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1. Introduction
In reference [2], the application of the interval Gaussian algorithm to the tolerance anal-

ysis, particularly, the worst case analysis of the linear resistive network has been presented.
The interval hybrid equation is proposed to formulate the network equation. Hansen’s
method is applied to the interval hybrid equation to perform the interval Gaussian algo-
rithm. In order to have a good estimation of the interval solutions, we proposed to use
the maximally distant tree pair for the formulation of the network equation and take the
intersection of the solutions of the hybrid equation for each tree. The maximally distant tr$ee$

pair $1S$ introduced under assumption that the tree pair covers all the resistive branches.
In this report, we try to deal with the network of alittle larger scale where the maximally

distant tree pair can not cover the network. The interval Gaussian algorithm is compared
with the iteration method. Finally, in order to have a better estimated solution, we describe
a method for solving the interval hybrid equations with the subdivided interval parameters
and taking the union of the interval solutions.

2. Interval Hybrid Equation
The network is assumed to have a single resistive element between nodes. We suppose

that every branch of the network has connected across it an ideal current source and inserted
into it an ideal voltage source. The hybrid equation of the linear resistive time-invariant
network becomes

Hx $=a$ (1)

where

$H=\{\begin{array}{ll}G Q_{l}B_{t} R\end{array}\},x=\{\begin{array}{l}v_{t}I_{l}\end{array}\},a=\{\begin{array}{l}J_{s}E_{s}\end{array}\},J_{s}=-j_{st}+Ge_{st},E_{s}=-e_{s1}+Rj_{sl}$ (2)

The matrix $G$ is the diagonal branch conductance matrix of dimension $\rho$ and $R$ is the diagonal
branch resistance matrix of dimension $\mu$ , where $\rho$ and $\mu$ are the rank and nullity of the
simple graph associated with the network with the voltage sources short and current sources
open. The submatrices $Q_{l}$ and $B_{t}$ are the principal parts of the cutset and tieset matrices,
respectively. The vectors $V_{t}$ and $I_{l}$ are the tree branch voltage and link current vectors,
respectively. The vectors $J_{s}$ and $E_{s}$ are the cutset current source and loop voltage source
vectors, respectively. The vectors $j_{t}$ and $j_{l}$ are the current source vectors associated with the
tree and the link, respectively. The vectors $e_{t}$ and $e_{1}$ are the voltage source vectors associated
with the tree and the link, respectively.
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3. Selection of Trees
We pick up a tree $T_{1}$ which contains as many conductors as possible and select the

maximally distant tree $T_{2}$ from $T_{1}$ . At this stage, we check whether the pair of the trees $T_{1},T_{2}$

covers all the resistive branches of the network. If not, we choose another tree $T_{3}$ and check
whether the tree set $T_{1},T_{2},T_{3}$ all the resistive branches. We repeat this procedure untill the
set of the trees $T_{1},T_{2},$ $\ldots,T_{m}$ covers all the tree branches where the integer $m$ is the minimum
number of the trees.

For the tree $T_{i}(i=1,2, \ldots, m)$ we formulate the hybrid equation

$Hixi=a;i=1,2,$ $\ldots,$
$m$ . (3)

We assume that the matrix $H_{i}(i=1,2, \ldots,m)$ is nonsingular. Using Hansen’s method, we
transform Eq.(3) into

$\tilde{H};x;=\tilde{a};i=1,2,$
$\ldots,$

$m$ (4)

where
$\tilde{H};=m(H_{i})^{-1}H_{i},\tilde{a};=m(H_{i})^{-1}a_{i}i=1,2,$

$\ldots,$
$m$ . (5)

The interval Gaussian algorithm or the iteration method is applied to Eq.(5) for cach $i$ to
have the interval branch voltage solution $V^{(i)}(i=1,2, \ldots, m)$ and the branch current solution
$I^{(i)}(i=1,2, \ldots, m)$ . We represent the true branch voltage and current solutions as $V_{true}$ and
$I_{true}$ , respectively. Hence the relations

$V_{trc:e}\subseteq V^{(i)},$ $I_{true}\subseteq I^{(i)}i=1,2,$
$\ldots,$

$m$ (6)

Clearly we have
$V_{true}\subseteq(\bigcap_{i=1}^{m}V^{(i)})\subseteq V^{(i)}i=1,2,$

$\ldots,$
$m$ (7)

$I_{true}\subseteq(\bigcap_{i=1}^{m}I^{(i)})\subseteq I^{(i)}i=1,2,$
$\ldots,$

$m$ (8)

Hence we take $V=\bigcap_{i=1}^{m}V^{(i)}$ and $I=\cap^{m_{=1}}I^{(i)}$ as the nearest interval branch voltage and current
solutions to the true solutions.

4. Partitioning Interval Parameters
If the tolerance of the resistive parameter is larger, patitioning the interval parameters

is effective to have a good estimation of the interval solutions. Let the network have $b=\rho+\mu$

resistive parameters. Partitioning i-th resistive parameters into $b_{i}(i=1,2, \ldots, b)$ subintervals
provides us with $\Pi_{i=1}^{b}b_{i}$ hybrid equations for each tree. Associated with the tree $T_{i}$ , let $V_{k}^{(i)}$

and $I_{k}^{(i)}$ be the interval branch voltage and current solutions of the hybrid equation for the
k-th combination of each partitioned parameter. For the tree $T_{i}$ , we have

V$(i)= \bigcup_{k=1}^{K}V_{k}^{(i)},$ $I^{(i)}=\bigcup_{k=1}^{K}I_{k}^{(i)},$ $K=\Pi_{i=1}^{b}b$ ; (9)

Solving $K$ hybrid equations for the tree $T_{i}$ , we have the interval solutions which are of the
form

$V=\bigcap_{i=1}^{m}V^{(i)}=n_{i=1}^{m}(\bigcup_{k=1}^{K}V_{k}^{(i)})$ (10)

$I=\bigcap_{1}^{m_{=1}}I^{(i)}=\bigcap_{1}^{m_{=1}}(\bigcup_{k=1}^{K}I_{k}^{(j)})$. (11)

If $b$ interval parameters take part in partitioning, $Km$ combinations of the intervals involves
the solution of the hybrid equations. For example, by each halving of the interval parameters,
we have to solve $2^{b}m$ hybrid equations.
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5. Numerical Examples
This section demonstrates the worst-case analysis of a linear resistive network with

rather large number of branches. Hybrid equation (3.) is solved by the interval Gaussian
algorithm(abbreviated as IGA) as well as symmetric single step Method(abbrevlated as SS
method)[l]. The latter is one of the iteration methods in which the hybrid matrix $\tilde{H}$ is
decomposed into a diagonal, a strictly lower and a strictly upper triangular matrix. Both
methods are compared. Further, the validity of partitioning of the interval paraIneters is
shown.

5.1 Comparison of IGA with SS Method
Fig.1 shows a linear resistive network the branch voltages of which are analyscd. Each

resistor has its own tolerance. The resistors and voltage sources assign respectively the
center values $g_{1}\cdot(i=1,2, \ldots,26)$ as conductances and numerical values $E;(i=1,2)$ in table 1.
We give 10 percents tolerance of the center values for each resistor. Table 2 shows the branch
numbers of the trees chosen. The distance between $T_{1}$ and $T_{2}$ is maximal. The set of the
trees $T_{1}$ , $T_{2},T_{3}$ covers all the resistive branches.

Table 3 shows the branch voltages computed by IGA and SS method as well as Monte
Carlo method(abbreviated as MC method). The name of each column indicates thc method
as its name shows. The interval numbers in MONTE CARLO are computed by MC method.
The numbers in GAUSS and SS are the ratios of the widths of the voltages by IGA and
SS method to the widths by MC method. The branch voltages are well estimated except
$V_{9},$ $V_{12},$ $V_{13},$ $V_{19}$ and $V_{24}$ . The four times of iterations are enough to converge the proccdures of
SS method. The starting interval are the point interval numbers which are determined by
the solutions of the network equation without the tolerances of resistances.

5.2 Validity of Partitioning
We deal with the ladder network which was used as an example in Ref.[2]. The resistive

parameters ar$e$ the same as given in Ref.[2]. As a typical case, the interval of each resis-
tive parameter is halved$(K=2^{9})$ . The maximally distant tree pair covers all the resistive
branches(m $=2$ ). Table 4 shows the results computed by IGA and SS method as well as
MC method. The numbers in each column have the same meaning as in Table 3. Clearly
the interval branch voltages by both methods are best estimated in comparison with MC
method. However, IGA and SS methods require longer CPU time than MC method. Hence
the number of interval parameters subject to partitioning should not be excessive in practice.

6. Conclusion
We have presented methods for better estimation of the interval solutions of linear resis-

tive network. In order to reduce the computational time, chosing the minimum number of
trees to cover all the resistive branches is of importance: Partitioning of the interval param-
eters leads us to having a good estimation of the solutions although the number of’ hybrid
equations to be solved increases excessively. The methods described here will be effective
when a parallel machine will be more common.

The author expresses his sincere thanks to Professor Emeritus of Kyoto University, Akira
Kishima who has led the way for him.

References
[1] G. Alefeld and J. Herzberger;”Introduction to Interval Computations“,translation by J.
Rokne, Academoic Press, New York, New York, 1983.
[2] K. Okumura;”Several Applications of Interval Mathematics to Electrical Network Anal-
ysis”, submitted to RIMS Kokyuroku of Kyoto University, 1993.



51

Table 1 Center values of

Fig. 1 Resistive network. Arrow shows direction of branch voltage.
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Table 3 Interval solutions of branch voltages by MC method,
IGA and SS method.
MONTE CARLO GAUSS SS

Vl [ $0$ . SOOOOO $0$ . SOOOOO 1 1. 0000 1. 0000
V2 { $0$ . 490969 0.493896 1 1. $07S5$ 1. 0763
V3 ( $0$ . 006104 $0$ . 009031 1 1. 0258 1. 0666
V‘ [ $0$ . OOS377 $0$ . 008249 1 1. 0939 1. 1080
V5 ( $0$ . OOOS24 $0$ . 001084 1 1. 1392 1. 1520
V6 ( $0$ . 008742 $0$ . 013217 1 1. 0393 1.0411
V7 ( $0$ . 86783 0.491258 1 1. 0812 1. 082
V8 [ $0$ . 005119 0. $0083S1$ 1 1. 1505 1. 1585
V9 [ $0.000331$ $0$ . 000933 } 1. 3198 1. 3306
V1C ! $\sim 0.065901-0.038925$ ) 1. 1266 1. 1295
$\vee 1^{\underline{t}}$ ( $0$ . OOOS43 0.001122 1 1. 1903 1. 2002
$\vee 12$ $i$ $0$ . OOC412 $0$ . OOC938 1 1. 3521 1. 3751
V13 [ $0$ . 000098 $0$ . 000240 1 1. 4369 1. 4569
V14 ( $0$ . OS1612 $0.07S0S6$ $1$ 1. 0697 1. 0878
V15 ( $-0$ .998388 $arrow 0.979$ 1 1. 0741 1. 0775
V16 [ 1. 006290 1. 020232 1 1. 0792 1. 0811
V17 ( $-0.04$ 2951 $-0.028955$ 1 1. 1441 1. 1473
V18 ( $0$ . 028348 $0.04219S$ 1 1. 0876 1. 09 9
V19 $( -0.001947 -0. 000848 )$ 1. 3302 1. 3353
V20 ( $0.0822$ $0$ . 071966 1 1. 0879 1. 0978
V21 ( 1. 050000 1. 050000 1 1. 0000 1. 0000
V22 ( $0$ . 025721 $0$ . 041037 1 1. 1178 1. 1237
V23 [ $0$ . 029768 $0.0$ 3709 ) 1. 0741 1. 083
V24 $( -0. 003205 -0. 000524 )$ 1. 2613 1. 2698
V25 $($ $0$ . 001010 $0$ . 002110 $)$ 1. 1673 1. 1758
V26 [ $0$ . 002273 $0$ 004589 ) 1. 1572 1. 1642

Table 4 Interval solution of ladder network[2].
MONTE CARLO CAUSS SS

Vl [ 6.4248 7.8960 1 1. 0441 1. 0503
V2 [ 3. 6234 $b.8511$ ) 1. 0640 1. 0723
V3 ( 4. 9306 6. 0860 1 1. 0755 1. 0821
V‘ ( 1. 8081 2. 6369 1 1. 0812 1. 0903
VS ( $0.8304$ 1.4132 } 1. 0709 1. 0827
V6 [ 2. 3123 3. 5820 1 1. OS46 1. 0663
$\vee 7$ $( -1.8596-0.701 )$ 1. 0746 1. 0878
V8 ( 2.7787 3.8542 ) 1.0636 1.0732
V9 ( 0.8399 1.4170 1 1.0871 1.0991


