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On an \mbox{\boldmath $\varepsilon$}-optimal Policy in Dynamic
Programming with a Discount Factor

新潟大学理学部 田中謙輔 (Kensuke Tanaka)

1. 序論

かも知れないので、任意の指定された政策 $f_{0}$ が任意の\epsilon $>0$ に対して \epsilon -最適に

これに関連すると思われ
る内容は、少し古くなるが inverse optimal problem と呼ばれる D. $P$ 問題であろ
う $($参考文献$[1],[2|,[3|,[4|)_{0}$ このような問題に対して、いろいろな接近方法が考
えられるかも知れませんが、 ここでは一つの接近方法として epigraph の概念よ
り $\epsilon$ -劣微分の性質を用いる方法を展開したい、即ち $f^{*}\in\partial_{\epsilon}F(f_{0})$ に対して、

$F(f)-F(f_{0})\geq<f^{*},$ $f-f_{0}>-\epsilon$ $\forall f$ .

この時に、損失関数を

$G(f)=F(f)-<f^{*})f>$

に修正すれば $f_{0}$ は修正 D. $P$ システムの $\epsilon$-最適政策となるだろう o
ここで、上の $\epsilon$-最適政策 $f_{0}$ のもとで以下の Ekeland’s theorem が適用可能と

なり、この指定された政策 $f_{0}$ の近くにある、或政策がこの修正 $D.P$ システムの

最適政策になるように更に修正出来る事になるだろう o

Ekeland’s theorem
Let (X, d) be a complete metric space, and $G:Xarrow R\cup\{+\infty\}$ , a $l.s.c$ . function,
$\not\equiv+\infty$ , bounded from below. Let $\epsilon>0_{f}$ and a point $f_{0}\in X$ such that

$G(f_{0}) \leq\inf_{f\in X}G(f)+\epsilon$ .
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Then there exists some point $f_{*}\in X$ such that

$G(f_{*})\leq G(f_{0})$

$d(f_{*}, f_{0})\leq 1$

$\forall f\neq f_{*}$ $G(f)>G(f_{*})-\epsilon d(f_{*}, f)$ .

2. Formulation of Markov decision problem

A dynamic decision model is specified by a set of six elements

$(S, A, F, q, r, \beta)$ , (2.1)

where

(i) $S$ is a non-empty Borel subset of a Polish(i.e., complete, separable, metric)
space with the Borel $\sigma$ -field $\beta(S)$ , the set of states of the decision system.

(ii) $A$ is a Polish space with the Borel $\sigma$ -field $\beta(A)$ , namely, the action space.

(iii) $F$ is a multifunction which assigns to each state $s\in S$ a non-empty permis-
sible set of actions $F(s)\subset A$ . We assume that $GrF=\{(s\rangle a)|a\in F(s),$ $s\in$

$S\}$ is a Borel subset in $S\cross A$ with the Borel $\sigma-field\beta(S)\cross\beta(A)$ .

(iv) qisatransition probability measure q $(\cdot|s, a)ontheBorelsubsetsofSgiven$

each $(s, a)\in GrF$ , i.e., $q(B|s, a)$ is a probability of a Borel subset $B\in\beta(S)$

for each $(s, a)\in GrF$ and a Borel measurable function of $(s, a)\in GrF$ for
each Borel subset $B$ . The law of motion of the decision system is given by
$q$ .

(v) $r(s, a)$ is a real-valued Borel measurable function, $GrFarrow R$ , the one-step
loss function.

(vi) $\beta$ is a discount factor, $0<\beta<1$ .

In the specification, we should note that the permissible set of actions $F(s)$

depends on a state $s\in S$ and $q(\cdot|s, a)$ is independent of the time.
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Then, a policy $\pi$ is defined as a sequence of infinite decision functions $(f_{1},$ $f_{2}$ ,
. . . , $f_{t},$ $\cdots$ ), each function $f_{t}$ of which is a Borel measurable selection for the
constraint multifunction $F$ , i.e., $f_{t}$ is a Borel measurable mapping from $S$ into
A such that $f_{t}(s)\in F(s)$ for each state $s\in S$ . Thus, such a decision function
indicates an action to use for each state $s\in S$ . We assume that we use only such
policies, which are called Markov policies, on the decision system. Especially, if
any decision function $f_{t}$ in a Markov policy $\pi$ is independent of the stage number
and dependent only on the present state, that is, $f_{t}=f$ for all $t$ , this policy $\pi$ is
said to be stationary and is written as $f$ instead of $\pi$ . The class of all Markov
policies is denoted by $\Pi$ in the paper,

Now, the dynamic decision system is interpreted as follows. If a policy $7\Gamma=$

$(f_{1}, f_{2}, f_{3}, \cdots, f_{t}, \cdots)$ is employed, at the successive decision time $t,$ $t=1,2,3,$ $\cdots$ ,
we observe the state of the decision system and classify it to a possible state $s_{t}\in S$ .
So, we choose an action $a_{t}\in F(s_{t}),$ $a_{t}=f_{t}(s_{t})$ , by the decision function $f_{t}$ . As a
result of the state $s_{t}$ and the choice $\alpha_{t}$ at the time $t$ , we will incur a loss $r(s_{t}, a_{t})$ .
Then, the decision system moves to a new state $s_{t+1}\in S$ according to transition
probability $q(\cdot|s_{t}, a_{t})$ . After that, the process of the dynamic decision system is
analogously developed from $s_{t+1}$ . So, given an initial state $s_{1}=x$ on $S$ , any
policy $\pi$ together with the transition probability $q$ , gives a probability measure
$p_{t}^{\pi}$ on the state space $S$ at each time $t$ in the decision system.

Thus, the expected loss at each time $t$ is given by

$E_{\pi}[r(s_{t} \rangle a_{t})|s_{1}=x]=\int_{S}r(s, f_{t}(s))p_{t}^{\pi}(ds|s_{1}=x)$ . (2.2)

So, if a policy $\pi=(f_{1}, f_{2}, \cdots, f_{t}, \cdots)$ is employed under the discount factor $\beta$ ,
the total expected loss is given by

$I(\pi)(x)$ $=$ $\sum_{t=1}^{\infty}\beta^{t-1}E_{\pi}[r(s_{t}, a_{t})|s_{1}=x]$

$=$ $\sum_{t=1}^{\infty}\beta^{t-1}\int_{S}r(s, f_{t}(s))p_{t}^{\pi}(ds|s_{1}=x)$ . (2.3)

Then, assuming that $\inf_{\pi\in\Pi}I(\pi)(x)>-\infty$ under an initial state $x\in S$ , we
consider a basic minimization problem (P) for the dynamic decision system:

(P) minimize $I(\pi)(x)$ subject to $\Pi$ .

In this problem (P), if there exists a policy $\overline{\pi}$ such that, for $\epsilon\geq 0$

$I(\pi)(x)\geq I(\overline{\pi})(x)-\epsilon$ for all $’/\ulcorner\in\Pi$ ,
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the policy $\overline{\pi}$ is said to be an $\epsilon$ -optimal one. Especially, if $\epsilon=0,$ $\overline{\pi}$ is said to be
an optimal policy.

3. An g-optimality of a given stationary $p$olicy
in the modified dynamic system

In order to show that some specified stationary policy becomes an optimal
one in the Markov decision system with modified loss functions, let $M(S)$ be the
set of all real-valued Borel measurable and bounded functions on $S$ . Further, let
$V(S)$ be the set of all extended real-valued Borel measurable functions on $S$ , each
of which is function from $S$ into $R\cup\{\infty\}$ . We impose some assumptions on $F,$ $q$ ,
and $r$ as follows.

(A1) $F$ is a convex, closed-valued multifunction from $S$ into $A$ , that is, $F(s)$ is a
convex and closed nonempty subset in $A$ for each $s\in S$ .

(A2) The loss function $r$ is a real-valued Borel measurable, bounded function,
$GrFarrow R$ and, for each $s\in S,$ $r(s, \alpha)$ is convex, and lower semi-continuous
(l.s. $c.$ ) with respect to $a\in F(s)$ ,

(A3) For any $u\in V(S)$ and $s\in S$ ,

$\int_{S}u(y)q(dy|s, a)$

is a convex and l.s. $c$ . function with respect to $a\in F(s)$ and

$\inf_{a\in s)}\int_{S}u(y)q(dy|s, a)>-\infty$ .

REMARK 3.1 If stochastic Markov policies are only used in the decision sys-
$tem$ , it will be reasonable that the integral in $(A3)$ is a convex and continuous
function.

Now, let $D$ denote the set of all permissible decision functions $f$ : $Sarrow A$ , in
which each $f$ is Borel measurable selection and $f(s)\in F(s)$ for each $s\in S$ . In
view of a selection theorem [8], $D\neq\emptyset$ if $F$ is lower measurable set-valued function,
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that is, for every open set $O$ in the action space $A$ , the set $\{s\in S|F(s)\cap O\neq$

$\emptyset\}\in\beta\cdot(S)$ . We define, for each $f\in D$ , an operator $T(f)$ on $V(S)$ as follows: for
each $u\in V(S)$ and $s\in S$ ,

$T(f)u(s)=r(s, f(s))+ \beta\int_{S}u(y)q(dy|s, f(s))$ . (3.1)

Further, we define an operator $T_{0}$ on $V(S)$ by

$T_{0}u(s)= \inf_{f\in D}T(f)u(s)$ . (3.2)

Evidently, from (A3), $T_{0}u(s)\in V(S)$ , whenever $u\in V(S)$ . If the domain of
the operator $T$ is limited to $M(S)$ , the operator $T_{0}$ is a contraction operator on
Banach space $M(S)$ with supnorm. So, $T_{0}$ has a unique fixed point $u^{*}$ in $M(S)$ ,
that is, $u^{*}=T_{0}u^{*}$ . It is well known that $u^{*}(x)$ is an optimal value for the problem
(P), that is,

$u^{*}(x)= \inf_{\pi\in\Pi}I(\pi)(x)$ . (3.3)

See E.B.Dynkin and A.A.Yushkevich [5] in detail.
Then, if a policy $\pi=(f_{1}, f_{2)}f_{3}, \cdots, f_{t}, \cdots),$ $f_{t}\in D,t=1,2$ . $\cdots$ , is employed,

for any time $k$ , the total expected loss $I(\pi)(x)$ with the initial state $x\in S$ can be
rewritten as

$I(\pi)(x)$ $=$ $\sum_{t=1}^{\infty}\beta^{t-1}E_{\pi}[r(s_{t}, a_{t})|s_{1}=x]$

$=$ $\sum_{t=1}^{k}\beta^{t-1}E_{\pi}[r(s_{t}, a_{t})|s_{1}=x]+\beta^{k}E_{\pi}[I(\pi^{k+1})(s_{k+1})|s_{1}=x]$

$=T(fi)T(f_{2})\cdots T(f_{k})I(\pi^{k+1})(x)$ , (3.4)

where $\pi^{k+1}$ denotes a policy constructed by a sequence of decision functions after
the time $t=k+1$ in the policy $\pi$ , i.e., $\pi^{k+1}=(f_{k+1}, f_{k+2}, f_{k+3}, \cdots)$ .

Now, we need the notations in the convex analysis to prove the main theorem
in this paper. So, firstly we define the extended function $G(\cdot)u(s)$ of $T(\cdot)u(s)$ on
$F(s)\subset A$ as follows:

$G(a)u(s)=\{T(a)u(s)\infty$ $if\alpha ifa\not\in\in F(s)F(s)$

and $a\in A$ .

Secondly, we define the epigraph of $G(a)u(s)$ as follows:

$epiG(\cdot)u(s)=\{(a, r)|r\geq G(a)u(s), a\in A\}$ .

Then, the following lemma in the convex analysis plays an important role.
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LEMMA 3.1 Let $B$ be a Banach space and any function $g$ : $Barrow R\cup\{\infty\}$ ,
$\not\equiv\infty$ , convex, and $l.s.c.$ . Then, for any $\epsilon>0$ , the $\epsilon$ -subdifferential of $g$ at
$b_{0}\in$ dom(g)(dom(g) is the set where $g$ is finite), $\partial_{\epsilon}g(b_{0})$ is a nonempty, convex
and weak*-closed subset in $B^{*}$ , where $B^{*}$ denotes the dual space of $B$ and

$\partial_{\epsilon}g(b_{0})=$ { $b^{*}\in B^{*}|g(b)\geq g(b_{0})+<b^{*},$ $b-b_{0}>-\epsilon$ for all $b\in B$ }. (3.5)

This lemma is proved by using the properties of epigraph of $g$ , epi$g$ , in [11].

REMARK 3.2 If $b_{0}\in$ int(dom(g)), for any $\epsilon>0,$ $\partial_{e}g(b_{0})$ is a nonempty,
convex, $weak^{*}$ compact and locally bounded.

REMARK 3.3 In [10], the subdifferential $\partial g(b_{0})$ of $g$ for $\epsilon=0$ is discussed
in detail.

LEMMA 3.2 Suppose that $G(\cdot)u(s)$ is finite at $f_{0}\in D$ and $\partial_{\epsilon}G(f_{0})u(\cdot)$ is
lower measurable on S. Then, if $A^{*}$ is separable, for any $u\in V(S)$ and $s\in S$ ,
there exists a Borel measurable function $f^{*}$ : $Sarrow A^{*}$ such that for all $f\in D$

$T(f)u(s)\geq T(f_{0})u(s)+<f^{*}(s),$ $f(s)-f_{0}(s)>-\epsilon$ , (3.6)

that is,

$T(f)u(s)-<f^{*}(s),$ $f(s)>\geq T(f_{0})u(s)-<f^{*}(s),$ $f_{0}(s)>-\epsilon$ , (3.7)

Proof. From (A1), (A2), (A3), and conditions of the lemma, for each $s\in$

$S$ , the extended function $G(\cdot)u(s)$ : $Aarrow R\cup\{\infty\}$ , is convex, and l.s. $c$ . at
$f_{0}(s)\in F(s)\subset A$ . Then, since $G(f_{0})u(s)<\infty$ , it follows from Lemma 3.1 that
$\partial_{\epsilon}G(f_{0})u(s)$ is a nonempty, convex and weak*-closed subset of $A^{*}$ for each $s\in S$ .
So, we get for all $a^{*}\in\partial_{\epsilon}G(f_{0})u(s)$

$T(f)u(s)\geq T(f_{0})u(s)+<\alpha^{*}\rangle f(s)-f_{0}(s)>-\epsilon$ for all $f\in D$ (3.8)
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Then, $A^{*}$ is a Polish space since it is assumed that $A^{*}$ is separable. Further,
we assume that $\partial_{\epsilon}G(f_{0})u(s)$ is lower measurable on $S$ . In view of a selection
theorem in [8], there is a Borel measurable selection $f^{*}(s)\in\partial_{\epsilon}G(f_{0})u(s)$ . Thus,
we constract a Borel measurable function $f^{*}$ : $Sarrow A^{*}$ satisfying (3.6) for the
given policy $f_{0}\in D$ . Thus, the proof of the lemma is completed.

Then, in order to show that a given stationary policy, $f_{0}$ , is an $\epsilon$ -optimal
one for a dynamic decision model with the loss functions modified by using the
measurable function $f^{*}$ : $Sarrow A^{*}$ as follows:

$(S, A, F, q, r-<f^{*}, \cdot>, \beta)$ , (3.9)

we introduce, for each decision function $f\in D$ , a modified operator $T(f^{*}, f)$ of
$T(f)$ on $V(S)$ as follows: for each $u\in V(S)$ and $s\in S$

$T(f^{*}, f)u(s)=T(f)u(s)-<f^{*}(s),$ $f(s)>$ , (3.10)

that is,

$T(f^{*}, f)u(s)=r(s, f(s))-<f^{*}(s),$ $f(s)>+ \beta\int_{S}u(y)q(dy|s, f(s))$ . (3.11)

REMARK 3.4 Since $G(\cdot)u(s)$ is convex, and 1. $s.c.,$ $G(\cdot)u(s)$ is locally Lips-
chitzian at $f_{0}(s)\in int(domG(\cdot)u(s))$ . So, there exis$tsM(s)>0$ and a neighbor-
hood $U$ of $f_{0}(s)$ such that

$|G(f)u(s)-G(f_{0})u(s)|\leq M(s)\Vert f(s)-f_{0}(s)||$ , (3.12)

whenever $f(s)\in U$ , where $||$ . Il denotes the metric on A. Since $f_{0}(s)\in U$ and
$f^{*}(s)\in\partial_{\epsilon}G(f_{0})u(s)$ , we have, for all $f(s)\in U$

$<f^{*}(s),$ $f(s)-f_{0}(s)>\leq M(s)\Vert f(s)-f_{0}(s)||+\epsilon$ , (3.13)

which shows that 1 $f^{*}(s)||_{*}\leq M(s)+\epsilon$ , where $||\cdot||_{*}$ denotes the norm on $A^{*}$ .

Thus, using Lemma 3.2, we can prove the main theorem.
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THEOREM 3.1 Let everything be as in Lemma 3.2 and suppose that, for
a specified stationary policy $f_{0}$ with $\sup_{s\in S}$ II $f_{0}(s)\Vert=\Vert f_{0}\Vert<$ oo, there exists
a sequence of infinite Borel measurable functions $\pi^{*}=(f_{1^{*}}, f_{2^{*}}, \cdots, f_{t^{*}}, \cdots))f_{t^{*}}$ :
$Sarrow A^{*}$ , and $\sup_{s\in S}$ II $f_{t^{*}}(s)||_{*}\leq M_{f}$ that is, bounded on $S$ .

Then, we have for any policy $\pi\in\Pi$ ,

$I^{*}(\pi^{*}, \pi)(x)\geq I^{*}(\pi^{*}, f_{0})(x)-\epsilon$ ,

where, for a policy $\pi=(f1, f_{2}, \cdots, f_{t}, \cdots)$ ,

$I^{*}(\pi^{*}, \pi)(x)$ $=$ $\sum_{t=1}^{\infty}$

)
$|s_{1}=x$ ]

$=$ $\sum_{t=1}^{\infty}\beta^{t-1}\int_{S}[r(s, f_{t}(s))-<f_{t^{*}}(s), f_{t}(s)>]p_{t}^{\pi}(ds|s_{1}=x)$ .

Proof. For any policy $\pi=(f_{1}, f_{2}, \cdots, f_{t)}\cdots)$ , the initial state $x\in S$ and the
optimal value $u^{*}(x)(see(3.3))$ , we define a notation as follows

$V^{k}(\pi^{*}, \pi)(x)=T(f_{1^{*}}, f_{1})T(f_{2^{*}}, f_{2})\cdots T(f_{k^{*}}, f_{k})u^{*}(x)$ , (3.14)

Since, from (A2), the loss function $r$ is bounded, i.e., $|r|\leq N$ for some positive
number $N$ , on $GrF$ , we have $|u^{*}(s)|\leq\cdot N/(1-\beta)$ for any state $s\in S$ . Further,
from the condition of the theorem, we have for each $s\in S$ and $t=1,2,$ $\cdots$ ,

$\sup_{s\in S}|<f_{t}^{*}(s),fo(s)>|\leq\sup_{s\in S}$ I $f_{t}^{*}(s)||_{*}||fo(s)||\leq M$ II $f_{0}||$ . (3.15)

So it follows that for each $s\in S$

$|I^{*}( \pi^{*(k+1)}, f_{0})(s)|\leq\frac{N+M||f_{0}||}{1-\beta}$ , (3.16)

where $\pi^{*(k+1)}$ denotes a sequence of infinite functions after the time $t=k+1$
in $\pi^{*}$ , i.e., $\pi^{*(k+1)}=(f_{k^{*}+1}, f_{k^{*}+2}, f_{k^{*}+3)}\cdots)$ . Thus, we need to show the result of
the theorem for $I^{*}(\pi^{*}, \pi)(\cdot)\in V(S)$ . Then, if $I^{*}(\pi^{*}, \pi)(x)=\infty$ , the result of the
theorem is obvious. So, it is sufficient to show that the result holds only when
$I^{*}(\pi^{*}, \pi)(x)<\infty$ . If $I^{*}(\pi^{*}, \pi)(x)<\infty$ , for sufficiently small $\eta>0$ , from (3.4), it
follows that there exists a sufficiently large integer $k>0$ such that for any state
$x\in S$ ,

$|I^{*}(\pi^{*}, \pi)(x)-V^{k}(\pi^{*}, \pi)(x)|<\eta$ .
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Thus, to prove the theorem, it is sufficient to show the result of the theorem for
$V^{k}(\pi^{*}; \pi)(\cdot)\in V(S),$ $\neq\infty$ . From (3.14), $V^{k}(\pi^{*}, \pi)(x)$ is successively constructed
by the modified operators $T(f^{*}, f)$ . So, from Lemma 3.2 and the conditions of
the theorem, it follows that, for $f_{0}$ , there exists a function $f_{k^{*}}$ : $Sarrow A^{*}$ , such
that, for each $s\in S$ and $f\in D$ ,

$T(f_{k}^{*}, f)u^{*}(x)\geq T(f_{k}^{*}, f_{0})u^{*}(x)-\epsilon$ . (3.17)

So, applying Lemma 3.2 to $T(f_{k^{*}}, f_{k})u^{*}(.\cdot)\in V(S),$ $\neq\infty$ with the $k$ th decision
function $f_{k}in\pi$ instead of $f$ in (3.17), we obtain a function $f_{k-1}\in\partial_{\epsilon}G(f_{0})T(f_{k^{*}}, f_{k})u^{*}(s)$

such that, for each $x\in S$ and $f\in D$

$T(f_{k^{*}-1}, f)T(f_{k^{*}}, f_{k})u^{*}(x)\geq T(f_{k^{*}-1}, f_{0})T(f_{k^{*}}, f_{k})u^{*}(x)-\epsilon$ . (3.18)

Then, since $T(\cdot, \cdot)$ is a monotone operator on $V(S)$ , combining (3.17) with (3.18)
and using the $(k-1)$ th decision function $f_{k-1}in\pi$ instead of $f$ in (3.18), we
obtain for the policy $\pi=(f_{1}, f_{2}, \cdots, f_{t}, \cdots)$ ,

$T(f_{k-1}^{*}, f_{k-1})T(f_{k}^{*}, f_{k})u^{*}(x)\geq T(f_{k-1}^{*}, f_{0})T(f_{k}^{*}, f_{k})u^{*}(x)-\epsilon$

$\geq T(f_{k-1}^{*}, f_{0})T(f_{k}^{*}, f_{0})u^{*}(x)-\beta\epsilon-\epsilon$ . (3.19)

Further, applying Lemma 3.2 to (3.19) repeatedly, we arrive at

$T(f_{1^{*}}, f_{1})T(f_{2^{*}}, f_{2}) \cdots T(f_{k^{*}-1}, f_{k-1})T(f_{k^{*}}, f_{k})u^{*}(x)-\sum_{i=1}^{k-1}\beta^{i}\epsilon$

$\geq T(f_{1}^{*}, f_{0})T(f_{2}^{*}, f_{0})\cdots T(f_{k-1}^{*}, f_{0})T(f_{k}^{*}, f_{0})u^{*}(x)-\sum_{i=1}^{k}\beta^{i}\epsilon$. (3.20)

Thus, from (3.20), we get for sufficiently large $k$

$V^{k}( \pi^{*}, \pi)(x)\geq V^{k}(\pi^{*}, f_{0})(x)-\frac{\epsilon}{1-\beta}$ . (3.21)

So, taking $\epsilon(1-\beta)^{-1}$ as $\epsilon$ and $k$ as $\infty$ in (3.21), the proof of the theorem is
completed.

THEOREM 3.2 Let everything be as in $L^{\cdot}emma3.2$ and assume that, for
each $u\in M(S)$ , the zero vector, $\theta^{*}$ belongs to $\partial_{\epsilon}G(f_{0})u(s)$ for all $s\in S$ , that is,
$\theta^{*}\in\partial_{\epsilon}G(f_{0})u(s)$ for all $u\in M(S)$ and $s\in S$ .

Then, for any policy $\pi_{f}$ we have

$I(\pi)(x)\geq I(f_{0})(x)-\epsilon$ .
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Proof. Since $\theta^{*}\in\partial_{\epsilon}G(f_{0})u(s)$ for all $u\in M(S)$ and $s\in S$ , we can choose
$f_{t^{*}}=\theta^{*},$ $t=1,2.,$ $\cdots$ , as each function $f_{t^{*}}$ of $\pi^{*}$ in Theorem 3.1. So, for any policy
$\pi,$ $I^{*}(\pi^{*}, \pi)(x)$ is equal to $I(\pi)(x)$ . Thus, the proof is completed.
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