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1 Introduction

We consider the nonlinear complementarity problem, which is to find a vector $x\in R^{n}$

such that

$x\geq 0,$ $F(x)\geq 0$ and $x^{T}F(x)=0$ , (1)

where $F(x)=(F_{1}(x), F_{2}(x),$
$\ldots,$

$F_{n}(x))^{T}$ is a given continuously differentiable mapping
from $R^{n}$ into itself and $T$ denotes transposition. This problem has been used to formulate
and study various equilibrium problems including the traffic equilibrium problem, the
spatial economic equilibrium problem and Nash equilibrium problem [4, 12, 16].

The nonlinear complementarity problem (1) is a special case of the variational inequality
problem, which is to find a vector $x^{*}\in S$ such that

$(x-x^{*})^{T}F(x^{*})\geq 0$ for 瓠 1 $x\in S$, (2)

where $S$ is a nonempty closed convex set in $R^{n}$ . Problem (1) corresponds to the case
$S=R_{+}^{n}$ , the nonnegative orthant of $R^{n}$ . The variational inequality problem has also been
used to formulate and study various equilibrium problems arising in economics, operations
research, transportation and regional sciences.

To solve the nonlinear complementarity problem (1) and the variational inequality prob-
lem (2), various iterative algorithms, such as fixed point algorithms, projection methods,
nonlinear Jacobi method, successive over-relaxation methods and Newton method, have
been proposed [6, 7, 13]. Among these, fixed point algorithms originally have been used
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in the proof that the problem has a solution. Fixed point algorithms are useless for prac-
tical computations because their convergence are extremely slow [14]. The other methods
are generalizations of methods for systems of nonlinear equations and their convergence
results have been obtained $[7, 13]$ . But, in general, these methods do not have globally
convergent property.

Assuming the monotonicity of mapping $F$ , Fukushima [5] has recently proposed a dif-
ferentiable optimization formulation for variational inequality problem (2) and proposed
a decent algorithm to solve (2). Based on this optimization formulation, Taji et al. [15]
proposed a modification of Newton method for solving the variational inequality problem
(2), and proved that, under the strong monotonicity assumption, the method is globally
and quadratically convergent.

In this paper we apply the methods of Fukushima [5] and Taji et al. [15] to the non-
linear complementarity problem. We show that those specialized methods can take full
advantage of the special structure of problem (1), thereby yielding new globally conver-
gent algorithms for solving monotone complementarity problems. We remark that the
constraint set of nonlinear complementarity problem is $R_{+}^{n}$ which is clearly not com-
pact, while the descent method by Fukushima [5] has assumed that the constraint set is
compact. In this paper we show that the compactness assumption can be removed for
the nonlinear complementarity problem. We also present some computational results to
demonstrate that those methods are practically efficient.

2 Equivalent optimization problem

We first review the results obtained by Fukushima [5] for the general variational inequal-
ity problem (2). Let $G$ be an $nxn$ symmetric positive definite matrix. The projection
under the G-norm of $x\in R^{n}$ onto the closed convex set $S$ , denoted Proj $s,c(x)$ , is defined
as the unique solution of the following mathematical program:

minimize $||y-x||_{G}$ subject to $y\in S$,

where $||\cdot||_{G}$ denotes the G-norm in $R^{n}$ , which is defined by 11 $x||_{G}=(x^{T}Gx)^{\frac{1}{2}}$ .
Using this notation, we define function $f$ : $R^{n}arrow R$ by

$f(x)= \max\{-(y-x)^{T}F(x)-\frac{1}{2}(y-x)^{T}G(y-x)|y\in S\}$ (3)

$=-(H(x)-x)^{T}F(x)- \frac{1}{2}(H(x)-x)^{T}G(H(x)-x)$ , (4)

where the mapping $H:R^{n}arrow R^{n}$ is defined by

$H(x)=Proj_{S,G}(x-G^{-1}F(x))$ . (5)
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It can be shown [5] that the function $f$ is continuously differentiable whenever so is the
mapping $F$ , and its gradient is given by

$\nabla f(x)=F(x)-[\nabla F(x)-G](H(x)-x)$ . (6)

The function $f$ has the property that $f(x)\geq 0$ for $aUx\in S$ and $f(x)=0$ whenever
$x$ is a solution to the variational inequality problem (2). Hence problem (2) is equivalent
to the following optimization problem:

minimize $f(x)$ subject to $x\in S$. (7)

In addition, when $\nabla F(x)$ is positive definite for all $x\in S$ , it can be shown that, if
$x\in S$ is a stationary point of problem (7), i.e.,

$(y-x)^{T}\nabla f(x)\geq 0$ for all $y\in S$, (8)

then $x$ is a global optimal solution of problem (7), and hence it solves the nonlinear
complementarity problem (1).

Let us now specialize the above results to the complementarity problem. For general
variational inequality problems, it may be expensive to evaluate the function $f$ unless $S$

is tractable. In the case of the complementarity problem (1), the set $S$ turns out to be
$R_{+}^{n}$ . So, if we in particular let $G$ be a diagonal matrix $D=diag(\delta_{1}, \ldots, \delta_{n})$ , where $\delta_{:}$ are
positive constants, then the mapping $H$ takes the explicit form

$H(x)= \max(0, x-D^{-1}F(x))$ (9)

where maximum operator is taken component-wise, i.e.

$H_{i}(x)= \max(0, x_{i}-\delta_{i}^{-1}F_{i}(x))$ , $i=1,$ $\ldots,$
$n$ . (10)

Hence the function $f$ and its gradient can be represented as

$f(x)= \frac{1}{2}F(x)^{T}D^{-1}F(x)-\frac{1}{2}\max(0, D^{-1}F(x)-x)^{T}D\max(0, D^{-1}F(x)-x)$

$= \sum_{=1}^{n}\frac{1}{2\delta_{1}}\{F_{i}(x)^{2}-(\max(0, F_{1}(x)-\delta_{i}x_{i}))^{2}\}$ , (11)

and

$\nabla f(x)=\nabla F(x)D^{-1}F(x)+(I-\nabla F(x)D^{-1})\max(0, F(x)-Dx)$ (12)

respectively, and the optimization problem (7) becomes

minimize $f(x)$ subject to $x\geq 0$ . (13)

In this special case, it is therefore straight forward to evaluate the function $f$ and its
gradient. Furthermore, the optimization problem (13) has a simple constraint.
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3 Descent methods

In this section, we specialize the methods of Fukushima [5] and Taji et al. [15], which
were originally proposed for variational inequality problems, to the nonlinear complemen-
tarity problem (1). Throughout this section, we let $D$ be a positive definite diagonal
matrix and the function $f$ be defined by (11). We $al$so suppose that the mapping $F$ is
strongly monotone on $R_{+}^{n}$ with modulus $\mu>0$ i.e.,

$(x-y)^{T}(F(x)-F(y))\geq\mu||x-y||^{2}$ for all $x,$ $y\geq 0$ . (14)

The first method uses the vector

$d=$ $H(x)-x$

$= \max(0, x-D^{-1}F(x))-x$ (15)

as a search direction at $x$ . When the mapping $F$ is strongly monotone with modulus $\mu$ ,
it is shown [5] that the vector $d$ given by (15) satisfies the descent condition

$d^{T}\nabla f(x)\leq-\mu||d||^{2}$

Thus the direction $d$ can be used to determine the next iterate by using the following
Armijo-type line search rule: Let $\alpha$ $:=\beta^{\dot{m}}$ , where $\hat{m}$ is the smallest nonnegative integer
$m$ such that

$f(x)-f(x+\beta^{m}d)\geq\sigma\beta^{m}||d||^{2}$ ,

where $0<\beta<1$ and $0<\sigma$ .

Algorithm 1 a:
choose $x^{0}\geq 0,$ $\beta\in(0,1)$ , $\sigma>0$ and a positive diagonal matrix $D$ ;
$k$ $:=0$

while convergence criterion is not satisfied do
$d^{k}$ $:= \max(0, x^{k}-D^{-1}F(x^{k}))-x^{k}$ ;
$m$ $:=0$

while $f(x^{k})-f(x^{k}+\beta^{m}d^{k})<\sigma\beta^{m}||d^{k}||^{2}$ do
$m$ $:=m+1$

endwhile
$x^{k+1}$ $:=x^{k}+\beta^{m}d^{k}$ ;
$k$ $:=k+1$

endwhile
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In line search procedure of this algorithm, we examine only the points shorter than unit
step size. But we expect to decrease the value of the function $f$ when the longer step size
is chosen. Therefore we propose the algorithm in which we modify Algorithm la so that
the longer step size can be selected.

Algorithm 1 $b$ :
choose $x^{0}\geq 0$ , $\beta_{1}>1$ , $\beta_{2}\in(0,1)$ , $\sigma>0$ and a positive diagonal matrix $D$ ;
$k$ $:=0$

while convergence criterion is not satisfied do
$d^{k}$ $:= \max(0, x^{k}-D^{-1}F(x^{k}))-x^{k}$ ;

$\hat{t}$ $:= \max\{t|x^{k}+td^{k}\geq 0, t\geq 0\}$ ;
$m$ $:=0$

if $f(x^{k})-f(x^{k}+d^{k})\geq\sigma||d^{k}||^{2}$ then
while $\beta_{1}^{m}\leq\hat{t}$ and $f(x^{k})-f(x^{k}+\beta_{1}^{m}d^{k})\geq\sigma\beta_{1}^{m}||d^{k}||^{2}$

and $f(x^{k}+\beta_{1}^{m+1}d^{k})\leq f(x^{k}+\beta_{1}^{m}d^{k})$ do
$m$ $:=m+1$

endwhile
$x^{k+1}$ $:=x^{k}+\beta_{1}^{m}d^{k}$

else
while $f(x^{k})-f(x^{k}+\beta_{2}^{m}d^{k})<\sigma\beta_{2}^{m}||d^{k}||^{2}$ do

$m$ $:=m+1$
endwhile
$x^{k+1}$ $:=x^{k}+\beta_{2}^{m}d^{k}$

endif
$k$ $:=k+1$

endwhile

Note that, since an evaluation of $f$ at a given point $x$ is equivalent to evaluating the
vector $\max(O, x-D^{-1}F(x))$ , the vector $H(x^{k})= \max(0, x^{k}-D^{-1}F(x^{k}))$ has already been
found at the previous iteration as a by-product of evaluating $f(x^{k}+\beta^{m}d^{k})$ . Therefore
one need not compute the search direction $d^{k}$ at the beginning of each iteration.

In the descent method proposed by Fukushima, to prove that the method is globally
convergent it is necessary not only the st $r$ong monotonicity of mapping but the compact-
ness of constraint set. However, in the case of nonlinear complementarity problem, we
can prove that Algorithms la and lb convergence globally if only $F$ is strongly monotone.

Proposition 3.1 If $F$ is strongly monotone on $R_{+}^{n}$ , then

$\lim$ $f(x)=+\infty$ .
$x\geq 0,$ $||x||arrow\infty$
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Proof. For convenience, we define

$f_{i}(x)=F_{i}(x)^{2}-( \max(0, F_{i}(x)-\delta_{i}x_{i}))^{2}$ , (16)

hence $f$ is written as $f(x)= \sum_{=1}^{n}\frac{1}{2\delta_{i}}f_{i}(x)$ . We first show that $f_{i}(x)\geq 0$ for all $x\geq 0$ . If

$F_{i}(x)-\delta_{i}x_{i}\leq 0$ , then $f_{i}(x)=F_{1}(x)^{2}\geq 0$ . So we consider the case $F_{i}(x)-\delta_{i}x_{i}>0$ . Since
$6_{i}>0,$ $x_{i}\geq 0$ and $F_{i}(x)>\delta_{*}x$ ; hold, we see, from (16),

$f_{t}(x)$ $=$ $F_{i}(x)^{2}-(F_{1}(x)-\delta_{i}x_{i})^{2}$

$=$ $\delta_{i}x_{i}(2F_{1}(x)-\delta_{i}x_{i})$

$\geq$ $(\delta_{i}x_{i})^{2}$

$\geq$ $0$ .

Let $\{x^{k}\}$ be a sequence such that $x^{k}\geq 0$ and Il $x^{k}||arrow\infty$ . Taking a subsequence, if
necessary, there exists a set $I\subset\{1,2, \ldots, n\}$ such that $x_{i}^{k}arrow+\infty$ for $i\in I$ and $\{x_{i}^{k}\}$ is
bounded for $i\not\in I$ . Without loss of generality, $\{x^{k}\}$ itself has a such set $I$ . From $\{x^{k}\}$ ,
we define a sequence $\{y^{k}\}$ where $y_{i}^{k}=0$ if $i\in I$ and $y_{i^{k}}=x_{i}^{k}$ if $i\not\in I$ . From (14) and the
definition of $y^{k}$ , we have

$\sum_{i\in I}(F_{1}(x^{k})-F_{1}(y^{k}))x^{\dot{k}}\geq\mu\sum_{:\in I}x^{k^{2}}$

By Cauchy’s inequality

$||F(x^{k})-F(y^{k})$ $||||$ $x^{k}-y^{k}||\geq(F(x^{k})-F(y^{k}))^{T}(x^{k}-y^{k})$ ,

we have

$( \sum_{i\in I}(F_{i}(x^{k})-F_{1}(y^{k}))^{2})^{\frac{1}{2}}(\sum_{i\in I}x^{k^{2}})^{\frac{1}{2}}\geq\sum_{i\in I}(F_{1}(x^{k})-F_{i}(y^{k}))x^{k}$ ,

hence we have

$\sum_{:\in I}(F_{i}(x^{k})-F_{i}(y^{k}))^{2}\geq\mu^{2}\sum_{i\in I}x_{i}^{k^{2}}$ (17)

Since, from the definition of $y^{k},$ $\{y^{k}\}$ is bounded, $\{F_{i}(y^{k})\}are$ also bounded for all $i$ , and
$x^{k};arrow+\infty$ for all $i\in I,$ (17) implies

$\sum_{i\in I}F_{1}(x^{k})^{2}arrow\infty$
.
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As shown at the beginning of the proof, $f_{1}(x)=F_{i}(x)^{2}\geq 0$ if $F_{i}(x)-\delta_{i}x_{i}\leq 0$ , and
$f(x^{k})\geq(\delta_{i}x_{i})^{2}$ if $F_{1}(x)-\delta_{i}x_{i}>0$ . Therefore we have

$f(x^{k})$ $= \sum_{=1}^{n}\frac{1}{2\delta_{i}}f_{1}(x)$

$\geq$ $\sum_{i\in I}\frac{1}{2\delta_{1}}f_{i}(x)$

$\geq$ $\sum_{:\in I}\frac{1}{2\delta_{*}}\min(F_{1}(x)^{2}, (\delta_{i}x.)^{2})$ .

Since $x_{1}^{k}arrow+\infty$ for all $i\in I$ and $\sum_{i\in I}F_{1}(x^{k})^{2}arrow\infty$
, it follows that $f(x^{k})arrow+\infty$ . $\square$

Theorem 3.1 Suppose that the mapping $F$ is continuously differentiable and strongly
monotone with modulus $\mu$ on $R_{+}^{n}$ . Suppose also that $\nabla F$ is Lipschitz continuous on any
bounded subset of $R_{+}^{n}$ . Then, for any starting point $x^{0}\geq 0$ , the sequence $\{x^{k}\}$ generated
by Algorithm la or Algorithm $lb$ converges to the unique solution of problem (1) if the
positive constant $\sigma$ is chosen to be suff ciently small such that $\sigma<\mu$ .

Proof. By proposition 3.1, the level set $S=\{x|f(x)\leq f(x^{0})\}$ is shown to be bounded.
Hence $\nabla F$ is Lipschitz continuous on $S$ . Since $F$ is continuously differentiable it is easy to
show that $F$ is also Lipschitz continuous on $S$ . Under these conditions, it is not difficult
to show that $\nabla f$ is Lipschitz continuous on $S$ , i.e., there exists a constant $L>0$ such
that

$||\nabla f(x)-\nabla f(y)||\leq L||x-y||$ for all $x,$ $y\in S$.

The remainder of this proof is the same as the proof of [5, theorem4.2]. $\square$

The second method is a modification of Newton method, which incorporates the line
search strategy. The original Newton method for solving the nonlinear complementarity
problem (1) generates a sequence $\{x^{k}\}$ such that $x^{0}\geq 0$ and $x^{k+1}$ is determined as
$x^{k+1}$ $:=\overline{x}$ , where $\overline{x}$ is a solution to the following linearized complementarity problem:

$x\geq 0,$ $F(x^{k})+\nabla F(x^{k})^{T}(x-x^{k})\geq 0$ and $x^{T}(F(x^{k})+\nabla F(x^{k})^{T}(x-x^{k}))=0$ . (18)

It is shown [13] that, under suitable assumptions, the sequence generated by (18) quadrat-
ically converges to a solution $x^{*}$ of the problem (1), provided that the starting point $x^{0}$

is chosen sufficiently close to $x^{*}$ . Taji et al. [15] have shown that, when the mapping
$F$ is strongly monotone with modulus $\mu$ , the vector $d:=\overline{x}-x^{k}$ obtained by solving the
linearized complementarity problem (18) satisfies the inequality

$d^{T}\nabla f(x^{k})<-$ ( $\mu-\frac{1}{2}$ II $D||$ ) $||d||^{2}$
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Therefore, $d$ is actually a feasible descent direction of $f$ at $x^{k}$ , if the matrix $D$ is chosen
to satisfy $||D||= \max_{i}(\delta_{1})<2\mu$ . Using this result, we can construct a modified Newton
method for solving the nonlinear complementarity problem (1).

Algorithm 2:
choose $x^{0}\geq 0$ , $\beta\in(0,1)$ , $\gamma\in(0,1)$ , $\sigma\in(0,1)$ and a positive diagonal matrix $D$ ;
$k$ $:=0$

while convergence criterion is not satisfied do
find hi such that

$x\geq 0,$ $F(x^{k})+\nabla F(x^{k})^{T}(x-x^{k})\geq 0$ and $x^{T}(F(x^{k})+\nabla F(x^{k})^{T}(x-x^{k}))=0$ ;
$d^{k}$ $:=\overline{x}-x^{k}$

if $f(x^{k}+d^{k})\leq\gamma f(x^{k})$ then
$\alpha_{k}$ $:=1$

else
$m$ $:=0$

while $f(x^{k})-f(x^{k}+\beta^{m}d^{k})<-\sigma\beta^{m}d^{k^{T}}\nabla f(x^{k})$ do
$m$ $:=m+1$

endwhile
$\alpha_{k}$ $:=\beta^{m}$

endif
$x^{k+1}$ $:=x^{k}+\alpha_{k}d^{k}$ ;
$k$ $:=k+1$

endwhile

By applying the results proved in [15] for the general variational inequality problem, we
see that, when the mapping $F$ is strongly monotone with modulus $\mu$ , this algorithm is
convergent to the solution of (1) for any $x^{0}\geq 0$ if the matrix $D$ is chosen such that
$||D||= \max(\delta_{i})<2\mu$ . From [15], we also see that the rate of convergence is quadratic if
$\nabla F$ is Lipschitz continuous on a neighborhood of the unique solution $x^{*}$ of problem (1)
and the strict complementarity condition holds at $x^{*}i.e.,$ $x^{*}=0$ implies $F_{i}(x^{*})>0$ for
all $i=1,2,$ $\ldots,$

$n$ .

4 Computational results

In this section, we report some numerical results for Algorithms la, lb and 2 discussed
in the previous section. All computer programs were coded in FORTRAN and the runs
were made in double precision on a personal computer called Fujitsu FMR-70.
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Throughout the $co$mputational experiments, the parameters used in algorithms were
set as $\beta=\beta_{1}=\beta_{2}=0.5,$ $\gamma=0.5$ and $\sigma=0.0001$ . The positive diagonal matrix $D$ was
chosen to be the identity matrix multiplied by a positive parameter $\delta>0$ . Therefore the
merit function (11) can be written more simply as

$f(x)= \frac{1}{2\delta}\sum_{i=1}^{n}\{F_{1}(x)^{2}-(\max(0^{\cdot}, F_{1}(x)-\delta x_{i}))^{2}\}$ . (19)

The search direction of Algorithms la and lb can also be written as

$d^{k}$ $:= \max(0,$ $x^{k}- \frac{1}{\delta}F(x^{k}))-x^{k}$ .

The convergence criterion was

$| \min(x;, F_{i}(x))|\leq 10^{-5}$ for all $i=1,2,$ $\ldots,$
$n$ . (20)

For comparison purposes, we also tested two popular methods for solving the nonlinear
complementarity problem, the projection method [3] and the Newton method without
line search [9]. The projection method generates a sequence $\{x^{k}\}$ such that $x^{0}\geq 0$ and
$x^{k+1}$ is determined from $x^{k}$ by

$x^{k+1}$ $:= \max(0,$ $x^{k}- \frac{1}{\delta}F(x^{k}))$ , (21)

for all $k$ . Note that this method may be considered a fixed step-size variant of Algorithms
la and lb. When the mapping $F$ is strongly monotone and Lipschitz continuous with
constants $\mu$ and $L$ , respectively, this method is globally convergent if 6 is chosen large
enough to satisfy $\delta>L^{2}/2\mu$ (see [13, Corollary 2.11.]).

The mappings used in our numerical experiments are of the form

$F(x)=Ix+\rho(N-N^{T})x+\phi(x)+c$ , (22)

where $I$ is the $nxn$ identity matrix, $N$ is an $nxn$ matrix such that each row contains
only one nonzero element, and $\phi(x)$ is a nonlinear monotone mapping with components
$\phi_{i}(x_{i})=p_{i}x_{i}^{4}$ , where $p$; are positive constants. Elements of matrix $N$ and vector $c$ as
well as coefficients $p_{i}$ are randomly generated such that $-5\leq N_{*j}\leq 5,$ $-25\leq c_{t}\leq 25$

and 0.001 $\leq p;\leq 0.006$ . The results are shown in Tables $1\sim 4$ . All starting points
were chosen to be $(0,0, \ldots, 0)$ . In the tables, $\# f$ is the total number of evaluating the
merit function $f$ and all CPU times are in seconds and exclude input/output times. The
parameter $\rho$ is used to change the degree of asymmetry of $F$ , namely $F$ deviates from
symmetry as $\rho$ becomes large. Since the matrix $I+\rho(N-N^{T})$ is positive definite for any
$\rho$ and $\phi_{1}(x_{i})$ are monotonically increasing for $x;\geq 0$ , the mapping $F$ defined by (22) is
strongly monotone on $R_{+}^{n}$ .
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4.1 Comparison ofAlgorithms la, lb and the projection method
First we have compared Algorithms la, lb and the projection method (21) by using a

10-dimensional example, in which mapping $F$ is given by

The results for this problem are shown in Table 1.
In general, the projection method is guaranteed to converge, only if the parameter 6

is chosen sufficiently large. In fact, Table 1 shows that when 6 is large, the projection
method is always convergent, but as $\delta$ becomes small, the behavior of the method becomes
unstable and eventually it fails to converge.

Table 1 also shows that Algorithms la and lb are always convergent even if 6 is chosen
small, since line search determines an adequate step size at each iteration. Note that,
in Algorithm lb, the number of iterations is almost constant. This is because we may
choose a larger step size when the magnitude of vector $d^{k}$ is small, i.e. 6 is large. This is
in contrast with Algorithm la, in which step size is bounded by 1 so that the number of
iterations increases as $\delta$ becomes large.

Algorithms la and lb spend more CPU times per iteration than the projection method,
because the former algorithms require overheads of evaluating the merit function $f$ . More-
over, when $\delta$ is between 0.1 and 20, Algorithm lb spends more CPU time than Algorithm
la, though the number of iterations are almost equal. This is because Algorithm lb
attempts to find a larger step size at each iteration. But, when 6 becomes large, Algo-
rithm lb tends to spend less CPU time than not only Algorithm la but also the projection
method, because the number of iterations of Algorithm lb does not increase so drastically.

4.2 Comparison of Algorithm 2 and Newton method

Next we have compared Algorithm 2 and the pure Newton method (18) without line
search. For each of the problem sizes $n=30,50$ and 90, we randomly generated five test
problems. The parameters $\rho$ and $\delta$ were set as $\rho=1$ and $\delta=10$ . The starting point was
chosen to be $x=0$. In solving the linearized subproblem at each iteration of Algorithm
2 and Newton method, we used Lemke’s complementarity pivoting method [10] coded
by Fukushima [8]. The results are given in Table 2. All numbers shown in Table 2 are
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averages of the results for five problems for each case and#Lemke is the total number of
pivotings in Lemke’s method.

Table 2 shows that the number of iterations of Newton method is consistently larger
than that of Algorithm 2 as far as the test problems used in the experiments are concerned.
Therefore, since it is time consuming to solve alinear subproblem at each iteration, Algo-
rithm 2 required less CPU time than the pure Newton method in spite of the overheads
in line search. Finally we note that, the pure Newton method (18) is not guaranteed to
be globally convergent, although it actually converged for all test problems reported in
Table 2.

4.3 Comparison of Algorithms la and 2

Finally we have compared Algorithms la and 2. For each of the problem sizes $n=$

$30,50$ and 90, we randomly generated five test problems. To see how these algorithms
behave for various degrees of asymunetry of the mapping $F$ , we have tested several values
of $\rho$ between 0.1 and 2.0. The starting point was chosen to be $x=0$. The results are
given in Table 3. All numbers shown in Table 3 are averages of the results for five test
problems for each case.

Table 3 shows that when the mapping $F$ is close to symmetry, Algorithm la converges
very fast, and when the mapping becomes asymmetric, the number of iterations and CPU
time of Algorithm la increase rapidly. On the other hand, in Algorithm 2, while the total
number of pivotings of Lemke’s method increases in proportion to problem size $n$ , the
number of iterations stays constant even when problem size and the degree of asymmetry
of $F$ are varied. Hence, when the degree of asymmetry of $F$ is relatively small, that is
when $\rho$ is smaller than 1.0, Algorithm la requires less CPU time than Algorithm 2.

Note that, since the mapping $F$ used in our computational experience is sparse, com-
plexity of each iteration in Algorithm la is small. On the other hand, the code [8] of
Lemke’s method used in Algorithm 2 to solve a hnear subproblem does not make use of
sparsity, so that it requires a significant amount of CPU time at each iteration for large
problems. If a method that can make use of sparsity is available to solve a linear sub-
problem, CPU time of Algorithm 2 may decrease. The projected Gauss-Seidel method
[2, pp. 397] for solving linear complementarity problem is one of such methods. In Table
4, results of Algorithm 2 using the projected Gauss-Seidel method in place of Lemke’s
method are given. Table 4 shows that, if the mapping $F$ is almost symmetric, Algorithm
2 converges very fast. But Algorithm 2 fails to converge when the degree of asymme-
try increased, because the projected Gauss-Seidel method could not to find a solution to
linear subproblem.

Figure 1 illustrates how Algorithms la and 2 converged for two typical test problems
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with $n=30$ and 50. In the figure, the vertical axis represents the accuracy of a generated
point to the solution, which is evaluated by

ACC $= \max\{|\min(x_{i}, F_{1}(x))||i=1,2, \ldots, n\}$ . (24)

Figure 1 indicates that Algorithm 2 is quadratically convergent near the solution. Figure
1 also indicates that Algorithm la is linearly convergent though it has not been proved
theoretically.
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Table l:Results for Algorithm la, lb and the projection method $(n=10, \rho=1)$

Table 2:Results for Algorithm 2 and Newton method $(\rho=1)$
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