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On an é:—optimal Policy in Dynamic
Programming with a Discount Factor

AR HAE#H ( Kensuke Tanaka )

1. F @&
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F(f)=F(fo) 2< [, f = fo>—¢ Vf.
DT, HAPEE
G(f)=F(f)-<[f"f>

IEIET UL fo IJMBIE D.P YR T LD e-BBEER E18 5725 5,

TN LD e BEEER fo DH ETLUUTD Ekeland’s theorem 2NEHBIREL
O COIEESNIBEE fo DIEL IH B\ BEGRNZDEIE D.P ¥ RT LD
BOEEGRIC IS 5 & D ICEIEIEHR 3 FIC 5125 5,

Ekeland’s theorem
Let (X, d) be a complete metric space, and G : X — RU{+o0}, a l.s.c. function,
# +00 , bounded from below. Let e > 0, and a point fo € X such that

G(fo) < jaf G(f) +e.
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Then there exists some point f, € X such that
G(f.) £ G(fo)

d(f*afO) S 1
Vf# £ G(f) > G(f.) —ed(fo, f)-

2. Formulation of Markov decision problem
A dynamic decision model is specified by a set of six elements
(S, A, F,q,r,B), (2.1)
where

(i) Sis a non-empty Borel subset of a Polish(i.e., complete, separable, metric)
space with the Borel o—field 3(S), the set of states of the decision system.

(ii) A is a Polish space with the Borel o—field f(A), namely, the action space.

(iii) F is a multifunction which assigns to each state s € S a non-empty permis-
sible set of actions F(s) C A. We assume that GrF = {(s,a)|a € F(s),s €
S} is a Borel subset in S x A with the Borel o—field §(S) x G(A4).

(iv) qis a transition probability measure ¢(-|s, a) on the Borel subsets of S given
each (s,a) € GrF,i.e., q(Bl|s,a) is a probability of a Borel subset B € §(.5)
for each (s,a) € GrF and a Borel measurable function of (s,a) € GrF for
each Borel subset B. The law of motion of the decision system is given by

q.

(v) r(s,a) is a real-valued Borel measurable function, GrF — R, the one-step
loss function.

(vi) B is a discount factor, 0 < § < 1.

In the specification, we should note that the permissible set of actions F'(s)
depends on a state s € S and ¢(:|s,a) is independent of the time.
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Then, a policy 7 is defined as a sequence of infinite decision functions ( fi, fz,
-+, ft,- ), each function f; of which is a Borel measurable selection for the
constraint multifunction F, i.e., f; is a Borel measurable mapping from S into
A such that fi(s) € F(s) for each state s € S. Thus, such a decision function
indicates an action to use for each state s € S. We assume that we use only such
policies, which are called Markov policies, on the decision system. Especially, if
any decision function f; in a Markov policy 7 is independent of the stage number
and dependent only on the present state, that is, f; = f for all ¢, this policy 7 is
said to be stationary and is written as f instead of m. The class of all Markov
policies is denoted by Il in the paper.

Now, the dynamic decision system is interpreted as follows. If a policy = =
(f1, f2, f3, -+, ft,- - +) is employed, at the successive decision time ¢, = 1,2,3,-- -,
we observe the state of the decision system and classify it to a possible state s; € S.
So, we choose an action a; € F(s;), a; = fi(s¢), by the decision function f;. As a
result of the state s; and the choice a; at the time t, we will incur a loss (s, as).
Then, the decision system moves to a new state s;4; € S according to transition
probability g(-|s¢, a;). After that, the process of the dynamic decision system is
analogously developed from s;y;. So, given an initial state s; = z on S, any
policy m together with the transition probability g, gives a probability measure
p; on the state space S at each time ¢ in the decision system.

Thus, the expected loss at each time ¢ is given by

Ex[r(ss, ar)ls1 = o] = /Sr(s,ft(S))pZ'(dSI& = z). (2.2)

So, if a policy m = (f1, f2,-++, ft, -+ ) is employed under the discount factor S,
the total expected loss is given by

I(7)(z) = iﬂt"lE,,[r(st?at)lsl = 1]

= 387 [orls, )i (dslsn = ). (23)

t=1

Then, assuming that inf,eq I(7)(z) > —oco under an initial state z € S, we
consider a basic minimization problem (P) for the dynamic decision system:

(P) minimize [(7)(z) subjectto II.
In this problem (P), if there exists a policy T such that, for € > 0

I(r)(z) > I()(z) — e for all 7 € T,
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the policy 7 is said to be an e—optimal one. Especially, if € = 0, 7 is said to be
an optimal policy.

3. An c—optimality of a given stationary policy
in the modified dynamic system

In order to show that some specified stationary policy becomes an optimal
one in the Markov decision system with modified loss functions, let M(S) be the
set of all real-valued Borel measurable and bounded functions on S. Further, let
V(S) be the set of all extended real-valued Borel measurable functions on S, each
of which is function from S into RU {co}. We impose some assumptions on F| g,
and r as follows.

(A1) F is a convex, closed-valued multifunction from S into A, that is, F(s) is a
convex and closed nonempty subset in A for each s € S.

(A2) The loss function r is a real-valued Borel measurable, bounded function,
GrF — R and, for each s € S, r(s, a) is convex, and lower semi-continuous
(l.s.c.) with respect to a € F(s),

(A3) For any u € V(S) and s € S,

JROHCTEN

is a convex and lis.c. function with respect to a € F(s) and

inf dyls,a) > —o0.
Juf L u(y)g(dyls, a) > —oo

REMARK 3.1 If stochastic Markov policies are only used in the decision sys-

tem, it will be reasonable that the integral in (A3) is a convezr and continuous
function.

Now, let D denote the set of all permissible decision functions f : S — A, in
which each f is Borel measurable selection and f(s) € F(s) for each s € S. In

view of a selection theorem [8], D # @ if F' is lower measurable set-valued function,
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that is, for every open set O in the action space A, the set {s € S|F(s)NO #
0} € B(S). We define, for each f € D, an operator T(f) on V(S) as follows: for
each u € V(S )andsES

T(f)uls) = )+ 8 [ uw)adyls, £(5)) (3.1)
Further, we define an operator Ty on V(S) by '
Tou(s) = }glf) T(f)u(s). (3.2)

Evidently, from (A3), Tou(s) € V(S), whenever u € V(S). If the domain of
the operator T is limited to M(S), the operator Tj is a contraction operator on
Banach space M (S) with supnorm. So, Tj has a unique fixed point u* in M(S),
that is, u* = Tou*. It is well known that v*(z) is an optimal value for the problem
(P), that is,
u*(z) = 1lrlel¥1 I(7)(z). (3.3)
See E.B.Dynkin and A.A.Yushkevich [5] in detail.
Then, if a policy m = (f1, f2, f3,- -+ fe, +*), fe € D,t = 1,2.-- - is employed,
for any time k, the total expected loss I(7)(z) with the initial state z € S can be
rewritten as

I(r)(a) = zﬁt L, (st ar)|s = o]

k
= LAV Er(so a)lsi = a] + B Bll(x) (sen)lor = a]
= T(f)T(f2) - T(f)[(7**)(2), (3.4)

where m%*1 denotes a policy constructed by a sequence of decision functions after
the time ¢t = k + 1 in the policy 7, i.e., 7™ = (fit1, faszs fers, - -)-

Now, we need the notations in the convex analysis to prove the main theorem
in this paper. So, firstly we define the extended function G(-)u(s) of T'(:)u(s) on
F(s) C A as follows:

| T(a)u(s) ifa€ F(s)
Glauls) = { 00 ifa g F(s) and a € A.
Secondly, we define the epigraph of G(a)u(s) as follows:
epiG(-)u(s) = {(a,r)|r > G(a)u(s),a € A}.

Then, the following lemma in the convex analysis plays an important role.
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LEMMA 3.1 Let B be a Banach space and any function g : B — RU {co},
# oo, conver, and ls.c.. Then, for any ¢ > 0, the e—subdifferential of g at
bo € dom(g)(dom(g) is the set where g is finite), 0,9(bo) s a nonempty, convex
and weak*-closed subset in B*, where B* denotes the dual space of B and

Beg(bo) = {b" € B*|g(b) > g(bo)+ < b™,b — by > —¢ for all b € B}. (3.5)
This lemma is proved by using the properties of epigraph of g, epig, in [11].

REMARK 3.2 If by € int(dom(yg)), for any e > 0, d.g(bo) 1s a nonempty,
convez, weak* compact and locally bounded.

REMARK 3.3 In [10], the subdifferential Og(by) of g for e = 0 is discussed
in detail.

LEMMA 3.2 Suppose that G(-)u(s) is finite at fo € D and 0.G(fo)u(:) is
lower measurable on S. Then, if A* is separable, for any u € V(S) and s € S,
there exists a Borel measurable function f*:S — A* such that for all f € D

T(f)u(s) > T(fo)u(s)+ < £*(s), f(s) — fo(s) > —¢, (3.6)

that 1s,

T(flu(s)— < [(s), f(s) >2 T(fo)u(s)— < f*(s), fols) > —¢,  (3.7)

Proof. From (A1), (A2), (A3), and conditions of the lemma, for each s €
S, the extended function G(-)u(s) : A — R U {oo}, is convex, and ls.c. at
fo(s) € F(s) C A. Then, since G(fo)u(s) < oo, it follows from Lemma 3.1 that
9:G(fo)u(s) is a nonempty, convex and weak*-closed subset of A* for each s € S.
So, we get for all a* € 8.G(fo)u(s)

T(f)u(s) > T(fo)u(s)+ < a*, f(s) — fo(s) > —e for all f € D (3.8)
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Then, A* is a Polish space since it is assumed that A* is separable. Further,
we assume that 0,G(fo)u(s) is lower measurable on S. In view of a selection
theorem in [8], there is a Borel measurable selection f*(s) € 9.G(fo)u(s). Thus,
we constract a Borel measurable function f* : S — A* satisfying (3.6) for the
given policy fo € D. Thus, the proof of the lemma is completed.

Then, in order to show that a given stationary policy, fo, is an e—optimal
one for a dynamic decision model with the loss functions modified by using the
measurable function f*:S — A* as follows:

(S>AaF;QaT— <f-*a' >H8)a | (39)

we introduce, for each decision function f € D, a modified operator T'(f*, f) of
T(f) on V(S) as follows: for each u € V(S) and s € S

T(f7 fuls) = T(flul(s)— < f7(s), f(s) >, (3.10)

that is,

TS, uls) = r(s, f(s))= < f(s), £(s) > +ﬁ/SU(y)q(dy|3,f(S))- (3.11)

REMARK 3.4 Since G(-)u(s) is convez, and l.s.c., G(-)u(s) s locally Lips-
chitzian at fo(s) € int(domG(-)u(s)). So, there exists M(s) > 0 and a neighbor-
hood U of fo(s) such that

1G(Fuls) = G(fo)uls)| < M(s) || f(s) = fo(s) I, (3.12)

whenever f(s) € U, where || - || denotes the metric on A. Since fo(s) € U and
f*(s) € 0.G(fo)u(s), we have, for all f(s) €U

< f7(s), f(s) = fo(s) >< M(s) || £(s) = fo(s) || +e, (3.13)

which shows that || f*(s) |l.< M(s) + e, where || - ||« denotes the norm on A*.

Thus, using Lemma 3.2, we can prove the main theorem.
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THEOREM 3.1 Let everything be as in Lemma 3.2 and suppose that, for
a specified stationary policy fo with sup,es || fo(s) ||=]| fo ||< oo, there exists
a sequence of infinite Borel measurable functions 7 = (fy, f5, -, fiy ), fe
S — A*, and supg || fi(s) ||«< M, that is, bounded on S.
Then, we have for any policy m € 1I,

(7", m)(z) 2 (77, fo)(z) — ¢,

where, for a policy © = (f1, f2, -+, fe, ),
I"(r*,m)(z) = iﬁt—lEr[r(st)ft(st))— < fr(se), fe(se) > |51 = 2]
t=1

= 38 [ S < J7(6), ) Tl = o)

Proof. For any policy 7 = (f1, f2, -+, ft,- ) , the initial state z € S and the
optimal value u*(z)(see (3.3)), we define a notation as follows

VHr, m)(2) = T(f1, A)T(S5, f2) - T(fi, fi)u™(2), (3.14)

Since, from (A2), the loss function r is bounded, i.e., |r| < N for some positive
number N, on GrF, we have |u*(s)| <-N/(1 — f) for any state s € S. Further,
from the condition of the theorem, we have for each s € Sand t = 1,2, -,

sup| < f7(s), o(s) > | < sup | i) Ll o IS M foll. (3315)

So, it follows that for each s € S

|1 (7 ®F ) £)(s)] < N_';_A__/‘I_gfﬂl_l,

where m(*+1) denotes a sequence of infinite functions after the time ¢t = k + 1
in 7, ie., ™) = (fr., fiias firs, o). Thus, we need to show the result of
the theorem for I*(7*, 7)(:) € V(S). Then, if I*(7*,7)(z) = oo, the result of the
theorem is obvious. So, it is sufficient to show that the result holds only when
I*(m*, 7)(z) < oo. If I*(7*, m)(z) < oo, for sufficiently small n > 0, from (3.4), it
follows that there exists a sufficiently large integer k > 0 such that for any state
z €S,

(3.16)

|I*(7T*, 71')(:13) - Vk(’n—*’ ’ﬂ')(.’E)l <
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Thus, to prove the theorem, it is sufficient to show the result of the theorem for
VE(r*; m)(-) € V(S),# co. From (3.14), V*(r*, 7)(z) is successively constructed
by the modified operators T(f*, f). So, from Lemma 3.2 and the conditions of
the theorem, it follows that, for f,, there exists a function f} : S — A*, such
that, for each s € S and f € D,

T(fx, Nu*(z) 2 T(fi, fo)u™(z) —e. (3.17)

So, applying Lemma 3.2 to T'(f%, fi)u*(:) € V(S),# oo with the £ th decision
function fiin 7 instead of f in (3.17), we obtain a function fy—;1 € 8.G(fo)T(f%, fi)u*(s)
such that, foreachz € Sand f€D

T(fier, NT R f)u (@) 2 T(fiy, fo)T(f5, fi)u™ () — e (3.18)

Then, since T'(-, -) is a monotone operator on V(S), combining (3.17) with (3.18)
and using the (k — 1) th decision function f;_;in 7 instead of f in (3.18), we
obtain for the policy = = (f1, f2, -, fe, -+ *),

T(fl:——la fk—l)T(f;’ fk)U*(x) > T(fl:—l) fO)T(f;:a fk)U*(m) —¢&

2 T(fio1, JO)T(fi, fo)u™(z) — Pe —e. (3.19)
Further, applying Lemma 3.2 to (3.19) repeatedly, we arrive at

k-1
T(f1, TS5, f2) - T(fioy, femt) (i, fi)u*(z) = 3 B'e
, =1

k .
2 T(f7, fo)T(f3, fo) - - T(fizr, o) T (¥, fo)u™(2) — Zﬁia- (3.20)

Thus, from (3.20), we get for sufficiently large &

VE(r, m)(2) > VE(r*, fo) (2) — (3.21)

€
1-8
So, taking (1 — 8)7! as ¢ and k as co in (3.21), the proof of the theorem is
completed. '

THEOREM 3.2 Let everything be as in Lemma 3.2 and assume that, for
each u € M(S), the zero vector, 6* belongs to d.G(fo)u(s) for all s € S, that is,
6* € 0.G(fo)u(s) for allu € M(S) and s € S.

Then, for any policy 7, we have

I(7)(z) 2 I(fo)(z) —&.
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Proof. Since 6* € 8,G(fo)u(s) for all u € M(S) and s € S, we can choose
f&=6*t=1,2,---, as each function f; of 7* in Theorem 3.1. So, for any policy
7, I*(7*, 7)(z) is equal to I(7)(z). Thus, the proof is completed.
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