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Abstract A unified approach to time series analysis for one-
dimensional discrete chaos is given which is based on the Galerkin
approximation to the Perron-Frobenius operator. The proposed
method gives approximations with high accuracy to statistics of
various one-dimensional chaos. Numerical results for 1/f° power
spectrum of intermittent chaos also show that the observed expo-
nent of the FFT power spectrum of long trajectories as f — 0 is
in good agreement not with the Procaccia-Schuster’s estimate but

with our estimate.

I. Introduction
There are two kinds of time series analysis for long-time chaotic tra-
jectories {z,,}%_, generated by a recurrence formula z,,41 = 7(Z.,)

with an ergodic transformation 7: I =[0,1] — I. One of them is



/8

the “time-average technique”, in which we evaluate certain statis-
tics of a sample long-time trajectory {z,,}2_, with some initial
value £ = zo ; the other one is the “ensemble-average technique”
under the assumption that 7 is mixing with respect to an abso-
lutely continuous invariant measure, denoted by f*(z)dz. We give
a unified approach to time series analysis for discrete chaos by such
an ensemble-average technique.

The time-average technique which is a usual method® is re-
ferred to as the “direct method”. On the contrary, the ensemble
average technique is a kind of “indirect methods” because there is
no need to directly calculate trajectories. Hence such an indirect
method is expected to play an important role in theoretically un-
derstanding chaos. In fact, the Perron-Frobenius operator whose
fixed point is f*(z) permits us to theoretically calculate the en-
semble average of several statistics®M6], This operator, denoted
by P,, however, gives no practically calculating method because of
its infinite dimensionality. Such a situation leads us to consider
an efficient algorithm for systematically calculating statistics which
is based on the Galerkin approximation to P, on a suitable func-

tion spaucem‘[1 0,

This algorithm is referred to as a ”generalized”
Ulam-Li’s method!”). We used the word ”Ulam-Li’s method” be-
cause Lil?! gave an affirmative answer to the Ulam’s conjecturell]
concerning a piecewise-constant approximation for f*(z).

Numerical experiments demonstrate that the proposed method

can give approximations with high accuracy to statistics of various



one-dimensional chaos.

II. Perron-Frobenius Operator and Statistics

of Chaos

If y = 7(z) is mixing with respect to f*(z)dz, then for almost
initial value z = z, sequences {z,,}%_, can chaotically behave.
From the 'Birchoff individual ergodic theorem, the time average of
any L; function F(z) along a trajectory {z,,}_,, which is defined
by

1 T-1

F = lim T > F(m(=)), (1)

T—o0 ne0

is equal almost everywhere to the ensemble average of F(z) over I,

defined by

< F>= /IF(m)f*(m)dx. (2)

The direct time series analysis is based on using F. However, the

sensttive dependence on initial conditions, one of chaotic properties[3],

prevents us from precisely evaluating F. On the other hand, the in-
direct time series analysis is based on using < F' >. We begin with

reviewing relations between typical statistics and P,. The operator

P, is defined by

P.f(2) = [ 6(z = 7(»))h(v)dy. 3)

For any L; functions of bounded variations ¢g(z) and h(z), P, has

the important property

79
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where

(9,4) = [ 9(a)h(a)de. (5)

The invariant density f*(z) which plays a key role in our indirect
method is the eigenfunction of P, belonging to the eigenvalue 1,

that is,

P.f() = f(2) ©)
The autocorrelation function is defined by

(k) =< z7™(z) > — <z >?. (7)
The first term of the rhs of this equation is rewritten as

<zr*(z) >= (PF(zf*(z)),2), (8)

where the above property of P, is repeatedly used. Let h;(z) be
the eigenfunction of P, with the eigenvalue A; for the eigenvalue

problem!4!

P, hi(z) = Xihi(z). (9)
If we can expand zf*(z) as

2f*(z) = in,-h,-(m), (10)

then we have

plk) = S uid (11)



the Fourier Transform of which gives the power spectrum S(v)

> 1— A2
S(V) - ;Uz(l — Aiz)(l - A,‘Z_l) (12)
where
M =1y =n(z,h),and z =ezp(j2mv) (13)

with 0 < v < 1. Oono and Takahashil®"®) demonstrated that the
Fredholm theory of P, plays an important role in discussions of the
power spectrum. It is, however, difficult to find exact solutions of
eigenvalues and eigenfunctions of P,, primalily because P, has the
infinite dimensionality. Such a situation led us to consider an effi-

cient algorithm of the indirect method.
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I1I. Galerkin Approximations to Perron-Frobenius

Operator

Let A be a function space which is spanned by a vector basis
function [(1') The constructing method of A is as follows. We
divide I into N subintervals {I,} with partition points {c;}/, sat-

isfying 0 = cp < ¢; < ¢ < +-- < ¢y = 1 such that
N
I= U I, I,={[cn-1,cn) (14)
n=1

Our Galerkin approximations depend on the appropriate selections
of {c;}¥, and of g_'(;,;)[7]-[10]_ A simple but efficient procedure, how-
ever, is omitted here for selecting {c;}¥,. Next, we take bases

L.k (z) such as(10l
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Lor(z) = par(z)s(2)xn(z), 0<Ek<K, 1<n<N. (15)

In the above equation, x,(z) is the characteristic function of I, and
Puk(z) is the k—th order Legendre’s polynomial which is orthogonal
to each other on I,,. For most of practical usages, we use K =
2. When 7 has a bounded invariant density, the function s(z),
referred to as a supplementary function, is taken to be 1. On the
other hand, 7 has an unbounded invariant density, s(z) is chosen
to be a singular function which approximates to singularities of the
unbounded invariant density and the inner product (g, ) must be

also replaced by the weighted inner product

(9.0 = [ g(@)h(e)u(z)dz (16)

with the weighting function
w(z) = s7%(z). (17)

Each component £,;(z) is an appropriately chosen piecewise poly-

nomial of at most K degree whose combination approximates to

z f*(z) by the Galerkin method!”) such as
of*(0) = £(s), (18)

where the superscript ¢ denotes the transpose of the vector f. Using

(z), we get

< z7*(z) >~ f'(P*i(z), z). (19)

ey

Furthermore, using the Galerkin method with £(z) on A, we ap-

—

proximate to P,{(z) such as



P,{(z) ~ Pii(z) (20)
which leads us to readily obtain
< a7¥(z) >= £(P)"(lz),2), (21)

where the N(K + 1) x N(K + 1) matrix P, is referred to as the

Galerkin-approrimated matriz of the Perron-Frobenius operator where

N and K are integers to be given below. The explicit form of P,
is given in("). Let h; be the i—th right eigenvector of P, with the

eigenvalue A; for the easily tractable eigenvalue problem
P.h; = \h;. (22)

Let 3\1 be the maximum eigenvalue of P. Ttis easily shown that ’):1
when the supplementary function s(z) = 1, namely, when both the
polynomial bases and the unweighted inner product are used. But
X1 ~ 1 when s(z) # 1, that is, when both the singular bases and
the weighted inner product are used. For the latter case, numerical
experiments show A is nearly equal to 1 with the eror less than
1078 for K = 2 and N = 32. An approximate solution to the
invariant density given by

-t

F*(2) = Bfi=) (23)
where h; is normalized such that
/F@wx=1 (24)
I

It is easily shown that Eq.(23) is an approximate solution to Eq.(6)
by the Galerkin method and that f*(z) when K = 0 gives the
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results by the well-known Ulam-Li’s method. Figure 1 shows con-

vergence rates of approximate solution f *(z) by our method!"),
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Fig. 1 Convergence rates of approximate solutions f*(z) (the
proposed method) to the bounded invariant densities f*(x) for

mixing chaos in several examples.

IV. Numerical Examples

Example 1 Let
() = az® + (a+b—ab)/b 0<z<z,=(1-1/b)>
= —b(z* - 1) , <z <1

This map can generate periodic chaos for suitable parameters. Fig-
ures 2 and 3 show f*(z) and the power spectrum Sz(v) for periodic
chaos of period 6 which are calculated by our method®O1. In this

calculation, we take {7"(0)}3%, as the partition points {c;}X7" so

n=1



invariant density f'(x)
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that edges of the support of f*(z) will coincide with the partition

points. In the calculation of S7(v), the finite discrete Fourier trans-

form of {p(k)}=3 (T = 1,024 x 6) is used instead of using Eq.(12).

On the other hand, St,,(v) is obtained by averaging m = 200 dis-

crete Fourier transforms of trajectories of length T'. The spectrum

Sr(v) is in good agreement with Sz,,(v) except for fluctuations in

the latter.
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Fig. 3 Power spectra Sr(v) (by our indirect method) and Sz, (v)

(by the direct method) for periodic chaos of period 6 in example 1.
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Example 2 Let

7(z) =

z + uz” 0<z<z,
(z —zp)/(1 — zp) z, <z <1

where 7(z,) = 1,u > 0,1 < z < 2. This map generates inter-
mittent chaos with the power spectrum‘l/fé. Figure 4 shows the
power spectrum S(v) by our method(10l (the smooth solid line) and
S7m(v) with T = 2! and m = 100 by the direct method (the fluc-
tuated line), each of which is in good agreement each other in wide
frequency range. In applying our method, we used s(z) = z=(=-1)
because 7 has the unbounded invariant density with a (z — 1)-th
order pole at z = 0. In this figure, the broken line shows the Pro-
caccia and Schuster’s estimate 111 of the spectrum when v goes to

0 which does not coincide well with the former two.
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Fig. 4 Comparison of power spectra calculated by using three

different methods for intermittent chaos in example 2.
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