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Abstract

Abstract nonlinear operator equations of the type

$f(u)\equiv Lu+Nu=0,$ $u\in D(L)$

are considered, where $L$ is a densely defined closed linear operator from a Banach space $X$

to an another Banach space $Y$ and $N$ a densely defined nonlinear operator from $X$ to Y. A
method is presented for numerical verification and inclusion of solutions for the equations.

1 Introduction

In tlus paper, we are concerned with abstract nonlinear operator equations of the type

$f(u)\equiv Lu+Nu=0,$ $u\in D(L)$ (1)

where $L$ is a closed linear operator from a Banach space $X$ to an another Banach space $Y$ , and
$N$ a nonlinear operator from $X$ to $Y$ . This type of equations occur in a variety of situations in
both pure and applied sciences. Eq. (1) is sometimes called a coincidenoe equation because one
wants to find a point $u$ for which the images under $L$ and $-N$ coincide. The purpose of the
paper is to present a method for numerical verification of existence and inclusion of solutions
for Eq. (1). That is, in association with a certain approximate solution $\tilde{u}$ of Eq. (1), we present
an algorithm which may answer the question as to whether there exists an exact solution $u^{*}$ in
some neighborhood of $\tilde{u}$ , and in the affirmative case may give a bound for $u^{*}-\tilde{u}$ . If an error
bound for $u^{*}-\tilde{u}$ can be obtained, we shall say that an inclusion of a solution $u^{*}$ is obtained. In
the following, the domain of the definition of $L,$ $D(L)$ , and that for $N,$ $D(N)$ , is assumed to be
Banach spaces satisfying $D(L)\subset D(N)$ . For the sake of simplicity we will denote $D=D(L)$ .
The norms of $D,$ $X$ , and $Y$ will be denoted by $||\cdot\Vert_{D},$ $||\cdot||x$ and $||\cdot\Vert_{Y}$ , respectively. Moreover,
the operator norm of a linear continuous operator $L_{1}$ from a Banach space $X_{1}$ to an another
Banach space $X_{2}$ is denoted as $|L_{1}\Vert_{L(X_{1},X_{2})}$ .

For the case of $L=d/dt$, in 1965, Urabe[16] has presented a method for numerical
verification of existence and inclusion of solutions for Eq. (1) . Then, he[17],[15] and his
coresearchers[12],[13], [14] presented numerical verification results of periodic and quasi-periodic
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solutions for various ordinary differential equations. Urabe’s method is based on his convergence
theorem of a simplified Newton method for operator equations on suitable function spaces. From
the numerical analytic point of view, the crucial point of applying Urabe’s convergence theorem
is to estimate the operator norm of the inverse of the linearized operator of $f$ . $Urabe[16]$ has
also presented a method in which the estimation is derived by obtaining the fundamental matrix
of the linearized equation of Eq. (1) through the numerical integration. In 1972, Bouc[l] has
shown that this kind of estimation can be accomplished without the numerical integration by
using functional analytic teclmiques. The aim of this paper is to extend Urabe-Bouc’s approach.
That is, in this paper, we will treat the case in which $L$ is a general closed operator including
not only ordinary differential operators but also certain types of partial differential operators
such as elliptic operators. Since mathematically rigorous bounds is required in obtaining such
an estimate, we have developed a numerical software on which rational arithmetic can be exe-
cuted. In this system using a continued fraction expansion of rational numbers for the rounding
of rational numbers, rounding errors during the numerical estimation are completely taken into
account.

Historically, several authors have presented different ways to use computers in proving
the existence of solutions for nonlinear operator equations. Kantorovich[5] has presented a
convergence theorem of the Newton method on function spaces and treated various kinds of
functional equations. Kedem[7] has utilized this Newton-Kantorovich theorem to prove the ex-
istence of solutions for certain two-point boundary problems through the numerical estimation.
Cesari[2] presented also a method based on the alternative method. Collatz[3] and Schroeder
[11] have presented methods based on the monotonicity or the inverse-positivity of the opera-
tors. More recently, Kaucher-Miranker[6] presented a method using basies expansions. Nakao[9]
has presented an infinite dimensional interval method and treated not only ordinary differential
equations but also partial differential equations of various types. Plum[10] has also presented
a method based on the eigenvalue estimation. Our method of estimating the operator norm of
the linearized operator of $f$ is completely different from these method.

2 Graph Norm Estimate

We consider here the graph norm introduced by $L$ in $D(L)$ :

$||u||_{L}=\Vert u\Vert_{X}+||Lu\Vert_{Y}$ for $u\in D(L)$

Since $L$ is closed, $D(L)$ becomes a Banach space with respect to the norm $||u||_{L}$ . We denote this
Banach space $D_{L}$ . We assume that $N$ is continuously Fr\’echet differentiable as a map from $D_{L}$

to $Y$ . For $u\in D_{L}$ , we assume that the first derivative of $N,$ $DN(u)=S(u)$ , can be extended
to a bounded linear map from $X$ to $Y$ . In order to verify the existence of solutions for Eq. (1)
through the numerical estimation, we introduce now a numerical framework. Let $E$ and $F$ be
finite dimensional subspaces of $D_{L}$ and $Y$ , respectively, with $\dim E=\dim F=m$ . Let $P$ and
$Q$ be projections from $D_{L}$ to $E$ and $Y$ to $F$ , respectively. We assume that

$\Vert u-Pu||_{X}\leq c||Lu||_{Y}$ for $\forall u\in D_{L}$ (2)

$QLu=QLPu$ for $\forall u\in D_{L}$ (3)
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and
$||Q||_{L(Y,Y)}\leq 1$ (4)

hold. Here $c$ is a constant independent of $u$ . It should be noted that for a choice of $P$ we
usually suppose that the constant $c$ can be chosen arbitrary small provided that $\dim E$ becomes
sufficiently large.

Let $\{e_{1}, e_{2}, \cdots, e_{m}\}$ and $\{v_{1}, v_{2}, \cdots, v_{m}\}$ be bases of $E$ and $F$ , respectively. Then any
element $e\in E$ and $v\in F$ can be represented as

$e= \sum_{n=1}^{m}c_{n}(e)e_{n}$ (5)

and
$v= \sum_{n=1}^{m}d_{n}(v)v_{n}$ , (6)

respectively. Here, $c.(e)s$ and $d.(v)s$ are suitable linear functionals. Thus maps $A_{m}$ : $Earrow E_{m}$

and $B_{m}$ : $Farrow F_{m}$ can be defined as

$A_{m}e=(c_{1}(e), c_{2}(e),$ $\cdots,$
$c_{m}(e))^{t}$ (7)

and
$B_{m}v=(d_{1}(v), d_{2}(v),$ $\cdots,$

$d_{m}(v))^{t}$ , (8)

respectively. Here, the superscript $t$ denotes the transposition of vectors,

$E_{m}=$ $\{(c_{1}(e), c_{2}(e), \cdots , c_{m}(e))^{t}|e\in E\}$

and
$F_{m}=\{(d_{1}(v), d_{2}(v), \cdots, d_{m}(v))^{t}|v\in F\}$ .

For $\phi=(c_{1}, c_{2}, \cdots, c_{m})^{t}\in E_{m}$ and $d=(d_{1}, d_{2}, \cdots, d_{m})^{t}\in F_{m}$ , define

$|| \phi||_{E_{m}}=\Vert\sum_{n=1}^{m}c_{n}e_{n}||x$ (9)

and
$||d||_{F_{m}}= \Vert\sum_{n=1}^{m}d_{n}v_{n}||_{Y}$. (10)

Now, let $\tilde{u}\in E$ be a certain approximate solution of Eq. (1). For example, $\tilde{u}$ is obtained
by solving the following determining equation of the Galerkin approximation

$Q_{m}f(u)=0$ for $u\in E_{m}$ (11)

through the usual floating point $arit1_{1}metic$ . Thus $\tilde{u}$ is not an exact solution even for this
approximate equation. Then, a linear transformation $J$ : $E_{m}arrow F_{m}$ can be defined for $\phi=$

$(c_{1}, c_{2}, \cdots, c_{m})^{t}\in E_{m}$ by

$J \phi=B_{m}\{Q(L+S(\tilde{u}))\sum_{n=1}^{m}c_{n}e_{n}\}$ . (12)
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Since $E_{m}$ and $F_{m}$ are finite dimensional vector spaces, from now on, $J$ is identified with a
matrix. By the definition, we have for $x\in D_{L}$

$JA_{m}Px=B_{m}\{Q(L+S(\tilde{u}))Px\}$ . (13)

If $\det J\neq 0$ , we have
$A_{m}Px=J^{-1}B_{m}\{Q(L+S(\tilde{u}))Px\}$ , (14)

from which we have

11 $Px\Vert_{X}=||A_{m}Px||_{E_{m}}$

$\leq$ $||J^{-1}||_{L(F_{m},E_{m})}||B_{m}Q(L+S(\tilde{u}))Px\Vert_{F_{m}}$

$\leq$ $M\Vert Q(L+S(\tilde{u}))Px||_{Y}$ (15)

Here, $M$ is a constant such that
$||J^{-1}\Vert_{L(F_{m},E_{m})}\leq M$. (16)

Then, one of our main results can be stated as follows:

Theorem 2.1 Assume that $\det J\neq 0$ . Let $K$ and $M$ be constants such that $||S(\tilde{u})||_{L(X,Y)}\leq K$

and $||J^{-1}||_{L(F_{m},E_{m})}\leq M$ . If $cK(1+MK)<1$ , then the map $G(\tilde{u})=L+S(\tilde{u})$ : $D_{L}arrow Y$

satisfies the following estimate for any $x\in D_{L}$ :

$\Vert x||_{L}\leq C\Vert G(\tilde{u})x\Vert_{Y}$ , (17)

where
$C= \frac{(1+c)(1+MK)+M}{1-cK(1+MK)}$ .

$\square$

From this theorem, it is seen that if the constants $K$ and $M$ can be evaluated numerically,
then the constant $C$ can be estimated provided $CK(1+MK)<1$ holds. The rational arithmetic
numerical software library has been developed for estimating the constants such as $K$ and $M$

taking the rounding errors of the numerical computation into account. Details will be discussed
in later by choosing a suitable example.

It should also be note that Th.2.1 states that the map $G(\tilde{u})=L+S(\tilde{u})$ : $D_{L}arrow Y$ is an
injection. If this map is also a surjection, it follows that the map has the inverse. Although,
this is not the case in general, for the Fkedholm operators we can show that the map has the
inverse. We recall here the definition of the Fredholm map with an index zero. The continuous
linear operator $T$ from a Banach space $X_{1}$ to an another Banach space $X_{2}$ is call of Fredholm
type iff

$\dim N(T)<\infty$

and
codim$R(T)<\infty$ .

Here, $N(T)$ and $R(T)$ are the null space and the range of the operator $T$ , respectively. codim
$R(T)$ is the dimension of the space $X_{2}/R(T)$ . For the Fredholm operator $T$

$ind(T)=\dim N(T)$ –codimR(T) (18)
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is well defied and called the index. If we consider the map $G(\tilde{u})$ is as the map from the Banach
space $D_{L}$ to the another Banach space $Y$ , it becomes continuous.

Corollary 2.1 If $G(\tilde{u})$ is of Fredholm type with the index $0$ and if the condtion of Th.2.1 is
satisfied, then $G(\tilde{u})$ has the inverse. $\square$

In fact, from Th.2.1 it follow that
$\dim N(G(\tilde{u}))=0$ (19)

which implies codimR(G(u)) $=0$ , because the index of $G(\tilde{u})$ is assumed to be zero. Thus it is
shown that $G(\tilde{u})$ is also surjective and has the inverse.

Now we define a residual
$r=||f(\tilde{u})||_{Y}$ .

Let $U_{p}=B(\tilde{u},p)$ be the closed ball in $D_{L}$ centered at $\tilde{u}$ with the radius $p$ . Here, if we
assume that $S(u)=DN(u)$ : $D_{L}arrow Y$ is locally Lipschitz continuous:

$||S(u)-S(v)\Vert_{L(D_{L},Y)}\leq a_{U_{p}}\Vert u-v||_{L}$ for $u,$ $v\in U_{p}\subset D_{L}$ ,

then we have

Theorem 2.2 Assume that $G(\tilde{u})$ : $D_{L}arrow Y$ has the inverse and $cK(1+MK)<1$ holds. For
the sake of simplicity, let $a=a_{U_{p}}$ . If $p$ satisfies

1. $2Cr\leq p$

and

2. $aCp<1$ ,

then there exists a solution $u^{*}$ of Eq. (1) uniquely in $U_{p}$ such that

$||u^{*}-\overline{u}||_{L}\leq 2Cr$ .

$\square$

This theorem implies that together with $K$ and $M$ , if the constants $r$ and $a$ can further
be estimated numerically, the existence of a solution for Eq. (1) is verified numerically provided
that the conditions of Theorem 2.2 are satisfied.

3 Proof of Theorem 2.1

Recall that
$G(\tilde{u})x=Lx+S(\tilde{u})x$ , $G(\tilde{u})$ : $D_{L}arrow Y$. (20)

For $x\in D_{L}$ , we have

$||x||x\leq||x-Px||_{X}+\Vert Px\Vert_{X}$

$\leq c||Lx||_{Y}+||Px||_{X}$ .
(21)
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From the definition of (20) and (21), it follows

$||Lx||_{Y}$ $\leq$ $||G(\tilde{u})x||_{Y}+||S(\tilde{u})x||_{Y}$

$\leq$ $||G(\tilde{u})x||_{Y}+K||x||x$

$\leq$ $\Vert G(\tilde{u})x||_{Y}+cK\Vert Lx||Y+K\Vert Px||_{X}$ . (22)

Moreover from (20) and (3), we have

$QG(\overline{u})x=QLx+QS(\tilde{u})x=QLPx+QS(\tilde{u})(x-Px+Px)$ .

Here, if we put
$s=QLPx+QS(\tilde{u})Px=Q[G(\tilde{u})x-S(\tilde{u})(x-Px)]$ ,

using (4) we have
$||s||_{Y}\leq||G(\tilde{u})x||_{Y}+cK||Lx||_{Y}$ . (23)

Substituting the relation (15)
$||Px\Vert_{X}\leq M||s||_{Y}$ (24)

and (23) into (22), we have

$||Lx||_{Y}$ $\leq$ $||G(\tilde{u})x||_{Y}+cK||Lx||_{Y}+MK||s||_{Y}$

$\leq$ $\Vert G(\tilde{u})x||_{Y}+cK||Lx||_{Y}+MK(||G(\tilde{u})x||_{Y}+Kc||Lx||_{Y})$

$=$ $(1+MK)||G(\tilde{u})x||_{Y}+cK(1+MK)||Lx||_{Y}$ .

Thus we have
$||Lx||_{Y} \leq\frac{1+MK}{1-cK(1+MK)}||G(\tilde{u})x||_{Y}$ . (25)

On the other hand, substituting (24) and (23) into (21), we have

$||x||x\leq c||Lx||_{Y}+M\Vert s||_{Y}$

$\leq$ $c\Vert Lx\Vert_{Y}+M(||G(\tilde{u})x||_{Y}+cK\Vert Lx\Vert_{Y})$

$=$ $c(1+MK)||Lx\Vert_{Y}+M\Vert G(\tilde{u})x\Vert_{Y}$ .

From this and (25), we have

$||x \Vert_{X}\leq\frac{c(1+MK)+M}{1-cK(1+MK)}\Vert G(\tilde{u})x||_{Y}$ . (26)

Summing up the above-mentioned discussions, we finally have

$\Vert x\Vert_{L}=\Vert x\Vert_{X}+\Vert Lx\Vert l^{f}\leq\frac{(1+c)(1+MK)+M}{1-cK(1+MK)}\Vert G(\tilde{u})x\Vert_{Y}$

provided $cK(1+MK)<1$ . This proves Theorem 2.1. $\square$
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4 Proof of Theorem 2.2

We shall prove Theorem 2.2 by \S howing that the operator $T$ defined in the below becomes
a contraction mapping on $U_{p}$ under the conditions of Theorem 2.2. Using $G(\tilde{u})^{-1}$ , let us define
an operator $T:D_{L}arrow D_{L}$ by

$Tu=G(\tilde{u})^{-1}(S(\tilde{u})u-Nu)$ .

Since $G(\tilde{u})^{-1}$ exists, a fixed point of $T$ is a solution of Eq. (1). In the first place, we shall show
that $TU_{p}\subset U_{p}$ . For any $u\in U_{p}$ , we have

$||Tu-\tilde{u}||_{L}=||G(\tilde{u})^{-1}(S(\tilde{u})u-Nu)-\tilde{u}||_{L}$

$=\Vert G^{-1}(\tilde{u})(S(\tilde{u})u-Nu-G(\tilde{u})\tilde{u})||_{L}$

$\leq C||S(\tilde{u})u-Nu-G(\tilde{u})\tilde{u}\Vert_{Y}$

$=C\Vert S(\tilde{u})u-Nu-L\tilde{u}-S(\tilde{u})\tilde{u}||_{Y}$

$\leq C(||-Nu+N\tilde{u}-S(\tilde{u})(\tilde{u}-u)||_{Y}+r)$ . (27)

Since $L\tilde{u}=f(\tilde{u})-N\tilde{u}$ and $||f(\tilde{u})\Vert_{Y}=r$ . Let

$R=Nu-N\tilde{u}-S(\tilde{u})(u-\tilde{u})$ .

Using the formula

Nu–Nv $= \int_{0}^{1}S(u+t(v-u))(v-u)dt$ ,

we have an estimate

$\Vert R\Vert_{Y}$ $=$ $\Vert\int_{0}^{1}(S(\tilde{u}+t(u-\tilde{u})(u-\tilde{u}))-S(\tilde{u}))(u-\tilde{u})dt\Vert_{Y}$

$=$ $|| \int_{0}^{1}[S(\tilde{u}+t(u-\tilde{u}))-S(\tilde{u})](u-\tilde{u})dt||_{Y}$

$\leq$ $a \int_{0}^{1}\Vert[\tilde{u}+t(u-\tilde{u})]-\tilde{u}\Vert_{Y}\Vert(u-\tilde{u})\Vert_{Y}dt$

$\leq$ $\frac{a}{2}||u-\tilde{u}\Vert_{L}^{2}$ , (28)

from which, we have

$||Tu- \tilde{u}||_{L}\leq C(\frac{a}{2}\Vert u-\tilde{u}\Vert_{L}^{2}+r)$

$\leq C(\frac{a}{2}p^{2}+r)<p$ . (29)

This implies $TU_{p}\subset U_{p}$ .
We now show that $T$ is contractive on $U_{p}$ . For for $u,$ $v\in U_{p}$ , we have

$||Tu-Tv||_{L}$ $\leq$ $||G(\tilde{u})^{-1}(S(\tilde{u})u-Nu)-G(\tilde{u})^{-1}(S(\tilde{u})v-Nv)||_{L}$

$=$ $\Vert G(\tilde{u})^{-1}(S(\tilde{u})(u-v)-(Nu-Nv))||_{L}$

$\leq$ $C\Vert S(\tilde{u})(u-v)-(Nu-Nv)\Vert_{Y}$
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$=$ $C|| \int_{0}^{1}(S(u+t(v-u))-S(\tilde{u}))(v-u)dt||_{Y}$

$\leq$ $C \int_{0}^{1}||S(u+t(v-u))-S(\tilde{u})\Vert_{L(D_{L},Y)}||v-u||_{L}dt$

$\leq$ $aCp||v-u||_{L}$ . (30)

Thus we have

11Tu–Tv $||_{L}\leq aCp||v-u\Vert_{L}$ . (31)

This shows that $T$ is contractive on $U_{p}$ . Thus it follows that there exists a unique fixed point
$u^{*}$ of $T$ in $U_{p}$ . From the relation

$||u^{*}- \tilde{u}||_{L}\leq\frac{a}{2}Cp||Tu^{*}-\tilde{u}||_{L}+Cr$ ,

we obtain an error bound
$||u^{*}-\tilde{u}\Vert_{L}\leq 2Cr$ .

This completes the proof. $\square$

5 An Application to An Ordinary Differential Equation

In this section, we study an application of the results in the previous sections to obtain
a periodic solution of ordinary differential equations taking the following Duffing equation

$x”+Ax’+Bx^{3}-C\cos t=0,$ $t\in J=(O, 2\pi)$

as an example, where $A,$ $B$ and $C$ are constants. Let $L_{2}(0,2\pi),$ $H_{1}(0,2\pi)$ and $H_{2}(0,2\pi)$ be the
Lebesgue space of square integrable functions and the Sobolev spaces with norms

$||x\Vert_{2}=\sqrt{\frac{1}{2\pi}\int_{0}^{2\pi}|x(t)|^{2}dt}$,

$||x\Vert_{H_{1}}=\sqrt{\Vert x||^{2}+\Vert x’\Vert^{2}}$,

and
$|1x\Vert_{H_{2}}=\sqrt{\Vert x\Vert^{2}+\Vert x’\Vert^{2}+||x\Vert^{2}}$,

respectively. Let $X=Y=\{x|x\in L_{2}(0,2\pi)\cap x(t)=-x(t+\pi)\}$ . Let us define operators
$L$ : $D(L)=X\cap H_{2}(0,2\pi)arrow Y$ and $N$ : $D(L)arrow Y$ by

$Lx=x^{\nu}+Ax’$

and
$Nx=Bx^{3}-C\cos t$ ,

respectively. Then, it is well known that $L$ is a closed lir\’iear operator from $X$ to $Y$ . Thus the
graph norm associated with $L$ is defined as

$\Vert x||_{L}=||x||_{2}+||x’’+Ax’||_{2}$ .
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For $x\in D(L)$ , taking the equation $x(t)=-x(t+\pi)$ we can expand $x$ as

$x= \sqrt{2}\sum_{n=1}^{\infty}(a_{n}\cos(2n-1)t+b_{n}\sin(2n-1)t)$ .

Now define a projection operator $P_{m}$ : $D(L)arrow E=P_{m}D(L)$ by

$P_{m}x= \sqrt{2}\sum_{n=1}^{m}(a_{n}\cos(2n-1)t+b_{n}\sin(2n-1)t)$ .

Then we have

Lemma 5.1
$||x-P_{m}x||_{2} \leq\frac{1}{\sqrt{(2m+1)^{4}+A^{l}(2m+1)^{A}}}||Lx||_{2}$

for $x\in D(L)$ , where $P_{m}D(L)$ is the image of $D(L)$ by $P_{m}$ . $\square$

Proof Let

$x’= \sqrt{2}\sum_{n=1}^{\infty}(a_{n}’\cos(2n-1)t+b_{n}’\sin(2n-1)t)$

and
$x”= \sqrt{2}\sum_{n=1}^{\infty}(a_{n}’’\cos(2n-1)t+b_{n}’’\sin(2n-1)t)$ .

So we have
$a_{n}’=(2n-1)b_{n},$ $b_{n}’=-(2n-1)a_{n}$ ,

and
$a_{n}’’=-(2n-1)^{2}a_{n},$ $b_{n}’’=-(2n-1)^{2}b_{n}$ .

Thus if we put

$x”+Ax’(t)= \sqrt{2}\sum_{n=1}^{\infty}(\tilde{a}_{n}\cos(2n-1)t+\tilde{b}_{n}\sin(2n-1)t)$ ,

we have
$\tilde{a}_{n}=-(2n-1)^{2}a_{n}+(2n-1)Ab_{n},\tilde{b}_{n}=-(2n-1)Aa_{n}-(2n-1)^{2}b_{n}$ ,

or
$a_{n}= \frac{-(2n-1)^{2}\tilde{a}_{n}-(2n-1)A\tilde{b}_{n}}{(2n-1)^{4}+(2n-1)^{2}A^{2}}$

and
$b_{n}= \frac{-(2n-1)^{2}\tilde{b}_{n}+(2n-1)A\tilde{a}_{n}}{(2n-1)^{4}+(2n-1)^{2}A^{2}}$ .

Let us now consider $||x-P_{m}x||_{2}^{2}$ . The Perseval equality gives

$\Vert x-P_{m}x\Vert_{2}^{2}$ $=$ $\sum_{n=m+1}^{\infty}(a_{n}^{2}+b_{n}^{2})$

$\leq$ $\sum_{n=m+1}^{\infty}\frac{1}{((2n-1)^{4}+A^{2}(2n-1)^{2})}(\tilde{a}_{n}^{2}+\tilde{b}_{n}^{2})$

$\leq$ $\frac{1}{(2m+1)^{4}+A^{2}(2m+1)^{2}}\Vert Lx||_{2}^{2}$ .

Thus we have the desired inequality. $\square$
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Moreover, we have

Lemma 5.2 For $x\in H_{2}(0,2\pi)$ , we have

$\tilde{b}||x||_{L}\leq||x\Vert_{H_{2}}\leq b||x||_{L}$ ,

where
$\tilde{b}=\frac{1}{2+A}$

and
$b=\sqrt{2(1+A^{2})}$.

$\square$

Proof From the Perseval equality, we have

$||x’’||_{2}^{2}$ $=$ $\sum_{n=1}^{\infty}(a_{n}^{\prime\prime 2}+b_{n}^{\prime\prime 2})$

$\leq$ $\sum_{n=1}^{\infty}\frac{(2n-1)^{4}((2n-1)^{4}+A^{2}(2n-1)^{2})}{((2n-1)^{4}+A^{2}(2n-1)^{2})^{2}}(\tilde{a}_{n}^{2}+\tilde{b}_{n}^{2})$

$\leq$ $(1+A^{2})||Lx||_{2}^{2}$ ,

and similarly
$\Vert x’||_{2}^{2}\leq(1+A^{2})\Vert Lx\Vert_{2}^{2}$.

These inequalities imply

$\Vert x’’||_{2}^{2}+||x’||_{2}^{2}+||x||_{2}^{2}\leq\Vert x\Vert_{2}^{2}+2(1+A^{2})$ I $Lx\Vert_{2}^{2}$

$\leq$ $2(1+A^{2})||x||_{L}^{2}$ , (32)

$w1_{1}ich$ is the right half of the desired inequalities.
On the other hand, we have

$||x\Vert_{L}=\Vert x\Vert_{2}+\Vert x’’+Ax’||_{2}$

$\leq||x||_{2}+\Vert x’’\Vert_{2}+A\Vert x’||_{2}$

$\leq(2+A)\Vert x\Vert_{H_{2}}$ .

This is the left half of the desired inequality. $\square$

Similarly, we obtain

Lemma 5.3 For $x\in H_{2}(0,2\pi)$ , we have

$||x||_{H_{1}}\leq\sqrt{1+A^{2}}\Vert x||_{L}$ ,

and
$||x’||_{H_{1}}\leq\sqrt{2(1+A^{2})}\Vert x\Vert_{L}$ .

$\square$
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We now consider to include $2\pi$-periodic solution of the Duffing equation with $A=$

0.1, $B=1$ , and $C=0.4464$ . For the purpose, let us consider an approximate equation of
Eq. (1) of the following form:

$P_{m}f(x)=0,$ $x\in E=P_{m}D(L)$ . (33)

Here,
$f(x)=Lx+Nx$ .

Since the so-called determing equation (33) is a finite dimensional equation, its approximate
solution can be obtained easily. In fact, the following approximate solution is derived through
the Newton method:

$\tilde{x}(t)$ $=$ $\frac{12391844444622}{10096283453831}\cos t+\frac{1255301899357}{3264990063609}\sin t$

$+ \frac{3339800261015}{62230322929326}\cos 3t+\frac{25614353059037}{407715265530912}\sin 3t$

$+ \frac{30678010753}{50578758054295}\cos 5t+\frac{20268208717}{4200092845578}\sin 5t$

$- \frac{203050479}{1606019671451}\cos 7t+\frac{19543149859}{75359444598260}\sin 7t$

$- \frac{9917353}{674649767686}\cos 9t+\frac{27060356}{3079992935547}\sin 9t$

$- \frac{10029085}{9872509922553}\cos 11t-\frac{80843412}{2002007632142809}\sin$ llt

$- \frac{353059}{7177837174127}\cos 13t-\frac{925405}{26456112180297}\sin 13t$

$- \frac{2009793}{1535022779191217}\cos 15t-\frac{1158567}{347492958486574}\sin l5t$ .

Now letting $P=Q=P_{m},$ $J$ is computed through the formula (12). Thanks to the
polynomial nonlinearity of the problem, the matrix $J$ can be calculated rigorously. In fact,
using the addition formula of the trigonomeric functions and the technique of the automatic
differentiation[4], a program for calculating $J$ rigorously can be realized without difficulty. Then,
since each element of $J$ is rational number, $J^{-1}$ can be calculated exactly by the rational
arithmetic, wluch is executed on the rational arithmetic library developed by ourselves. Thus,
a bound $M$ of 11 $J^{-1}||_{L(F,E)}$ can be evaluated as the Frobenius norm of the matrix $J^{-1}$ free
from the rounding errors of numerical computation. Here, $F_{m}=P_{m}Y$. Similarly, the residual
$||f(\tilde{x})||_{2}$ can be estimated numerically through the Parseval equality free from the numerical
computation errors.

In this example, we have an estimate

$\Vert S(\tilde{x})||_{L(X,Y)}\leq||3\tilde{x}^{2}||_{\infty}$ .

Here, $||x||_{\infty}= \max\{|x(t)||0\leq t\leq 2\pi\}$ . Since

$|| \sqrt{2}\sum_{n=1}^{m}(a_{n}\cos(2n-1)t+b_{n}\sin(2n-1)t)||_{\infty}\leq\sqrt{2}\sum_{n=1}^{m}\sqrt{|a_{n}|^{2}+|b_{n}|^{2}}$, (34)
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the value $K=||3\tilde{x}^{2}||_{\infty}$ can be evaluated rigorously using the rational arithmetic library. Simi-
larly, $a=a_{B(\tilde{x},p)}$ is estimated as

$a= \frac{6bd}{\sqrt{2}}(\Vert\tilde{x}\Vert_{\infty}+p)$ ,

which can also be evaluated rigorously using the rational $arit1_{1}metic$ numerical library.
Thus, for the approximate solution $\tilde{x}$ , as a result of the estimation, we have

$M\leq 3.118,$ $r\leq 0.0000000432,$ $K\leq 6.869$ and $p\leq 0.00000474$ .

From these constants, we have

$C\leq 54.806,$ $a\leq 26.215$ and $aCp\leq 0.00682$ .

Of course, this evaluation is free from the numerical computation errors. For the Duffing
equation it is easy to show that the operator $G(\tilde{u})$ becomes a Fredholm operator with the index
zero so that the existence of the constant $C$ implies the existence of the inverse of the operator
$L+S(\tilde{x})$ . Thus it is verified from Theorem 2.2 that, in the ball $\Vert\tilde{x}-x||_{L}\leq 0.00000474$ , there
exists a locally unique exact solution $x^{*}of$ the Duffing equation. By the Sobolev embedding
theorem[8], for $x\in H_{1}(0,2\pi)$ we have

$||x||_{\infty}\leq\sqrt{\frac{2\pi}{tan1_{1}2\pi}}||x||_{H_{1}}$ ,

from which we have the following estimate between $x^{*}$ and $\tilde{x}$ as

$||\tilde{x}-x^{*}||_{\infty}$ $\leq$ $d||\tilde{x}-x^{*}||_{H_{1}}$

$\leq$ $\frac{bd}{\sqrt{2}}||\tilde{x}-x^{*}||_{L}$

$\leq$ $\frac{bdp}{\sqrt{2}}$

$\leq$ 0.0000120, (35)

and

$|| \frac{d\tilde{x}}{dt}-\frac{dx^{*}}{dt}||_{\infty}$ $\leq$ $d|| \frac{d\tilde{x}}{dt}-\frac{dx^{*}}{dt}||_{H_{1}}$

$\leq$ $bd||\tilde{x}-x^{*}||_{L}$

$\leq$ 0.0000169, (36)

where $b=\sqrt{1+A^{2}}$ and $d=\sqrt{2\pi}/\tanh 2\pi$ so that $bd\leq 3.56261$ .
In Fig.1., the outline of the solution is illustrated. In Fig.1 (b), the center line of the

three parallel lines indicates $\tilde{x}$ and the other two lines indicate the bound, in which the exact
solution $x^{*}$ is located.
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