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Abstract

Abstract nonlinear operator equations of the type
f(u) = Lu+ Nu =0, u € D(L)

are considered, where L is a densely defined closed linear operator from a Banach space X
to an another Banach space Y and NNV a densely defined nonlinear operator from X to Y. A
method is presented for numerical verification and inclusion of solutions for the equations.

1 Introduction
In this paper, we are concerned with abstract nonlinear operator equations of the type
fw)=Lu+ Nu=0, u€ D(L) (1)

where L is a closed linear operator from a Banach space X to an another Banach space Y, and
N a nonlinear operator from X to Y. This type of equations occur in a variety of situations in
both pure and applied sciences. Eq. (1) is sometimes called a coincidence equation because one
wants to find a point w for which the images under L and —N coincide. The purpose of the
Vpaper is to present a method for numerical verification of existence and inclusion of solutions
for Eq. (1). That is, in association with a certain approximate solution @ of Eq. (1), we present
an algorithm which may answer the question as to whether there exists an exact solution »* in
some neighborhood of 4, and in the affirmative case may give a bound for «* — 4. If an error
bound for u* — % can be obtained, we shall say that an inclusion of a solution «* is obtained. In
the following, the domain of the definition of L, D(L), and that for N, D(N), is assumed to be
Banach spaces satisfying D(L) C D(N). For the sake of simplicity we will denote D = D(L).
The norms of D, X, and Y will be denoted by |- [|p, || - |lx, and || - ||y, respectively. Moreover,
the operator norm of a linear continuous operator L; from a Banach space X; to an another
Banach space X2 is denoted as || L1l z(x,,x,)-

For the case of L = d/dt, in 1965, Urabe[16] has presented a method for numerical
verification of existence and inclusion of solutions for Eq. (1) . Then, he[17],[15] and his
coresearchers[12],[13], [14] presented numerical verification results of periodic and quasi-periodic
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solutions for various ordinary differential equations. Urabe’s method is based on his convergence
theorem of a simplified Newton method for operator equations on suitable function spaces. From
the numerical analytic point of view, the crucial point of applying Urabe’s convergence theorem
is to estimate the operator norm of the inverse of the linearized operator of f. Urabe[16] has
also presented a method in which the estimation is derived by obtaining the fundamental matrix
of the linearized equation of Eq. (1) through the numerical integration. In 1972, Bouc[1] has
shown that this kind of estimation can be accomplished without the numerical integration by
using functional analytic techniques. The aim of this paper is to extend Urabe-Bouc’s approach.
That is, in this paper, we will treat the case in which L is a general closed operator including
not only ordinary differential operators but also certain types of partial differential operators
such as elliptic operators. Since mathematically rigorous bounds is required in obtaining such
an estimate, we have developed a numerical software on which rational arithmetic can be exe-
cuted. In this system using a continued fraction expansion of rational numbers for the rounding
of rational numbers, rounding errors during the numerical estimation are completely taken into
account.

Historically, several authors have presented different ways to use computers in proving
the existence of solutions for nonlinear operator equations. Kantorovich[5] has presented a
convergence theorem of the Newton method on function spaces and treated various kinds of
functional equations. Kedem[7] has utilized this Newton-Kantorovich theorem to prove the ex-
istence of solutions for certain two-point boundary problems through the numerical estimation.
Cesari[2] presented also a method based on the alternative method. Collatz[3] and Schroeder
[11] have presented methods based on the monotonicity or the inverse-positivity of the opera-
tors. More recently, Kaucher-Miranker[6] presented a method using basies expansions. Nakao[9]
has presented an infinite dimensional interval method and treated not only ordinary differential
equations but also partial differential equations of various types. Pqun[lO] has also presented
a method based on the eigenvalue estimation. Our method of estimating the operator norm of
the linearized operator of f is completely different from these method.

2 Graph Norm Estimate

We consider here the graph norm introduced by L in D(L):
lulle = llullx + | Zully  for u € D(L)

Since L is closed, D(L) becomes a Banach space with respect to the norm ||u||z. We denote this
Banach space Dr. We assume that N is continuously Fréchet differentiable as a map from Dy,
to Y. For u € Dy, we assume that the first derivative of N, DN(u) = S(u), can be extended
to a bounded linear map from X to Y. In order to verify the existence of solutions for Eq. (1)
through the numerical estimation, we introduce now a numerical framework. Let E and F be
finite dimensional subspaces of Dy, and Y, respectively, with dim £ = dim F = m. Let P and
Q be projections from Dy, to E and Y to F, respectively. We assume that

lu— Pullx < cllLully forVue D, O ©
QLu=QLPu forVue€ Dy (3)
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and
IRQlLyy) <1 (4)

hold. Here c¢ is a constant independent of u. It should be noted that for a choice of P we
usually suppose that the constant ¢ can be chosen arbitrary small provided that dim E becomes
sufficiently large. » :

Let {e1,e2,  -,em} and {v1,va,---,um} be bases of E and F, respectively. Then any
element e € F and v € F can be represented as '

e= i cn(€)en (5)
n=1 .
and m :
v = Z dn(v)vna (6)
n=1

respectively. Here, c,(€)’s and d,(v)’s are suitable linear functionals. Thus maps A,, : £ — E,,
and B,, : F — F,, can be defined as

Ane= (01(6), 02(6)’ Ty Cm(e))t (7)

and
‘ Bnv = (dl ('U)’ d?(v)v Ty dm(v))tv (8)

respectively. Here, the superscript ¢ denotes the transposition of vectors,
Epn = {(c1(e),ca(e)," -+, cm(e))'le € E}

and
Fm = {(dl('l)),dQ('U),' : -,dm('v))tlv € F}

For ¢ = (c1,¢2,*+,¢m)" € By and d = (dy,da, -+ ,dp)" € Fy,, define

pllEn =11 Y caenllx : 9)
n=1
and m
ldllF =11 >_ dnvally. (10)
n=1

Now, let % € E be a certain approximate solution of Eq. (1). For example, % is obtained
by solving the following determining equation of the Galerkin approximation

Qmf(u)=0foru e E, (11)

through the usual floating point arithmetic. Thus @ is not an exact solution even for this
approximate equation. Then, a linear transformation J : E,, — F,, can be defined for ¢ =
(Cl, €2, ", Cm)t € En, by
m
J$ = Bn{Q(L+S(@) Y cnenl}. (12)

n=1
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Since E,, and F,, are finite dimensional vector spaces, from now on, J is identified with a
matrix. By the definition, we have for x € Df,

JAm Pz = B {Q(L + S(a))Px}. (13)
If det J # 0, we have
Am Pz = J !B {Q(L + S(4)) Pz}, (14)
from which we have
Pzllx = |lAmPzlE,
< W 2(Em By |1 BmQ(L + S(@)) Pzl|F,,
< M|Q(L + S(w)Pz|ly (15)

Here, M is a constant such that
1T L ) < M. (16)
Then, one of our main results can be stated as follows:
Theorem 2.1 Assume that det J # 0. Let K and M be constants such that [|S(@)||L(xy) < K

and |77 (p, E.) < M. If cK(14+ MK) < 1, then the map G(a) = L+ S(@) : D, = Y
satisfies the following estimate for any z € Dp:

lzllz < ClG@zlly, (17)

where
_ 1+01+MK)+ M

¢= 1-cK(1+ MK)

O

From this theorem, it is seen that if the constants K and M can be evaluated numerically,
then the constant C can be estimated provided CK(1+ M K) < 1 holds. The rational arithmetic
numerical software library has been developed for estimating the constants such as K and M
taking the rounding errors of the numerical computation into account. Details will be discussed
in later by choosing a suitable example.

It should also be note that Th.2.1 states that the map G(i4) = L+ S(@) : Dy —» Y is an
injection. If this map is also a surjection, it follows that the map has the inverse. Although,
this is not the case in general, for the Fredholm operators we can show that the map has the
inverse. We recall here the definition of the Fredholm map with an index zero. The continuous
linear operator T' from a Banach space X; to an another Banach space X is call of Fredholm
type iff

dim N(T) < oo

and
codimR(T) < oo.

Here, N(T) and R(T) are the null space and the range of the operator T, respectively. codim
R(T) is the dimension of the space Xo/R(T). For the Fredholm operator T

ind(T) = dim N(T') — codimR(T) . (18)
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is well defied and called the index. If we consider the map G(#%) is as the map from the Banach
space Dy, to the another Banach space Y, it becomes continuous. '

Corollary 2.1 If G(i) is of Fredholm type with the index 0 and if the condtion of Th.2.1 is
satisfied, then G(%) has the inverse. ' ]

In fact, from Th.2.1 it follow that
dim N(G(@)) =0 (19)

which implies codimR(G(%)) = 0, because the index of G(4) is assumed to be zero. Thus it is
shown that G(%) is also surjective and has the inverse.
Now we define a residual

r=|f@ly.

Let U, = B(a,p) be the closed ball in Dy, centered at @ with the radius p. Here, if we
assume that S(u) = DN(u) : Dy, — Y is locally Lipschitz continuous:

IS(u) = SW)lpy,y) < av,llu—vllr  for u,v € Up, C Dy,
then we have

Theorem 2.2 Assume that G(#) : Dy — Y has the inverse and ¢cK(1 4+ M K) < 1 holds. For
the sake of simplicity, let @ = ay,. If p satisfies

1. 2Cr<p
and

2. aCp <1,
then there exists a solution u* of Eq. (1) uniquely in U, such that
lu* — L < 2Cr.
a

_ This theorem implies that together with K and M, if the constants 7 and a can further
be estimated numerically, the existence of a solution for Eq. (1) is verified numerically provided
that the conditions of Theorem 2.2 are satisfied.

3 Proof of Theorem 2.‘1

Recall that
G(i)z = Lz + S(@)z, G(u):Dp —-Y. (20)

For z € Dy, we have

llzllx lz — Pzllx + || Pzllx

cllLzlly + || Pzl x.

IAN A

(21)
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From the definition of (20) and (21), it follows

ILzlly < IG@zlly +|IS(@)zlly
< lIG@ally + Kilellx
<

IG(@)zlly + cK||Lz|ly + K| Pz| x. (22)
Moreover from (20) and (3), we have
QG()z = QLx + QS(4)z = QLPz + QS(u)(z — Pz + Pz).
Here, if we put
s=QLPz+ QS(a)Pz = Q[G(i)x — S(&)(z — Pz)),
using (4) we have
lslly < IG@)zlly + cK||Lz|ly- (23)
Substituting the relation (15)
| Pzllx < Mllslly (24)

and (23) into (22), we have
ILzlly < lG@)zlly + cKl||Lz|y + MK]|s|ly
<

IG@)zlly + cK||Lzlly + MK(IG(@)z|ly + Kcl|Lz|ly)
1+ MEK)|G(@)zlly + cK(1+ MK)|| Lz|ly.

Thus we have
1+ MK

cK(1+ MK)
On the other hand, substituting (24) and (23) into (21), we have

IZlly < 3= IG(@)zlly. (25)

lallx < eliZally + Mlislly |
< cliZally + MIG@sly +cK|Laly)
o(1+ M) Lally + MIG(@slly-

From this and (25), we have

cl+MK)+ M
1- cK(1+ MK)

llzllx < IG(@)z]ly. (26)

Summing up the above-mentioned discussions, we finally have

1+c)(1+MK)+M
1-cK(1+ MK)

lzllz = llzllx + I Lzlly < IG(@)z|ly

provided ¢cK(1 + M K) < 1. This proves Theorem 2.1. ]
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4 Proof of Theorem 2.2

We shall prove Theorem 2.2 by showing that the operator T' defined in the below becomes
a contraction mapping on U, under the conditions of Theorem 2.2. Using G(ii)~1, let us define
an operator T': D — Dy by

Tu = G(@) " (S(@)u — Nu).

Since G(1)~! exists, a fixed point of T is a solution of Eq. (1). In the first place, we shall show
that TU, C Up. For any u € U,, we have

ITu -l = |G(@) " (S(@)u — Nu) — @l
=l (@)(S(@)u — Nu — G(@)u)||.
< C|S(@)u — Nu — G(a)illy
= C||S(%)u — Nu — La — S(a)i|y
<C(l = Nu+ Na— S@) (@ —u)lly +7). (27)

Since Li = f(@) — Na and ||f(@)|ly = r. Let
R=Nu-Ni- S(@)(u—a).

Using the formula .
‘ Nu—Nv=/ S(u+ t(v —u)) (v — u)dt,
0

we have an estimate

IRy = | /01(5(11 +t(u — @) (u — @) — 5(a)) (v — wdt|ly

1
nﬁ[aa+uu—a»—swnw—ammy

IA

1
o [ N+t — 0] - allyll(u - @)y
0

a -
il — a3, (28)

IA

from which, we have
- a ~12
|Tu—all, <C '2‘|lu —ally +r
<C (gp2 + r) <p. (29)

This implies TU, C U,.
We now show that T' is contractive on Up. For for u,v € U,, we have

ITu~Tollz < |IG@) " (S(@)u ~ Nu) — G(@) ™ (S(@)v — No)llz

= [IG@)~(S(@)(u—-v) — (Nu— Nv))||z
< ClS@)(u—-v) = (Nu— No)lly
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1
cmﬁ(au+m~wm—sm»w—wmm

IA

1
C [ St +tw - ) = S@)lzoy) v~ ulldt
< aCpllo - ull. (30)

Thus we have
|Tw — Tv||L < aCpllv — ullz. ' (31)

This shows that T is contractive on Up. Thus it follows that there exists a unique fixed point
u* of T in Up. From the relation

. - a . -
lu* —allL < ECPHTu — il + Cr,

we obtain an error bound
flu* — @l < 2Cr.

~ This completes the proof. ' O

5 An Application to An Ordinary Differential Equation

In this section, we study an application of the results in the previous sections to obtain
a periodic solution of ordinary differential equations taking the following Duffing equation

t" 4+ Az’ + Bz® — Ccost =0,t € J = (0,2n)

as an example, where A, B and C are constants. Let Ly(0,27), H1(0,27) and Hs(0,27) be the
Lebesgue space of square integrable functions and the Sobolev spaces with norms

27
wm=¢%£nmmw

Izl = y/lll? + '],

and

2l = /llzli2 + la']12 + ll" |2,

respectively. Let X =Y = {z|z € Lo(0,27) N z(t) = —z(t + m)}. Let us define operators
L:D(L)=XNHy0,2r) >Y and N : D(L) - Y by

Lz =z" + A’

and
Nz = Bz3 — C cost,

respectively. Then, it is well known that L is a closed linear operator from X to Y. Thus the
graph norm associated with L is defined as

Izl = llzllz + ll2” + Azl



For z € D(L), taking the equation z(t) = —z(t + 7) we can expand z as

r=V?2 i(an cos(2n — 1)t + by, sin(2n — 1)¢).

n=1

Now define a projection operator P, : D(L) — E = P, D(L) by

Pnz =2 Z (an cos(2n — 1)t + b, sin(2n — 1)t).

n=1

Then we have

Lemma 5.1 1

— Pnzll2 < '
melle < T BT 1)
for £ € D(L), where P,,D(L) is the image of D(L) by P,,.

ll I Zz]l2

Proof Let -
=2 Z(aﬁl cos(2n — 1)t + b), sin(2n — 1)1)
n=1
and
o0 .
g’ = V2 (a] cos(2n — 1)t + by sin(2n — 1)t).
n=1
So we have
a, = (2n — 1)b,, b, = —(2n — 1)ay,,
and

ap = —(2n — 1)2a,, b = —(2n — 1)%b,.
Thus if we put
o0
2"+ A2'(t) = V2 3 (@n cos(2n — 1)t + b, sin(2n — 1)t),

n=1
we have
an = —(2n —1)%a, + (2n — 1)Aby,, b, = —(2n — 1) Aa, — (2n — 1)%b,,
or ‘ V .
. = —(2n —1)%a, — (2n - 1)Ab,
T (2n-1)44 (2n —1)242
and

—(2n = 1)2b, + (2n — 1) Adp
(2n — 1)* + (2n — 1)242

Let us now consider ||z — P z||3. The Perseval equality gives

by =

(o <]
lz = Pnzll} = 3 (a%+b})

n=m+1

oo 1 . )
n—§+l ((2n — 1)* + A%(2n - 1)?) (@, +0z)
1

(2m +1)4 + A2%(2m + 1)2
Thus we have the desired inequality.

IZz3.

123
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Moreover, we have

Lemma 5.2 For z € H2(0,27), we have

bllzllr < llzllm, < bllels,

where

and

b=1/2(1+ A2).

Proof From the Perseval equality, we have

I3 = So(a?+ 12
n=1
i’: (2n - D4((2n - 1)* + 4%2(2n - 1)?)
Z ((2n—1)% 4+ A2(2n - 1)2)?

(1+ A?)|| |3,

IA

(a2 +b2)

IA

and similarly :
l=']l3 < (1+ A%)||La|l3.

These inequalities imply

llz"13 + lla" 13 + llz13 213 +2(1 + A%)|| L3

<
< 201+ 4%, (32)

which is the right half of the desired inequalities.
On the other hand, we have

Izl + ll=" + Az|l2
< llellz + 12"z + Allz'll2
< @2+ Az g,

]

llllz

This is the left half of the desired inequality. - ]

Similarly, we obtain

Lemma 5.3 For z € Hy(0,27), we have

el < VIt AlelL,

'l < y2(1+ A%zl

and
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We now consider to include 2w-periodic solution of the Duffing equation with A =
0.1,B = 1, and C = 0.4464. For the purpose, let us consider an approximate equation of
Eq. (1) of the following form:

Puf(z) =0,z € E = P,D(L). (33)

Here,
f(x)=Lx+ Nz.

Since the so-called determing equation (33) is a finite dimensional equation, its approximate
solution can be obtained easily. In fact, the following approximate solution is derived through
the Newton method:

5 = 1230184444622 1255301809357
= 10096283453831 3264990063609
3330800261015 ..~ 25614353050037 _ ..
62230322929326 407715265530912
30678010753 20268208717 _ -
50578758054295 4200092845578
_ 203050479 . 10543149859 _
1606019671451 75359444598260
9917353 ... 27060356 .
674649767686 3079992935547
_ 10029085 .. 80843412 .
9872509922553 2002007632142809 -
_ 393059 isp_ 920405 o4
7177837174127 26456112180297
2009793 1158567 .
815t = o 7102958486574 ° 1ot

~ 1535022779191217 °

Now letting P = @ = P, J is computed through the formula (12). Thanks to the
polynomial nonlinearity of the problem, the matrix J can be calculated rigorously. In fact,
using the addition formula of the trigonomeric functions and the technique of the automatic
differentiation[4], a program for calculating J rigorously can be realized without difficulty. Then,
since each element of J is rational number, J~! can be calculated exactly by the rational
arithmetic, which is executed on the rational arithmetic library developed by ourselves. Thus,
a bound M of ||J7Y| (r,p) can be evaluated as the Frobenius norm of the matrix J fl free
from the rounding errors of numerical computation. Here, F,,, = P, Y. Similarly, the residual
Il f(Z)]l2 can be estimated numerically through the Parseval equality free from the numerical
computation errors . '

In this example, we have an estimate

IS@)lzexyy < 13300

Here, ||z]lco = max{|z(t)||0 <t < 27}. Since

V2 f: (an €08(2n — 1)t + by 5in(2n — 1)) ]leo < V2 i": |an)? + |bn|2, (34)
n=1 n=1
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the value K = ||32%|| can be evaluated rigorously using the rational arithmetic library. Simi-
larly, @ = ap(; ) is estimated as ‘
o= 2 1zl + )
\/§ o0 )
which can also be evaluated rigorously using the rational arithmetic numerical library.
Thus, for the approximate solution Z, as a result of the estimation, we have

M < 3:118,r < 0.0000000432, K < 6.869 and p < 0.00000474.
From these constants, we have
C < 54.806,a < 26.215 and aCp < 0.00682.

Of course, this evaluation is free from the numerical computation errors. For the Duffing
equation it is easy to show that the operator G(&) becomes a Fredholm operator with the index
zero so that the existence of the constant C implies the existence of the inverse of the operator
L + S(%). Thus it is verified from Theorem 2.2 that, in the ball ||Z — z||; < 0.00000474, there
exists a locally unique exact solution z*of the Duffing equation. By the Sobolev embedding
theorem(8], for z € H;(0,27) we have

27
tanh 27
from which we have the following estimate between z* and Z as

lzlloo <

”-77“H17

12 -2 < dllE—a"(|m,

< Tsla-ol
_ bdp
< £
—— ﬁ’
< 0.0000120, (35)
and
dz - dz* dz  dz*
—_ < it
< bdl|z -z
< 0.0000169, (36)

where b = v/1+ A2 and d = /27/ tanh 27 so that bd < 3.56261.

In Fig.1., the outline of the solution is illustrated. In Fig.1 (b), the center line of the
three parallel lines indicates & and the other two lines indicate the bound, in which the exact
solution z* is located.
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Fig.1 Result of Inclusion of the 2m-periodic solution of the Duffing Equ

ation



