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Many cases of conflict between relatives over the evolution of social behavior are
known ($e$ . $g.$ , Dawkins, 1976; Trivers, 1985), but no general theory incorporates the

consequences of conflict. Here we show how compromise solutions may evolve.

We derive the compromise solution by incoIporating conflict costs into the fitness

evaluation. Specifically, for donor-recipient conflict conceming altruism, we find

that altruism evolves more easily than Hamilton’s Rule (Hamilton, 1964) would

predict for the case with noeffective manipulation by the recipient, whereas in the

opposite case, where the donor camot resist the recipient’s manipulation, the

behavior evolves less easily than the Inverse Hamilton’s Rule would predict. The

theory also indicates conditions under which no compromise is reached, and

physical conflict is manifested.

For the Hymenoptera, it has been debated whether the evolution of sterile

worker castes is due to kin selection for daughters’ $al\alpha uistic\sim$ behavior toward their

mother (Hamilton, 1964), or to the development of the mother’s manipulation

which forces “unwiUing” daughters to serve her (Alexander, 1974; Chamov, 1978).

Trivers (1974) considered the problem of parent-offspring conflict over parental

invesmlent. In many cases besides these the existence of conflict has been stressed,

but there has been remarkably little work on the important problem of where the

conflict should lead. As in the case of mother-daughter conflict in the evolution of

sterile workers, settlement of the conflict has been considered to be simply a matter

of conquest by the stronger (e.g., mother’s manipulation). But both sides engaged

in any conflict are expected to pay some cost, and if the costs are taken into

account, it seems that the outcome should be affected by not only the relative

strengths of the players, but also by their relative benefits (or losses) when they win

(or lose) the conflict.

Here we present a general scheme by which rules may be derived for the

resolution of conflicts, thereby identifying factors that determine the outcome of the
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conflict. A key idea in this scheme is the incorporation of conflict costs into the

inclusive fitness evaluation. We illustrate the general scheme, using as a model case
the donor-recipient conflict over the evolution of altruistic behavior.

Consider the evolution of an altruistic behavior by the donor (hereafter referred

to as D) that decreases its own fitness by $C$ and increases by $B$ the fitness of the

recipient (hereafter R). A symmetric genetic relation between $D$ and $R$ is assumed

with degree of relatedness $r$ . The condition for the altruistic behavior of $D$ (without

$R’s$ control) to be favoured by selection is that the inclusive fimess of $D$ is greater

when it perfonns this altruistic behavior than when it does not: $W_{D^{-}}C+rB>W_{D}$ ,

where $W_{D}$ is $D’ s$ fitness without any social interaction (Hamilton, 1964). From this,

Hamilton‘s Rule immediately follows:

$\frac{B}{C}>\frac{1}{r}$ . (1)

On the other hand, the condition for this altruistic behavior to increase $R’s$

inclusive fimess is $W_{R}+B+r(- C)>W_{R}$, where $W_{R}$ is $R’s$ fitness without any social

interaction. From this follows a different relationship,

旦 $>$ ’
(2)

which may be called the Inverse Hamilton‘s Rule. Even if the recipient could force

the donor to perfonn the altruistic behavior, the recipient should not do so when

condition (2) does not hold.

The gap between conditions (1) and (2) implies a conflict. If $B/C$ lies between $r$

and $1/r$ , i.e.,

$r< \frac{B}{C}<\frac{1}{r}$

(3)
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then $D$ should not perfonn the altruistic behavior [because condition (1) does not

hold], whereas $R$ should attempt to make $D$ perfonn ;he altruistic behavior

[because condition (2) does hold] (see Fig. 1). Notice that the conflict region is

reduced with $r$, banishing when $r=1$ ; there exists no conflict between genetically

identical individuals. On the contrary, when $r=0$, the $con^{b}flict$ region expands to

the whole region of positive values of $B$ and $C$.
However, if costs involved in the conflict are taken into account in the inclusive

fitness evaluation, then this potential conflict may have an evolutionary resolution.

Here, by costs involved in the conflict, we mean reduction in the fimess of the

recipient in manipulating the donor and that of the donor in resisting against the

recipient’s control. There exists in the $(C, B)$-space a critical line that divides the

conflict region defined by condition (3) into two sub-regions. In the sub-region

above the line the donor is selected to avoid conflict by perforning the altruistic

behavior, whereas in the sub-region below the line the recipient should avoid

conflict by not attempting to manipulate the donor. Tluis compromise line for the

donor-recipient conflict is

$\frac{B}{C}=\frac{2kr+r^{2}+1}{k(r^{2}+1)+2r}$ (4)

A derivation follows.

Suppose that parameters $(C, B)$ take values that fall in the conflict region defined

by condition (3). Let $d_{D}$ and $d_{R}$ , respectively, denote the costs paid by $D$ and $R$ in

pursuing the conflict, and assume that $R$ win dominate $D$ in the conflict when $u_{R}>$

$d_{D}$ , whereas $D$ will dominate $R$ when $kd_{R}<d_{D}$ . That is, in order for $D$ to resist $R$ ,

it has to pay $k$ times as much cost as $R$ does; thus, $k$ represents the degree of

dominance of $R$ over $D$ in fighting the conflict using the same amount of cost.
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Then, $D$ and $R$ will evolve to increase their conflict costs in order to rival each

other. When they build their costs up to $d_{D}(=u_{R)}$ and $d_{R}$ , respectively, the

inclusive fitness that $D$ would eam in the case of winning the conflict should be

reduced to $W_{D}- kd_{R}+r(- d_{R})$ , and that of $R$ to $W_{R}- d_{R}+B+r(- C- kd_{R})$ . (Note

that the cost of conflict paid by one side contributes a ne ative effect to not onlv its

own fitness. but also to the other’s inclusive fimess through their relatedness $r.$ ) As

the conflict costs $(d_{R})$ increase, the inclusive fitness of $D$ (or R) will decline toward

the value that it would take if it yielded to the other in the first place. Eventually,

the better choice for $D$ (or R) is to yield to $R$ (or D), and the altruistic behavior will

(or will not) evolve.

The condition that $D’s$ inclusive fitness value in the case of winning is greater

than it would be in the case of avoiding the conflict in the first place is given as $W_{D}-$

$kd_{R}+r(- d_{R})>W_{D}- C+rB$ , or equivalently

$Ckd_{R}^{R}B_{-}+d< \frac{1}{r}$

(5)

The same condition for $R$ is given as $W_{R}- d_{R}+$ $B+r$(-C- $kd_{R}$) $>W_{R}$ , or
equivalently

$\frac{B- d_{R}}{C+kd_{R}}<r$ . (6)

[For a geometric interpretation in $(C, B)$-space of conditions (5) and (6), see Fig. 1

and its legend.]

Therefore, the condition that $D$ should yield to $R$ and perforn the altruistic

behavior is that for some $d_{R}$ , both sides of condition (5) become equal to each

other, while inequality (6) still holds. Eliminating $d_{R}$ from these two conditions, we

get
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$\frac{B}{C}>\frac{2kr+r^{2}+1}{k(r^{2}+1)+2r}\equiv g(r, k)$ . (7)

Likewise, the condition for $R$ to yield to $D$ and not attempt to induce the altruistic

behavior is given by inequality (7) with the opposite inequality sign $(<)$ . Therefore,

the compromise line, which represents the critical condition for the evolution of the

altruistic behavior, is given by equation (4) (Fig. 2).
$J$

$7he$ slope of the compromise line, $g(r, k)$ , decreases with increasing $k(0<k<\infty)$

and is confined between $g(r, 0)=$ $(r^{2}+1)/2r$ and $g(r, \infty)=2r/(r^{2}+1)$ :

$r \leq\frac{2r}{r^{2}+1}\leq g(r,k)\leq\frac{r^{2}+1}{2r}\leq\frac{1}{r}$ (8)

where $0\leq r\leq 1$ and the equalities of both ends hold only when $r=1$ . The highest

and lowest values of $g(r, k)$ are the arithmetic mean and the hannonic mean,

respectively, of $r$ and $1/r$. Thus, even for the extreme case ($karrow 0$ or $\infty$) the

compromise line does not reach the boundary lines of the conflict region unless $r$

$=1$ , as
virtually no cost ($d_{R}=\Delta_{D}\underline{/karrow 0)}$duetoitsabsolutedominanceincontrol $(karrow\infty)$ .

$\underline{fi}tnessW_{-}+B+\mapsto\gamma(- C- d_{D}).throu\underline{g}h$ their relatedness $(r)$ . Similarlv. even if $D$ has

($karrow OI$ . the cost $d_{L}\underline{oaid}$by $R$ (in the efforts of retaining $D$ for the altruistic service

relatedness $(r)$ . This fact has an implication that demands a revision of Hamilton’s

Rule and the Inverse Hamilton‘s Rule, unless conflict costs are all negligible, as we
see in the following.
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First, for the case of no effective manipulation by $R(karrow 0)$, the threshold value

of $B/C$ for the altruistic behavior to evolve for each value of $r$,

$\frac{B}{C}=g(r, 0)=\frac{r^{2}+1}{2r}$ (9)

is much lower than the one that Hamilton’s Rule predicts (Fig. 3). For example,

when $r=1/2$ and 1/4, respectively, Hamilton’s Rule predicts that $B/C$ must be 2.0
and 4.0 for the altruistic behavior to evolve, whereas the new theory predicts that it

must be more than only 1.25 and 2.125. Or when $B/C$ is 2.0, Hamilton’s Rule

predicts that $r$ must be more than 1/2 for the altruistic behavior to evolve, whereas

the new theory predicts that it must be more than only 0.268.
For the case of no effective resistance by $R(karrow\infty)$ , the threshold value of $B/C$

for the altruistic behavior to evolve is

$\frac{B}{C}=g(r, \infty)=\frac{2r}{r^{2}+1}$ (10)

This is much higher than the $B/C$ ratio predicted by the Inverse Hamilton‘s Rule

predicts (Fig. 3). For example, when $r=1/4$ and 1/2, respectively, the Inverse

Hamilton’s Rule predicts that $B/C$ must be only 0.25 and 0.5 for the altruistic

behavior to evolve, whereas the new theoIy predicts that it must be more than

0.471 and 0.8. Or when $B/C$ is 0.5, the Inverse Hamilton’s Rule predicts that $r$

must be less than 1/2 for the altruistic behavior to evolve, whereas the new theory

predicts that it must be less than 0.268.

Finally, the theory developed here indicates under what conditions no
compromise is reached, and physical conflict may ensue. In general, the

parameters $B,$ $C$, and $k$ are not constant in specific conflict scenes. In such a case,

both players $D$ and $R$ will evolve to adopt conditional strategies, depending on the

present values of $B,$ $C$, and $k$. If assessment of the parameter values by both players
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is exactly correct, a compromise will be reached, as derived above. If one of the

two incorrectly estimates the parameters and if both think they can win the conflict,

then the conflict will $actua\mathbb{I}y$ start. Specifically, when the parameter values are close

to the compromise line, then the judgment, whether to fight or not, will be difficult.

Therefore, we can say that the closer the parameter values are to the compromise

line (i.e., satisfying the critical condition (4) for the evolution of altmism), the more
likely it is that no compromise will be reached, and physical conflict will be actually

manifested.
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B $B/C=1/r$

Fig. 1Three regions in $(C, B)$-space with different implications for the evolution of an altruistic behavior of
donor (D) toward recipient (R). The middle region defined by condition (3) is the region of conflict between $D$

and R. The outer regions defined by inequalities $B/C>1/r$ and $B/C<r$ are the regions of consensus between $D$

and $R$ :the $fo$–er is the $alm_{1}ism$ region, where in the sense of evolutionary choice, R”wants $D”$ , and $D$ “is
willing”, to take the $a$]$m_{1}istic$ behavior, while the latter is the non-altmism region, where $D$ ”wants”, and $R” is$

willing to $pe itD’$ , not to take the altruistic behavior. When point $P(C, B)$ falls in the conflict region, $D$ and $R$

both would have to pay costs if they pursued the conflict. The condition that $D’s$ inclusive fitness value in the
case of winning is greater than it would be in the case of avoiding the conflict in the first place, given as
inequality (4), can oe interpreted as being that $Pl(C- kdR, B+dR)$ , the point obtained by shifting $P(C, B)$ with

$P2$($C+kdR,B$-dR),thepoint$obtainedbyshiftingP(C,B)withvector(kdR,- dR),isstilllocatedabovelineB/C=vector$($- kdR,$ dR), isstilll$\propto$$atedbelowlineB/C=l/r.ThesameconditionforR,givenasinequality(5),isthat$

$r$ . As $dR$ (the conflict cost) increases, the varying points Pl and P2 approaches the critical lines $B/C=1/r$ and
$B/C=r,$ $respec\dot{0}vely$ . Ixt PD and $PR$, respectively, denote the $inters\infty tion\mu ints$ that Pl and P2 meet when they
reach those lines. Then, the condition for $D$ to lose the conflict game can&stated that Pl reaches $PD$ , while P2
does not yet reach $PR$, that is, $P$ is closer to $PD$ than it is to $PR$.
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Fig. 2 Summary of the results for conflict resolution in the. $(C, B)$-space. Line $B/C=g(r, k)$

divides the conflict region into two sub-regions: the upper is the compromised altruism region,
where $D$ should withdraw ffom the conflict and take the $al\alpha uistic$ behavior; and the lower is
the compromised non-altruism region, where $R$, on the contrary, should withdraw ffom the
conflict and let $D$ not take the $altruis\dot{u}c$ behavior. Notice that this line consists of the
midpoints of the line segments (with slope-l$/k$) defined by the pairs of intersection points (PD
and PR) indicated in Fig. 1. The slope of the compromise line, $g(r, k)$ , decreases as $k$ increases
$(0\leq k\leq\cdot)$ , and its range is confined between two broken lines (symmetric to each other with
respect to line $B/C=g(r, 1)=1)$ whose slopes are $g(r, 0)=(r2+1)Qr$ and $g(r, \cdot)=2r/(r2+$

1), $resp\infty tively$.
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Fig.3 The lines representing the critical conditions for the altruism evolution
represented as the relations of $B/C$ to $r$ that Hamilton’s Rule predicts (the first
lme from the top), the new theory predicts for the case of no effective
manipulation by $R(kE0)$ (the second line from the top), it predicts for the case
of no effective resistance by $R(kE\cdot)$ (the second line from the bottom), and
Inverse Hamilton’s Rule predicts (the first line from the bottom).


