(1-\epsilon)(\epsilon f+SH-1)}$

.
The product $a$ $K$ biologically represents the average number of host nests
which a female cuckoo parasitizes during a breeding season when the
cuckoo density is low. In the following, we summarize the possible cases
which are classified by the value of a $K$.

Case (i) $0<aK<A_{l}$

The inequality implies that the death rate of the cuckoo exceeds the birth
rate. Thus the system always approaches equilibrium state (2-a), where
only the host population sustains itself. The rejecter allele, if it emerges by
mutation, does not spread because there are no threat of parasitism.

Case (ii) $A_{l}<aK<A_{2}$

The system finally approaches the equilibrium (2-b) or oscillates around
it, depending on the parameter values. Thus both populations persist. The
rejecter allele, however, does not spread among the population even when
the population suffers from parasitism. Therefore, the lack of counter-
adaptation does not necessarily imply that the host is a recent host. Note
that this case (ii) is possible only when rejection behavior by the host
entails some cost $(\epsilon<1)$ , because if the host loses nothing by rejection
behavior $(\epsilon=1)$ , critical value $A_{2}$ becomes identical to $A_{l}$ .

Case(iii) $A_{2}<aK$

Only equilibrium (2-d) is stable and the system always converges to the
equilibrium. Both the cuckoo and the host can coexist and the rejecter
allele can spread among the host population. Note that the cuckoo can
survive only when there is the cost of rejection $(\epsilon<1)$ .

We evaluated several quantities at the stable equilibrium state which
seem biologically meaningful. The ratio of the cuckoo density to the host
density and the parasitism rate at the equilibrium ($P^{*}/H^{*}$ and $(1-\exp(-a$

$P^{*}))z^{*}2$ respectively) are illustrated as a function of $a$ $K$ (Fig. 3-a). The
ratio remains zero for $0<aK<Al$ , then it increases from zero until
reaching a maximum $(1-\epsilon)\Gamma/(1-sp)$ at a $K=A_{2}$ . As $a$ $K$ becomes larger
than $A_{2}$ , the ratio decreases to zero. The parasitism rate at the equilibrium
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shows a pattern similar to the ratio, $P^{*}/H^{*}$ , havihg a maximum $1-\epsilon$ at $a$ $K$

$=A_{2}$ . Because the rejection cost, in general, is thought to be small ($\epsilon$ is
close to 1), these results imply that the cuckoo population is scarce
compared with the host population and the parasitism rate is very low at
the equilibrium state. In Fig. 3-b, the equilibrium frequencies of the
rejecter individual and the rejecter pair ($x^{*}+y^{*}and1-z^{*}2$ respectively)
are illustrated in relation to the value of a $K$. When $a$ $K$ is greater than $A_{2}$ ,

both quantities increase monotonically tending to 1 at a $K=\infty$ . Except for
the extreme a $K=\infty$ , the host population exhibits a polymorphic blend of
rejecter and accepter individuals at the equilibrium state.

Fig. 3-a (left) The ratio of the cuckoo density to the host density and the parasitism rate
at the equilibrium state in relation to a $K$. The maximum ratio $(1-\epsilon)\Gamma/(1-sp)$ and the
maximum parasitism rate $1-\epsilon$ are attained at a $K=A_{2}$ . $b$ (right) The equilibrium
ffequencies of the rejecter individual and rejecter pair in relation to a $K$. For a $K<A2$ ,

the rejecter allele does not spread among the host population.

Numerical calculations
Here we choose a set of parameter values $s_{P},$ $s_{H}=0.5,f=0.7,$ $\Gamma=0.15$ ,

$a=0.7,$ $K=16$ . The rejection cost, $\epsilon$, is temporarily set to 0.95, because
there are few data available for the estimation. These parameter values
satisfy condition (iii) $A2<aK$, in which the rejecter allele spreads among
the host. At the initial state, we set $P_{0}=0.01,$ $H_{0}=K=16$ and $x_{0}=0,$ $y_{0}=$

0.05, i.e., a small number of the cuckoo start to parasitize the host popu-
lation which is maintained at the carrying capacity $K$ and contains a small
fraction of the rejecter individuals. In Fig. 4-a, the densities of the cuckoo
and the host, and in Fig. 4-b, the parasitism rate and the frequency of
rejecter pair are illustrated as a function of time.
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Fig. 4-a (left): Temporal changes in the densities of the cuckoo and the host

populations. $b$ (rigth): Temporal changes in the parasitism rate and the frequency of
rejecter pair. The dotted lines are the corresponding ones for the case of no genetic
variation. Parameters used are: $SH=0.5,f=0.7,$ $\epsilon=0.95,$ $K=16,$ $sp=0.5,$ $\Gamma=0.15$ ,

$a=0.7$ . The initial state is $P_{0}=0.01,$ $H_{0}=16$ and $x_{0}=0,$ $y0=0.05$ .

For comparison, we include the corresponding case (the dashed curves)
in the absence of the rejecter allele $(x_{0}=y_{0}=0)$ . The presence of the
rejecter allele leads to an increase in the host density and decrease in the
parasitism rate. Frequency of the rejecter pair increases rapidly,
eventually reaching 60%, and the rate of increases is accelerated when the
parasitism rate begins to decrease. At the equilibrium state, the host
density recovers to as much as the level prior to the parasitism, while the
cuckoo density and the parasitism rate go down to very low levels.

Discussion
The magpie density prior to parasitism seems to be high and the magpie

builds a nest on a tree which is easy to fmd so that $a$ $K$ could be larger than
$A_{2}$ . Rapid changes in the cuckoo-Azure-winged magpie associations in
Japan may correspond to the initial stage of dynamical change. Our model
predicts that the magpie population will eventually establish
counteradaptation within a short period and the host density will recover
to the original level with concomitant reduction in the cuckoo parasitism.
Our model could be also applied to the former main host, Siberian
meadow bunting. We suggest that the density of the bunting was high and
its nests were probably easy to find, so that the bunting has established
rejection behavior at a high level, driving the bunting gens cuckoo to
decline. More detailed demographic data are needed to strengthen the
mathematical formulation.
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Appendix
Stability of the equilibria of (1) are tractable by examining the

eigenvalues of Jacobi matrix: an equilibrium is locally stable if the
absolute values of eigenvalues of the Jacobi matrix are all less than unity.
Using this criterion, we examine the stability properties of all the
equilibrium state $(2- a\sim d)$ with respect to small perturbation. Global
stabilities are also studies by extensive numerical calculations and the
results show that global stability is assured if each equilibrium is locally
stable.

Stability of equilibrium (2-a)

Linearization of difference equation (1) around (2-a) yields the Jacobi
matrix whose eigenvalues are given as follows:

$s_{P}+k\Gamma a(f+s_{H}-1),$ $1/(f+s_{H}),$ $s_{H}/(f+s_{H})$ and $(\epsilon f+^{\lrcorner}s_{H})/(f+s_{H})$

The last two eigenvalues are always positive and less than unity and
equilibrium (2-a) is stable if and only if $0<aK<A1$ . When $K=k(f+s_{H}$

$-1)<0$, the host population goes extinct in the absence of the cuckoo. We
do not consider such a biologically meaningless case.

Stability of equilibrium (2-b)
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Equilibrium (2-b) can not be given in explicit form. But this
equilibrium bifurcates from (2-a) as $a$ $K$ increases across $Al$ . Numerical
calculations show that (2-a) is stable or unstable, depending on parameter
values. If unstable, the system contains a stable limit cycle.

Stability of equilibrium (2-c)

This equilibrium is unstable and never attained actually. This is because
the rejection behavior is always disadvantageous in the absence of the
cuckoo.

Stability of equilibrium (2-d)

This is a unique equilibrium which allows positive intemal frequencies
of the rejecter genotypes $(0<x^{*}, y^{*}<1)$ . Although it is very
complicated, the jacobi matrix, $M$ , around (2-d) can be obtained.
Eigenvalues of the jacobi matrix are the solutions of the following form:

$|\lambda I-M|=\lambda^{4}+a_{1}\lambda^{3}+a_{2}\lambda^{2}+a_{3}\lambda+a_{4}=0$ , (4)

where $a1,$ $a2,$ $a3,$ $a4$ are determined by the parameters and the followings
are satisfied.

$al,$ $a3<0$ and $a2,$ $a4>0$ .
To analyze the stability, we transfer the complex space $\mathfrak{l}\lambda|<1$ to ${\rm Re}(\omega)<$

$0$ by a transform$\omega=(\lambda+1)/(\lambda-1)$ . Then the characteristic equation
(4) is transformed into the following equation,

$\theta+b_{1}\omega 3+b_{2}\theta+b_{3}\omega+b_{4}=0$ (5)

where $b_{1}= \frac{4+2a_{1}-2a_{3}-4a_{4}}{1+a1+a2+03+a4}b_{2}=\frac{6-2a_{2}+6a_{4}}{1+a_{1}+a_{2}+a_{3}+a_{4}}$

$b_{3}= \frac{4-2a_{1}+2a_{3}-4a_{4}}{1+a_{1}+a_{2}+a_{3}+a_{4}}b_{4}=\frac{1-a_{1}+a_{2}-a_{3}+a4}{1+a\iota+a_{2}+a_{3}+a_{4}}$

and $1+a_{1}+a_{2}+a_{3}+a_{4}>0$ for $A_{2}<aK$ .
We make use of the Routh-Hurwitz condition, which assures for all the
solution of (5) to have negative real parts. The Routh-Hurwitz criteria are
as follows.

(a) $b_{1}>0$ (b) $|\begin{array}{l}b_{1}b_{3}1b_{2}\end{array}|>0$ (c) $|\begin{array}{l}b_{1}b_{3}01b_{2}b_{4}0b_{1}b_{3}\end{array}|>0$ and (d) $b4>0(6)$

It can be proved that condition (6-d) is satisfied when $A_{2}<aK$ . Further
mathematical analyses together with numerical calculation show that
conditions (6-a, $b,$ $c$) are satisfied for biologically reasonable ranges of
parameter values.


