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Models in Microbial Ecology and Related Problems
in Ordinary and Partial Differential Equations
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Institute of Applied Mathematics, National Tsing-Hua University,

Hsin-chu, Taiwan

Abstract. In this article, we survey the mathematical models of severval microorganisms compet-
ing for a single-limited nutrient. Several mathematical models in the form of system of ordinary
differential equations or partial differential equations are presented to explain the competitive ex-
clusion and the coexistence of the species.

1 Introduction

Human being cannot survive without microorganisms. It is important to understand the
ecological behavior of microorganisms in their communities, for example, the competition,
predation, mutualism, inhibition effects [FS]. In this paper, we shall restrict our attentitions
to the mathematical models of several microorganisms competing for a single-limited nutri-
ent. For the case of multiple nutrients, interested readers may consult [CHH], [WHH]. There
are several reasons to study these mathematical models. Firstly, we have different ecological
view points about the validity of the classical Lotka-Volterra two species competition model

$\neq=\gamma_{1}x_{1}(1-\neq)-\alpha_{1}x_{1}x_{2}dx_{t}x_{1}$

(1.1) $\neq_{t}^{dx}=\gamma_{2}x_{2}(1-\neq^{x_{2}})-\alpha_{2}x_{1}x_{2}$ ,

$x_{1}(0)>0$ , $x_{2}(0)>0$

Gauss (1934) used bacteria to verify the validity of the model [H]. However the competition
coefficients $\alpha_{1},$ $\alpha_{2}$ are not “physical” parameters which cannot be measured in advance of
the experiments. In contrast to the model (1.1), we shall utilitize the resource-consumers
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type interaction, coupled with the type 2 functional response, to construct our mathematical
models where the parameters can be measured in advanced of the experiments. Secondly,
the models are also related to the ecology of lakes and streams. We shall present the “chemo-
stat” equation. Chemostat is an laboratory apparatus where both theory and experiments
are tractable and match. Thirdly in the application to Chemical engineering, the industrial
microorganisms are used to “eat” the industrial waste water [PC], [SFA]. Chemostat is also
used to culture the useful industrial microorganisms. And finally, there are interesting math-
ematical problems in these mathematical models, for example, global stability, uniqueness
of limit cycle, periodic solutions, persistent theory in dynamical system, strongly monotone
flows.

2 Simple Chemostat (Well-Stirred)

The chemostat is a piece of laboratory apparatus used for culturing microorganisms. It
has a constant nutrient source, containing all nutrients needed by the microorganisms in
aboundance except one. The nutrient is pumped at a constant rate into a culture vessel.
Constant volume is maintained in the culture vessel by allowing an overflow or by pumping
the contents of vessel out at the same rate that nutrient is pumped in. The output of the
culture vessel is collected in a receptacle. The culture vessel is charged with a quantity of
a given type of microorganism and the collection vessel then contains both organisms and
nutrient. This provides a continuous supply of microorganisms. For ecological purpose the
chemostat is the laboratory realization of a very simple lake; the importance of the chemo-
stat as an experimental vehicle is well documented [FS], [V], [P]. It is also of interesting in
chemical engineering where it is a simplified model of the wastewater treatment process [PC].

Based on the experimental evidence [Mo], we assumed

(i) The growth rate of a microorganism species obeys the Michaelis-Menten kinetics, i.e.

$\frac{1}{x}\frac{dx}{dt}=\frac{mS}{a+S}$

Where $S$ is the concentration of the nutrient, $m$ is the maximum growth rate and $a$ is
the half-saturation constant.

(ii) The growth can be expressed in terms of the nutrient consumed by

[GROWTH] $=y[CONSUMPTION]$
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Where $y$ is a yield constant expressed as

$y= \frac{organismformed}{substrateused}$

For simplicity, we consider the case of two species. Then chemostat equation takes the form

$\mathcal{T}tdS=(S^{(0)}-S)D_{1}-\frac{m}{y}1\frac{S}{a_{1}+S}x_{1_{2}^{-\frac{m}{y}4_{\frac{S}{a_{2}+}}}}F^{X_{2}}$

$\neq^{dx_{l}}=(\frac{m_{1}S}{a_{1}+S}-D)x_{1}$

(2.1)
$\neq^{dx_{l}}=(\frac{m_{2}S}{a_{2}+S}-D)x_{2}$

$S(O)\geq 0$ , $x_{1}(0)>0$ , $x_{2}(0)>0$

where

$S(t)=the$ concentration of nutrient at time $t$

$x;(t)=the$ concentration of i-th micororganism at time $t$

$S^{\langle 0)}=input$ concentration of the nutrient

$q=flow$ rate

$V=volume$ of the vessel

$D=\theta=dilution$ rate

We note that the parameters $S^{(0)}$ and $q$ are controlled by the experimenter.

For system (2.1) our basic assumption is

(H) $0<\lambda_{1}<\lambda_{2}<S^{(0)}$
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where

$\lambda_{i}=\frac{a_{t}D}{m_{i}-D}$ is the “break-even” concentration for i-th species

Theorem [HHWI], [Hsul]
Let (H) hold. Then the solution of (2.1) satisfy

$\lim_{tarrow\infty}S(t)=\lambda_{1},\lim_{tarrow\infty}x_{1}(t)=x_{1}^{*}>0,\lim_{tarrow\infty}x_{2}(t)=0$

Remark: Species with smallest $\lambda$ wins the competition. Smaller half-saturationor larger
maximum growth rate implies smaller A.

Sketch of the Proof:
Construct the following Liapunov function

$V(S, x_{1}, x_{2})= \int_{\lambda_{1}}^{s}\frac{\xi-\lambda_{1}}{\xi}d\xi+c_{1}\int_{xi}^{x_{1}}\frac{\xi-xi}{\xi}d\xi+c_{2}x_{2}$

for some $c_{1}>0_{\}}c_{2}>0$ . Applying LaSalle’s invariance principle completes the proof.

Remark : Recently Wolkowicz&Lu [WL] construct a new Liapunov function for general
functional responses.

The best known series of laboratory experiments preformed for the purpose of testing the
validity of the chemostat equation were carried out by Hansen and Hubbell [HH]. A summary
of their experiments is given in Table below. The parameters of the model were measured
by growing each of the competitors separately on the growth-limiting nutrient tryptophan
and assuming Michaelis-Menten functional responses. In Experiment 1, C-8 is a particular
strain of Escherichia coli and PAO283 is a strain of Psuedomonas aeruginosa. In Experiment
2, the competition was between two variants of C-8, one which is resistant to the inhibitor
naladixic acid but susceptible to spectinomycin, and the other the reverse. In both of these
experiments, the species predicted to win by the model did indeed win even though it was
originally inoculated into the growth vessel in a much smaller amount than the predictd los-
er. In the third experiment, the C-8 variants were used again, but naladixic acid was added
to the culture medium in the proper amount so that the parameters $\lambda_{i}=P_{1}^{-1}(D),$ $i=1,2$
were very close where $P_{i}(S)=\mp_{a^{m_{1}}}^{S_{S}}\cdot$ It was found that in this case, the competitiors could
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coexist in the growth vessel for as long as the experiment was run (120 hours).

Table 5.1 Summary of Hansen-Hubbell experiments

Inspired by the Hansen-Hubbell experiment, Lenski and Hattingh [LH] construct the fol-
lowing model describing the competition in a chemostat with external inhibitor. Let $P(t)$

be the concentration of external inhibitor, for example, pollutant or antibody. We assume
the species 1 is susceptible to the inhibitor while the species 2 is resistant. Only species 2
consumes the inhibitor. Then the equations takes the form

$\mathcal{T}tdS=(S^{(0)}-S)D-\frac{m_{1}S}{a_{1}+b}x_{1}e^{-\lambda P}-\frac{m_{2}S}{a_{2}+b}x_{2}$

$\neq^{dx}t=(\frac{m_{1}S}{a_{1}+S}e^{-\lambda P}-D)x_{1}$

(2.2) $\neq^{dx}t=(\frac{m_{2}S}{a_{2}+S}-D)x_{2}$

$-\tau tdP\delta xP=(P^{\langle 0)}-P)D-\iota\neq+T$

$S(0)\geq 0,$ $x_{1}(0)>0$ , $x_{2}(0)>0,$ $P(O)\geq 0$ ,

Where $P^{(0)}$ is the input concentration of the inhibitor.

In $[HsW1]$ the authors observed that the solution of (2.2) satisfies

$S(t)+x_{1}(t)+x_{2}(t)=S^{(0)}+O(e^{-Dt})$ as $tarrow\infty$

Thus we study the dynamics on the w-limit set of the solution of (2.2),
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$\neq_{t}^{dx}=(\frac{m_{1}(S^{(0)}-x_{1}-x_{2})}{a_{1}+(S^{(0)}-x_{1}-x_{2})}e^{-\lambda P}-D)x_{1}$

(2.3)
$\neq_{t}^{dx}=(\frac{m_{2}(S^{\{0)}-x_{1}-x_{2})}{a_{2}+(S^{(0)}-x_{1}-x_{2})}-D)x_{2}$

$\underline{d}P\delta x_{+}P\tau_{t}^{=(P^{(0)}-P)D-\infty}$

$0<x_{1}(0)+x_{2}(0)<S^{\langle 0)},$ $P(0)\geq 0$ .

Since (2.3) is a competitive system in $R^{3}$ , from [Hir], [Sm3] we have Poincar\’e-Bendixson

Theorem. When the interior equilibrium $E_{c}=(xi,x_{2}, P)$ exists , we show that for large
$\lambda,$

$\delta$ and small $K,$ $E_{c}$ is unstable. Thus the coexistence occurs in the form of periodic
solutions

3 Coexistence

In this section we shall search for possible reasons for coexistence which is aften observed in
the nature.

I. Assume $S$ is the prey which grows logistically. Consider the following “model” equation
first studied by Koch [Ko] and then analyzed in [HHW3]

$7^{\frac{S}{t}}d=rS(1_{K}^{S}-)- \frac{m_{1}S}{a_{1}+S}x_{1}-\frac{m}{a_{2}}+Ls_{F^{X_{2}}}$

$\neq^{dx}t=(\frac{m_{1}S}{a_{1}+S}-D_{1})x_{1}$

(3.1)

$\neq^{dx}t=(\frac{m_{2}S}{a_{2}+S}-D_{2})x_{2}$

$S(O)>0,$ $x_{1}(0)>0,$ $x_{2}(0)>0$

Our basic assumption is
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(H1) $0<\lambda_{1}<K$ , $\lambda;=\frac{a_{i}D_{:}}{m_{1}-D:}$, $i=1,2$

Theorem 3.1 : (Extinction) Let (H1) hold and $b_{i}= \frac{m:}{D_{:}}$, $i=1,2$ . If

(3.2) $a_{1}<a_{2}$ , $b_{1}>b_{2}$ or

(3.3) $a_{1}<a_{2}$ , $b_{1}<b_{2},$ $K< \frac{b_{1}a_{2}-b_{2}a_{1}}{b_{2}-b_{1}}$

then $\lim_{tarrow\infty}x_{2}(t)=0$

To understand the dynamics of (3.1), we need to study the two-dimensional Predator-Prey
system.

$7^{\frac{S}{t}=\gamma S(1-}K^{)-\frac{mS}{a+}}F^{x}dS$

(3.4) $Tt+T^{-D)x}d_{X_{-=(\frac{m}{a}}}S$

$S(O)>0,$ $x(O)>0$

Theorem 3.2 : Let $0<\lambda<K,$ $\lambda=\frac{aD}{m-D}$ .

(i) If $\frac{K-a}{2}\leq\lambda$ then the solution $S(t),$ $x(t)$ of (3.4) satisfy

$\lim_{tarrow\infty}S(t)=\lambda$, $\lim_{tarrow\infty}x(t)=x^{*}>0$

(ii) If $\frac{K-a}{2}>\lambda$ , then there exists a unique limit cycle.

Insterested reader may find the proof of (i) in [HHW3] and that of (ii) in [Ch]. Condiser our
one prey-two predators system (3.1), we have the following extinction results.

Theorem 3.2: Let (H1) hold and either (3.2) or (3.3) hold. Then the solution $\{S(t),x_{1}(t),x_{2}(t))$

of (3.1) satisfies.

(i) If $\frac{K-a_{1}}{2}\leq\lambda_{1}$ , then
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$\lim_{\ellarrow\infty}S(t)=\lambda_{1}$

$\lim_{\ellarrow\infty}x_{1}(t)=x_{1}^{*}>0$

$\lim_{tarrow\infty}x_{2}(t)=0$

(ii) If $\frac{K-a_{1}}{2}>\lambda_{1}$ then the trajectory $(S(t)\cdot x_{1}(t), x_{2}(t))$ approach the unique limit

cycle $\Gamma_{1}$ in $S-x_{1}$ plane except the one dimensional stable manifold of $(\lambda_{1}, x_{1}^{*},0)$

In [HHW2], the numerical studies shows that under the assumption $0<\lambda_{1}<\lambda_{2}<K,$ $a_{1}<$

$a_{2},$ $b_{1}<b_{2},$ $K>rightarrow^{ba_{2}-b_{1}ab-b}$ , varying $K$ from $\infty ba_{2}-b_{1}ab-b$ to infinity produces a family of
positive periodic solutions emerging from $\Gamma_{1}$ and decending to $\Gamma_{2}$ . Recently [MR] Murator
assume the parameter $\gamma$ is large and apply the singular pertubation technique to justify
the phenomena. Butler and Waltman [BW] apply the result in [Ch] to show that when $\Gamma_{1}$

becomes unstable, there is a family of positive periodic solutions bifurcating from $\Gamma_{1}$ . Smith
[Sm2] also shows the existence of positive solution by Hopf bufurcation. Next we consider
one nutrient-one prey-two predators in the chemostat. The equations take the following form.

$dSTt=(S^{(0)}-S)D- \frac{m_{1}S}{a_{1}+S}x$

$- \tau tdx=(\frac{m_{1}S}{a_{1}+S}-D-\frac{m_{2}y}{a_{2}+x}-\frac{m_{3}z}{a_{3}+x})x$

(3.5)
$\neq_{t}^{d}=(\frac{m_{2}x}{a_{2}+x}-D)y$

$7^{\frac{z}{t}}d=( \frac{m_{3}x}{a_{3}+x}-D)z$

$S(O)\geq 0,$ $x(O)>0,$ $y(O)>0,$ $z(O)>0$

The behavior of solutions of (3.5) is similar to that of (3.1). Interested reader may consult
[BHWI]

$\Pi$ . Periodic input and periodic washout rate when the imput concentration is a periodic
function of time, the chemostat equation takes the form
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$dSTt=( \varphi(t)-S)-\frac{m_{1}S}{a_{1}+S}x_{1}-\frac{m_{2}S}{a_{2}+S}x_{2}$

$\neq^{dx}t=(\frac{m_{1}S}{a_{1}+S}-D)x_{1}$

(3.6)

$\neq^{dx}t=(\frac{m_{2}S}{a_{2}+S}-D)x_{2}$

$S(O)>0,$ $x_{1}(0)>0,$ $x_{2}(0)>0$

In [Hsu2], we study the extinction, persistence of the solutions of (3.6) for the special case
$\varphi(t)=S^{(0)}+b\sin\omega t$ . A numerical study shows the coexistence is possible in the b-w param-
eter region. Smith [Sml] shows the existence of $\frac{2\pi}{w}$ periodic solutions by Hopf bifurcation
Hale and Somolinas $[HaS]$ observe the relationship $S(t)+x_{1}(t)+x_{2}(t)=\Phi(t)+o(e^{-\alpha\ell}),$ $\alpha>$

$0,$ $\Phi(t+w)=\Phi(t)$ and reduce the dynamics of (3.6) to a competitive, periodic two dimen-
sional system

$\neq^{dx_{l}}=(\frac{m_{1}(\Phi(t)-x_{1}-x_{2})}{a_{1}+(\Phi(t)-x_{1}-x_{2})}-D)x_{1}$

(3.7)
$\neq^{dx}t=(\frac{m_{2}(\Phi(t)-x_{1}-x_{2})}{a_{2}+(\Phi(t)-x_{1}-x_{2})}-D)x_{2}$

and apply the results obtained by de Mottoni and Schiaffino [MS] which states any solution
of two-dimensional, periodic, competitive system approaches to a periodic solution. For the
appliction to industrial waste water in Chemical Engineering, the dilution rate is periodic.
Thus we have [BHW2]



84

$- \tau tdS=(S^{\langle 0)}-S)D(t)-\frac{m_{1}S}{a_{1}+b}x_{1}-\frac{m_{2}S}{a_{2}+S}x_{2}$

$\neq^{dx}t=(\frac{m_{1}S}{a_{1}+b}-D(t))x_{1}$

(3.8)

$\neq^{dx_{l}}=(\frac{m_{2}S}{a_{2}+S}-D(t))x_{2}$

$S(O)\geq 0,$ $x_{1}(0)>0,$ $x_{2}(0)>0$

Where $D(t)=q(t)/V,$ $q(t)$ is the periodic flow rate with periodic $w$ . Use the relationship
$S(t)+x_{1}(t)+x_{2}(t)=S^{\langle 0)}+O(e^{-dt}),$ $\alpha>0$ . We reduce the dynamics of (3.8) to

(3.9)
$\neq^{dx_{l}}=(\frac{m_{2}(S^{(0)}-x_{1}-x_{2})}{a_{2}+(S^{(0)}-x_{1}-x_{2})}-D(t))x_{2}$

$x_{1}(0)>0,$ $x_{2}(0)>0,$ $x_{1}(0)+x_{2}(0)<S^{\langle 0)}$

As in (3.7), (3.9) is also a two dimensional, periodic, competitive system. The solution of
(3.9) approaches a periodic solution. In the following, we state the results of coexistence in
[BHW2].

Theorem 3.4 : Let $m_{2}$ be a bifurcation parameter. There exists a continuous one-parameter
family of positive w-periodic solutions connecting $E_{1},$ $E_{2}$ where $E$; is the unique positive
w-periodic solution on $x$ ;-axis.

III. Gradostat and unstirred chemostat
Gradostat is a concatenation of chemostats, designed by Lovitt and Wimpenny [LW] to

achieve nutrient gradient in experiments. (See Fig. 1, for linear-chained vessels)
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Fig. 1
$R=Reservoir$
$C=$ Collecting Vessel

The mathematical analysis for the growth of a population in a gradostat was given by Tang
[T]. Competition of two population in the two vessels case was studied by Jager at al [JTSW]
and a complete classification of limiting behavior was given including the case of coexistence.
The equations of two species competition in a linear-chained n-vessel gradostat take the form:

$\frac{dS_{i}}{dt}=(S_{1-1}-2S;+S_{i+1})D-U;f_{u}(S_{i})-V_{j}f_{v}(S_{i})$

$\frac{dU:}{dt}=(U_{i-1}-2U;+U_{i+1})D+U;f_{u}(S_{i})$

$7tdV_{i}=(V_{j-1}-2V_{i}+V_{j+1})D+V_{i}f_{v}(S_{i})$

(3.10)
$S_{i}(0)\geq 0$ , $U_{i}(0)>0$ , $V_{1}(0)>0,$ $i=1,$ $\ldots n$

$S_{0}=S^{(0)}$ , $U_{0}=V_{0}=0$ , $S_{n+1}=U_{\mathfrak{n}+1}=V_{n+1}=0$

$f_{u}(S)= \frac{m}{a_{u}}\lrcorner+^{L}TS$ $f_{v}(S)= \frac{m_{v}S}{a_{v}+S}$

Where $S_{i}(t),$ $U_{i}(t),$ $V_{i}(t)$ are the concentration of nutrient, u-species, v-species at i-th vessel
at time $t$ respectively.
In [STW] Smith et. consider a gereral gradostat equation for possible combinations of vessels
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including (3.10) as a special case. They classify all possible cases by the sets of equilibria.
Sufficient conditions for two species to coexist in the gradostat are derived using the theory
of monotone dynamical systems and global bifurcation theory. Numerical computations re-
quired to verify the hypotheses of the coexistence results suggested the coexistence is more
likely as the number of vessels increases.
When $n$ becomes larger, it is harder to analyze (3.10). In $[HsW2]$ we remove the “well-
stirred” hypothesis in chemostat and construct the model for two species competition in
unstirred chemostat.

$Tt \partial S=d_{x}^{2}\frac{\partial}{\partial}\nabla s_{-\frac{m_{1}S}{a_{1}+b}U-\frac{m_{2}S}{a_{2}+S}V}$

$\mathcal{T}t\partial U=d\frac{\partial^{2}U}{\partial x^{2}}-\frac{m_{1}S}{a_{1}+S}U$ $0<x<1,$ $t>0$

$\mathcal{T}t\partial V=d\frac{\partial^{2}V}{\partial x^{2}}-\frac{m_{1}S}{a_{1}+S}V$

(3.11)
$Tx\partial S_{(t,0)=-S^{\langle 0)}}$ , $\partial^{\frac{S}{x}(t,1)+\gamma S(t,1)=0}\partial$

$\tau_{x}^{(t,0)}\partial U=0$ , $\tau_{x}^{(t,1)}\partial U+\gamma U(t, 1)=0$

$\tau_{x}^{(t,0)}\partial V=0$ , $\tau_{x}^{(t,1)}\partial V+\gamma V(t, 1)=0$

$S(O, x)=S_{0}(x)\geq 0$ , $U(0, x)=U_{0}(x)\geq 0,$ $V(O,x)=V_{0}(x)\geq 0$ .

Here we assume the equal diffusions for nutrient and species for mathematical reasons. With
the equal diffusions, we have

$S(t, \cdot)+U(t, \cdot)+V(t, \cdot)=\varphi(\cdot)+O(e^{-\alpha t})$

as $tarrow\infty$ for some $\alpha>0$ , where

$\varphi(x)=S^{(0)}=(\frac{\gamma+1}{\gamma}-x),$ $0<x<1$

Thus we reduce (3.11) to
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$Tt \partial U=d\frac{\partial^{2}U}{\partial x^{2}}+\frac{m_{1}(\varphi(x)-U-V)}{a_{1}(\varphi(x)-U-V)}U$

$\frac{\partial V}{\theta t}=d\frac{\partial^{2}V}{\partial x^{2}}+\frac{m_{2}(\varphi(x)-U-V)}{a_{2}(\varphi(x)-U-V)}V$

(3.12)
$\partial^{\frac{U}{x}(t,0)=0}\partial$ , $Tx\partial U_{-(t,1)+\gamma U(t,1)=0}$

$\frac{\partial V}{\partial x}(t, 0)=0$ , $\frac{\partial V}{dx}(t, 1)+\gamma V(t, 1)=0$

$U(O, x)=U_{0}(x)\geq 0$ , $V(O,x)=V_{0}(x)\geq 0$

$U_{O}(x)+V_{0}(x)\leq\varphi(x)$ for $0<x<1$

The system (3.12) generates a monotone flow. We apply the persistent theory in infinite
dimensional space [Ha $W$] to obtain the coexistence results.
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