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ABSTRACT

Recently, Redheffer[13] obtained a global stability result of a positive equilibrium

point for a class of Lotka-Volterra systems with reducible interaction matrices.

The present paper, following his proving method, extends his result in some sense

and shows that qualitative stability of an interaction matrix implies global stability

of the system.

1 INTRODUCTION

It is known that global asymptotic behavior of the solutions of the general n-

dimensional Lotka-Volterra system

$\dot{x};=x:\sum_{j=1}^{n}a_{lj}(x_{j}-x_{j}^{*}),$ $i=1,2,$ $\ldots,$
$n$ , (1)

where $x^{*}=(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*})^{T}$ is a positive equilibrium point of the system, largely

depends upon the structure of the Jacobian or the interaction matrix $A=(a_{i_{J}}\cdot)_{n\cross n}$

of the system. A lot of results about the relationship between the structure of the

interaction matrix and global asymptotic behavior of solutions of system (1) are

quoted by Hofbauer and Sigmund[4].
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In this paper, we consider a basic and interesting question in the study of Lotka-

Volterra systems, i.e., what structure of the interaction matrix can imply global

stability of a positive equilibrium point of the system. Hereafter, we call system (1)

globally stable if and only if so is the positive equilibrium point. We define similarly

global stability for subsystems of the system.

In Section 2, we discuss so called D-stability of a matrix and some related con-

jectures. We will prove that a special kind of D-stability, i.e., qualitative stability of

the interaction matrix, implies global stabihty of system (1) in Section 3. Finally, a

brief dicussion is given.

2 SOME CONJECTURES

The following is a well-known concept for a matrix:

Definition 1. A matrix is (i) semistable if the real parts of its eigenvalues are all

nonpositive; (ii) quasistable if it is semistable and no eigenvalue with zero real part

is repeated in its minimal polynomial; (iii)stable if the real parts of its eigenvalues

are $al1$ negative.

Definition 2. $A$ is D-stable if for every positive vector $x^{*},$ $diag(x^{*})A$ is stable.

In [4], Hofbauer and Sigmund proposed the following

Hofbauer-Sigmund Conjecture: If the interaction matrix $A$ is D-stable, then sys-

tem (1) is globally stable.

They[4] have also indicated that their conjecture is a special case of the well-known

Jacobian conjecture stated below.
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Let’s now consider a general n-dimensional system of ordinary differential equa-

tions in $R^{n}$ :

$\dot{x}=f(x)$ , (2)

where $f(x)$ has continuous first-order partial derivatives. Then we have the follow-

ing[10]:

Jacobian Conjecture: Suppose that

(i) $0$ is a fixed point, i.e., $f(O)=0$ ,

(ii) the Jacobian is a stable matrix at every point $x\in R^{n}$ . Then $0$ is globally

stable.

Jacobian conjecture has not been completely solved even in two-dimensional case

yet. Meisters and Olech[ll] proved that in two-dimensional case the conjecture is true

for the class of polynomial $f$ : $R^{2}arrow R^{2}$ , i.e., for maps $f=(f_{1}, f_{2})$ such that $f_{1}$ and

$f_{2}$ are real polynomials in two variables. Recently, Gasull, Llibre and Sotomayor[2]

extended Meisters and Olech’s result to a larger class of analytic vector fields.

In the next section, we shall consider system (1) with an interaction matrix satis-

fying different stability concept, motivated from qualitative economics[15], i.e., qual-

itative stability, which implies D-stability[4]. We will prove that qualitative stability

of the matrix implies global stability of Lotka-Volterra system. This can serve as an

affirmative answer to a special case of Hofbauer-Sigmund conjecture.

3 MAIN RESULTS

Let $Q(A)$ denote the convex cone consisting of all $n\cross n$ matrices $\tilde{A}=(\tilde{a}_{ij})$ that

have the same sign pattern $(+, -, 0)$ as $A$ so that sgn$\tilde{a}_{lj}=sgna_{ij}$ for all $i$ and $j$ . Then

we have
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Definition 3. A matrix $A$ is qualitative semistable (qualitative quasistable,

qualitative stable) if each member of $Q(A)$ is semistable (quasistable, stable).

The digraph $G(A)$ of an $n\cross n$ matrix $A$ consists of $n$ vertices representing $n$

populations together with edges representing the interrelations between populations.

Black dot $\bullet$ (when $a:i<0$ ) or white dot $o(a_{il}=0)$ will be put on each vertex. If,

in general discussions, we will not be concerned in the concrete sign of $a_{ii},$
$\oplus will$

be used. An edge between $i$ and $j$ is called a stronge-edge whenever $a_{ij}\neq 0$ and

$a_{ji}\neq 0$ . A p-cycle of $G(A)$ is a nonvanishing product of $a_{i_{1^{t}2}}a_{i_{2^{t}3}}\ldots a_{i_{p}i_{1}}$ for a sequence

of distinct indices $i_{1},$ $i_{2},$
$\ldots,$

$i_{p}$ .

To explain these, we use a system quoted from Jeffries[5].

Example 1. Consider system (1) with the interaction matrix $A_{f}$ as follows

$A_{f}=(\begin{array}{lllll}a_{11} a_{12} a_{13} 0 0a_{21} 0 0 a_{24} 0a_{31} 0 0 0 a_{35}0 a_{42} 0 0 00 0 a_{53} 0 0\end{array})$ , (3)

where $a_{11}<0,$ $a_{ij}a_{ji}<0$ for $i\neq j$ . Then the $G(A_{f})$ is expressed as

$0—0—\bullet---0---0$ .

The following result was established by Quirk and Ruppert[12] on the basis of

Hurwitz Theorem and Liapunov function technique.

LEMMA 1. A matrix $A$ is qualitative semistable if and only if it satisfies:

i) each l-cycle in $G(A)$ is nonpositive;

ii) each 2-cycle in $G(A)$ is nonpositive;

iii) $G(A)$ has no p-cycle for $p\geq 3$ .

When $A$ is irreducible these conditions imply qualitative quasistability.
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It is easy to check, based on Lemma 1, that matrix $A_{f}$ in (3) is qualitative qua-

sistable.

The following stronge community notation are quoted from Jeffries[5] and Jeffries

et $a1[6]$ , in their cases, they called it as predation community and strong component

respectively.

Definition 4. Associate with a fixed vertex all the other vertices, if any, to which

it is connected by strong edges. Then associate with these vertices all additional

vertices connected by strong edges, and so on. The maximal set of all such vertices

so connected to the first vertex is called the strong community containing the first

vertex.

By introducing the color test notation, Jeffries gave a complete solution for a

matrix to be qualitative stable[5].

Definition 5. A strong community $G(A)$ can pass the color test if each vertex in

it may be colored black and white with the result that

i) each vertex with $a_{ii}<0$ is black;

ii) there is at least one white dot;

iii) each white dot is connected by a strong edge to at least one other white dot;

iv) each black dot connected by a strong edge to one white dot, is connected by

a strong edge to at least one other white dot.

The following theorem is due to Quirk and Ruppert[12] in the case where $a_{ii}<0$

for all $i$ and to Jeffries[5] in general case.

JQR THEOREM. A matrix $A=(a_{j})_{n\cross n}$ is qualitative stable if and only if it

satisfies:

i) each l-cycle in $G(A)$ is nonpositive;

ii) each 2-cycle in $G(A)$ is nonpositive;
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iii) $G(A)$ has no p-cycle for $p\geq 3$ ;

iv) each strong community in $G(A)$ can not pass the color test;

v) $\det A\neq 0$ .

It is easy to check that matrix $A_{f}(3)$ is not qualitatively stable, since $G(A_{j})$ can

pass the color test.

In [8], we have considered system (1) with the following lower-triangle interaction

matrix

$A=(a_{ij})_{n\cross n}=(A_{\cross}\cross^{1}$ $A_{\cross^{2}}^{0}$

$..$ .
$A_{k}^{0}0)$ , (4)

where each submatrix $A_{1}(i=1, \ldots, k)$ is irreducible, all elements in the upper-right

blocks are zero and all matrices $\cross$ in the left-lower have any elements and obtained:

THEOREM 1[8]. If system (1) with $A$ in (4) satisfies

i) each $A_{1}\in\overline{S}_{w}(i=2, \ldots, k)$ ;

ii) each diag $(x_{i}^{*})A_{i}$ is stable $(i=1, \ldots, k)$ ;

iii) each subsystem th $i=diag(x;)A_{i}(x_{i}-x_{i}^{*})$ is globally stable $(i=1, \ldots, k-1)$ , then

$\Omega(x)\subseteq E=\{(x_{1}^{*}; \ldots;x_{k-1}^{*}; x_{k})\in R_{+}^{n}|x_{k}\in M\}$ , where $\Omega(x)$ is the $\omega$-limit set of system

(1) and $M$ is the LaSalle’s invariant set of the subsystem $\dot{x}_{k}=diag(x_{k})A_{k}(x_{k}-$

$x_{k}^{*})$ . Here $x=(x_{1}; x_{2};\ldots;x_{k})^{T}=(x_{11}, \ldots, x_{11_{1}} ; x_{21}, \ldots, x_{2};_{2} ; \ldots;x_{k1}, \ldots, x_{ki_{k}})^{T},$ $x^{*}=$

$(x_{1}^{*}$ ; $x_{2}^{*}$ ; ,..; $x_{k}^{*})^{T}=(x_{11}^{*}, \ldots x_{1i_{1}}^{*} ; x_{21}^{*}, \ldots, x_{21_{2}}^{*} ; \ldots;x_{k1}^{*}, \ldots, x_{kt_{k}}^{*})^{T}$ and $i_{1}+i_{2}+...$ $+i_{k}=n$

and a matrix $B\in S_{w}$ if and only if there exists a positive diagonal matrix $C$ such

that $CB+B^{T}C$ is negative semi-definite.

Combining Theorem 1 and JQR Theorem, we have

THEOREM 2[9]. If the interaction matrix $A$ of system (1) is qualitative stable,

then the system is globally stable for any given positive equilibrium point $x^{*}$ .
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Remark. By using Theorem 1 in [13] and JQR Theorem, we can also prove

Theorem 2.

4 DISCUSSION

We have proved that qualitative stability of the interaction matrix of a Lotka-

Volterra system implies global stability of the system. Since a qualitative stable

matrix must be D-stable[4], our Theorem is an affirmtive answer to a special case of

Hofbauer-Sigmund conjecture.

A number of results [1,3,7,14,16,17] given before in the literature are special cases

of Theorem 2 in Section 3, since in these cases, the interaction matrix of system (1)

is qualitative stable.

The remaining question is the relationship between the weaker qualitative prop-

erties such as quahtative semistability or qualitative quasistability of matrix $A$ and

global stability of the corresponding system (1). But semistability is not so interest-

ing in the sense that it cannot guarantee even the boundedness of the solutions of a

corresponding linear system[6].

It seems that there is no general known condition ensuring a matrix to be qual-

itatively quasistable. From Lemma 1, we know that a qualitative semistable matrix

is qualitative quasistable whenever it is irreducible. Furthermore a qualitative qua-

sistable matrix ensures the boundedness for the solutions of a corresponding linear

system. Hence, from this subclass of qualitative quasistable (qualitative semistable

and irreducible) matrices we can expect to find out some interesting structures of a

LaSalle’s invariant set which is not identical with just a unique positive equilibrium

point.
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