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1 Introduction

Intuitively, a maximization problem is to select a maximal solution for a given input
according to some selection criterion. The maximal independent set problem (MIS) [5]
and the minimal unsatisfiability problem (MinUnsat) [11] are two standard examples of
such problems. Much work has been devoted to the study of maximization problems
[1,2,3,4,5,7,9,11,12]. Most of the previous work has involved studying specific maximiza-
tion problems and either finding an efficient algorithm (e.g., [5]) or proving the problem
is hard to solve (e.g., [11]). An attractive alternative approach is to study maximization
problems in a general framework and to prove general results.

In this paper, we formalize a maximization problem (MAXP) @ as a pair (D, R),
where D is the set of instances and R : D x {0,1}* — {true, false} is the instance-
solution relation. The objective in solving @ is to select, given an instance r € D, a
mazimal solution, i.e., a binary string y such that R(z,y) is true but changing one or
more arbitrary 0-bits of y to 1-bits will change the value of R(z,y) to false. As an
example, consider MIS in our framework. For it, D is the set of all undirected graphs,
and R(G,biby---by) is true if and only if G has n vertices (say, 1, 2, ---, n) and {7 :
b; = 1} is an independent set in G. Our goal is to demonstrate what factors make Q
easy or hard to solve and how the factors influence the complexity of solving Q. We
are able to find two such factors. One obvious factor is the complexity of R. This can
be seen by comparing MIS with MinUnsat. The instance-solution relation of MIS is
decidable in NC while that of MinUnsat is coNP-complete. Because of this gap, solving
MinUnsat is much harder than solving MIS. In fact, MIS is solvable in NC [5,7] while
solving MinUnsat is DP-hard [11]. The other factor is whether R is hereditary or not,
where R is said to be hereditary if and only if for every  and w, whenever R(z,w) is true,
R(z,w) remains true even one or more arbitrary 1-bits of w are changed to 0-bits. The
instance-solution relation of MIS (also MinUnsat) is hereditary. In [9], Papadimitriou
considered the following problem (MinModel): Given a CNF boolean formula ¢, find a
satisfying truth assignment @ to ¢ such that changing one or more arbitrary 1-bits of @ to
0-bits will make d no longer satisfy ¢. The instance-solution relation of MinModel is not
hereditary but is decidable in NC. Unlike MIS, solving MinModel is obviously NP-hard.

In this paper, we restrict to consider only those MAXP’s whose instance-solution
relation is decidable in NP or coNP. We first consider upper bounds on the complexity
of solving such MAXP’s. Let @ = (D, R) be a MAXP. The following give trivial upper
bounds: (i) @ is solvable in FP if R is decidable in P and hereditary; (ii) @ is solvable
in NPMV//OptP[O(logn)] if R is decidable in NP; (iii) @ is solvable in FPN? if R is
decidable in coNP and hereditary; (iv) @ is solvable in FPZ: if R is decidable in coNP.
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Our main results concerning upper bounds are the following:
(v) Suppose @ is a MAXP whose instance-solution relation is NP decidable. Let e
be an arbitrary polynomial. Then, there exist a function F' € FPﬁIP and a polynomial p

such that for every z, Pr[F(z,w) is a maximal solution of z in Q] > 1 — 27021} where
w € {0,1}?(*) is randomly chosen under uniform distribution.
(vi) Suppose @ is a MAXP whose instance-solution relation is coNP decidable. Let e

P
be an arbitrary polynomial. Then, there exist a function F' € FP®* and a olynomial p
y poly I P

such that for every z, Pr[F(z,w) is a maximal solution of z in Q] > 1 — 27¢(2l)| where
w € {0,1}?02) is randomly chosen under uniform distribution.

(v) and (vi) are shown by extending the technique used in [3].

We then show that NPMV //OptP[O(logn)] is also a lower bound for solving those
MAXP’s whose instanc%—Psolution relation is decidable in NP or is decidable in P but not
hereditary, and that FPC|1| ? is also a lower bound for solving those MAXP’s whose instance-

a

solution relation is decidable in coNP but not hereditary. Combining the upper and lower
P
bounds, we obtain characterizations of NPMV //OptP[O(logn)] and FP;‘;’2 via MAXP’s.

As an important consequence of the characterization of NPMV //OptP[O(log n)], we ob-
tain the first natural complete problem for NPMV //OptP[O(log n)]. The problem (called
X-MinModel) is defined as follows: Given a CNF boolean formula ¢ and a subset X of
the set of variables in ¢, find a satisfying truth assignment @ to ¢ such that changing
one or more arbitrary 1-bits of @ corresponding to variables in X to 0-bits will make
d no longer satisfy ¢. X-MinModel was first considered by Papadimitriou in [9], and
was claimed without a precise proof to be Af-complete there. However, Papadimitriou
later withdrew his claim and thus left the complexity of X-MinModel open [10]. In [3],
we proved that the complexity of X-MinModel is roughly captured by FPﬁ'P. Now, the
results in this paper give, for the first time, the exact complexity of solving X-MinModel.

We also characterize complexity classes of sets via MAXP’s. The following are shown:

(a) coNP is the class of all sets L that can be expressed as L = {z : f(z) is a maximal
solution of z in @} for some f € FP and some MAXP ) whose instance-solution relation
is P-decidable. ‘

(b) DP is the class of all sets L that can be expressed as L = {z : f(z) is a maximal
solution of z in Q} for some f € FP and some MAXP @ whose instance-solution relation
is NP-decidable.

(c) DP is the class of all sets L that can be expressed as L = {z : f(z) is a maximal
solution of z in Q} for some f € FP and some MAXP @ whose instance-solution relation
is coNP-decidable and hereditary.

(d) I} is the class of all sets L that can be expressed as L = {z : f(z) is a maximal
solution of z in @} for some f € FP and some MAXP @ whose instance-solution relation
is coNP-decidable.

As consequences, we obtain several new natural problems that are <F-complete for
coNP or DF.

2 Preliminaries

We use ¥ = {0,1} as our alphabet. By a set, we mean a subset of £*. Similarly, by a
string, we mean a string in X*. We denote by |z| the length of a finite string z. The bits
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of a finite string with length n are indexed from left to right as the 1st, 2nd, ---, nth
bits, respectively. For a finite string z, we usually identify = with the set of all indices 2
such that the ith bit of z is 1. Thus we will often use some set-theoretical notations for
finite strings. A finite string z is smaller than another finite string y if either |z| < |y|
or |z| = |y| and z C y. A mazimal string in a set S of finite strings is a string in S that
is not smaller than any other string in S.

We assume a one-to-one pairing function from £* x ¥£* to ¥* that is polynomial-time
computable and polynomial-time invertible. For strings  and y, we denote the output of
the pairing function by (z,y); this notation is extended to denote any k-tuples for k£ > 2
in a usual manner. W.l.o.g., we assume that |(z,y)| depends only on |z| and |y|.

For any finite set A, ||A|| denotes the number of strings in A. For a set L, L denotes
its complement (i.e., ¥*— L), and xr denotes the characteristic function of L. For a class
C of sets, coC denotes the class of all sets whose complement is in C. Let ™ denote
the set of all strings with length n. For two sets L; and L,, Ly @ L, denotes the set
{0z : z€ Li}u{ly : y€ L,}.

All functions considered here are ones from ¥* to £*U{#}. The symbol # is assumed
to be not in £*. We consider both single-valued functions and multi-valued functions, but
by a function we mean a (partial) single-valued function. For a multi-valued function
G, G(z) denotes the set of all possible values of G at z. Thus, when G(z) = 0, the
multi-valued function G is undefined at the argument z.

We assume that the reader is familiar with the basic concepts from the theory of
computational complexity. Our computational models are variations of standard Turing
machines. A machine is either an acceptor or a transducer, and may be deterministic
or nondeterministic. An acceptor is denoted by M or M; while a transducer is denoted
by T or T;. A deterministic (resp., nondeterministic) Turing machine is abbreviated as
DTM (resp., NTM). On a given input, a branch of a (nondeterministic) machine may
halt by entering either a rejecting state or an accepting state. For simplicity, we say that
a branch of a machine halts if the branch halts by entering an accepting state. Let L(M)
denote the set of all strings accepted by M. A transducer T computes a string y on input
z if some branch of T on input z halts with y on the output tape. T(z) denotes the
set of all strings computed by T on input z. A DTM T computes a function f if for all
z € %, T(z) = 0 if f(z) is undefined, and the unique element of T(z) is f(z) otherwise.

Classes in the first three levels of the polynomial-time hierarchy are denoted in the
usual way: P, NP, coNP, &F, I} = coZ}. Let DP = {L;NL,: L, € NP and L, € coNP}.

FP denotes the class of all functions computed by polynomial-time bounded DTM’s.
Let A be a set. FP# denotes the class of all functions computed by polynomial-time
bounded deterministic oracle Turing machines (DOTM) with oracle A. F Pfli denotes
the class of all functions F for which there exists a polynomial-time bounded DOTM T
such that T, while computing F(z) for a given z, prepares all its query strings before
asking them to the oracle A. More precisely, a function F is in FP{ if there exist two
functions f and g in FP such that for all strings =, F(z) = g(z, xa(y1) - - - Xa(ym)), where
f(z) = (y1,*+,Ym). For a class C of sets, FPC = U cFP4 and FP¢ = UAECFP“I‘.

An NP metric Turing machine is a polynomial-time bounded NTM T such that on
every input, every branch of T outputs a binary number and halts [6]. OptP[O(logn)]
denotes the class of all (total) integer-valued functions H for which there exist a poly-
nomial p and an NP metric Turing machine T such that for every z, H(z) < p(|z]) and
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H(z) equals to the maximum number in T(z). NPMV //OptP[O(logn)] denotes the class
of all (partial) multi-valued functions G for which there exist an NTM T and a function
H ¢ OptP[O(log n)] such that for every z, G(z) = T({z, H(z))).

A mazimization problem (MAXP) Q is a pair (D, R), where (1) D is the set of instances
and (ii) R : D x &* — {true, false} is the instance-solution relation.

R is said to be hereditary if for every z € D and every w € ¥*, whenever R(z,w) is
true, R(z,w') is also true for every w’ with |w'| = |w| and w’ C w. Let x € D. A stringw
is called a solution of z if R(z,w) is true. A mazimal solution of x is a maximal string in
the set of all solutions of . The objective in solving @) is to compute, given an instance
z € D, a maximal solution of z.

Each MAXP @ = (D, R) considered in this paper is required to satisfy the following:
(1) D is P-decidable (i.e., decidable in polynomial time), (2) there is a polynomial p such
that for every € D and every string w, whenever R(z,w) is true, |w| < p(|z|), and (3)
R is NP-decidable or coNP-decidable.

Definition 2.1 A function F solves @ if for every ¢ € D, (a) F(z) is undefined if
z has no solution in @ and (b) F(z) is a maximal solution of z in @ otherwise. A
multi-valued function G solves Q if for every € D, (a) G(z) = 0 if 2 has no solution in
@ and (b) G(=) is nonempty and each element of G(z) is a maximal solution of z in @

otherwise. @ is solvable in a class H of (single-valued or multi-valued) functions if some
H € H solves Q.

Definition 2.2 Let F' be a function, and let G be a multi-valued function. Then, F
(resp., G) is reducible to Q if there exist two functions f, ¢ in FP such that for every z,
f(z) € D and g(z,w) = F(z) (resp., g(z,w) € G(z)) for every maximal solution w of
f(z)in Q. Q is hard for a class H of (single-valued or multi-valued) functions if every
H € H is reducible to Q. Q is complete for a class H of (single-valued or multi-valued)
functions if ) is solvable in and hard for H. Q is hard for a class C of sets if Q is hard
for the class {xr : L € C}.

Definition 2.3 The set Ly = {(z,w) : w is a maximal solution of z in Q} is called
the decision problem associated with Q.

3 Upper bounds

In this section, we show upper bounds on the complexity of solving MAXP’s. The
following proposition shows trivial upper bounds.

Proposition 3.1 Let Q = (D, R) be a MAXP.

(1) If R is hereditary and P-decidable, then @ is solvable in FP.

(2) If R is NP-decidable, then @ is solvable in NPMV //OptP[O(log n)].
(3) If R is hereditary and coNP-decidable, then Q is solvable in FPNF,
(4) If R is coNP-decidable, then Q is solvable in FPZ .

We next proceed to show two other non-trivial upper bounds. To do this, we need
several definitions and a known result.

Definition 3.1 Let F be a class of functions. Then we define a class RP-F of
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multi-valued functions as follows: A multi-valued function G is in RP-F if for every
polynomial e, there exist a function F' € F and a polynomial p such that for every
string z, (a) F(z,w) is undefined for all w € {0,1}?*) if G(z) is undefined and (b)
Pr[F(z,w) € G(z) U {#}] = 1 and Pr[F(z,w) € G(z)] > 1 — 2*(*)) otherwise, where w
is a random string chosen from {0, 1}*(), Intuitively speaking, G is in RP-F if for every
string z, we can randomly pick up an element of G(z) using a function in F.

Notation: For k > 1, [1, k] denotes the set of all integers 7 with 1 <7 < k.

Definition 3.2 Let S be a finite set and let k£ be a positive integer. A weight function
over S is a function from the elements of S to positive integers. A k-weight function over
S is a weight function f over S such that for each s € S, f(s) is in [1,k]. A random
k-weight function over S is a k-weight function f over S such that for each s € S, f(s) is
chosen uniformly and independently from [1, k]. The weight of a subset S’ of S under a
weight function f is 2,es/ f(s). Note that for every k-weight function over S, the weight
of each subset of S under f is no more than k||S|| and that the empty set @ is the unique
subset of S with weight 0.

Lemma 3.1 [8]. Let S be a nonempty family of subsets of a finite set S. Then, for
any random k-weight function f over S with £ > 2||S]|, Pr[There is a unique maximum
weight set in S under f] > 1.

Now we are ready to show the two non-trivial upper bounds. The idea used in the
proof is a generalization of the one used in (3].

Theorem 3.1 Let Q = (D, R) be a MAXP.
(1) If R is NP-decidable, then @ is solvable in RP-FPﬁIP.

(2) If R is coNP-decidable, then @ is solvable in RP-FPﬁg.

Proof. We only show a proof for (2). (1) can be shown in a similar manner.

(2) We first explain the idea behind the proof. Let pg be a polynomial such that for
all z € D, the length of each solution of z is no more than pg(|z|). Let z be an instance
of Q. Then, we consider S, the family of all solutions of z with maximum length. To
find a maximal solution for z, we first get a random 2pg(|z|)-weight function f over
[1,pe(|z])]. Then, by Lemma 3.1, with probability at least 1, there is a unique solution
in S of maximum weight. To find this unique solution of maximum weight, it suffices
to ask only one round of parallel queries to a &} oracle set. Since the weight assigned
to each element of [1,po(|z])] is positive, all maximum weight solutions are maximal
solutions (but not necessarily solutions of maximum 1-bits). In order to get the high
probability of success, we may perform several copies of this computation in parallel.

We now proceed to give the precise proof. Let pg be a polynomial that bounds the
lengths of solutions of z from above. For convenience, let n, = po(|z|) for all z € D.
Then we define five sets as follows:

Lp = {z : = has a solution},

B; ={{(z,7) : 0 <7 < n, and z has a solution of length i},

By = {{z,i,f,j) : € D, 0 < i < ng, fisa 2t*Me8r=1weight function over [1,n,),
0 < j < i2t+fegansl apd 2 has a solution u such that |u| = ¢ and j is the weight of u
under f},

By = {(z,i,f,j) : * € D, 0 < i < n,, fisa 282l weight function over [1,n,],
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0 < j < i21tMoganzl and z has two or more solutions u such that |u| = ¢ and j is the
weight of u under f } and

By = {(z,i,f,5,k) : 2 € D,0<t<n,, fisa 21+Mogz nzl_weight function over [1,n,],
0 <j <¢2itMoganzl 1 < k <4, and z has a solution u such that |u] = ¢, j is the weight
of u under f, and the kth bit of u is 1}.

Obviously, Lg, By, Ba, Bs, and By arein 3%. Let B = (((Lr® B1) ® B2) ® B3) ® Bs).
Then, B € %%.

Let e be an arbitrary polynomial. We define a polynomial p as follows: p(z) = e(z) -
(p%(2) + pg(i)). Below, we define a DOTM T which uses B as an oracle set. Given an
input (z,w) with z € D and w € {0,1}?(2) T operates as follows:

Step 1: T checks whether z has a solution by asking a query to Lg. If z has no
solution, then T halts by entering a rejecting state.

Step 2: T finds ny, the length of the longest solutions of . This is done by asking the
queries (z,0), (z,1), - -+, (z,ng) to the oracle set By.

Step 3: T computes ny = 2!*+M827:1 and constructs, from w, ny-weight functions fi,

fas ++, fe(ja) OVer the set [1,n.] as follows:

Step 3.1: T first computes e(|z|) strings Wi,y We(le]) from w such that |wy|=--. =
|we(|z|)| = n,_log, n, and the string wyw; - - - we(j)) is a prefix of w (the remaining part of
w is ignored), and then for each 1 < k < e(|z]), it partitions wy mto n, substrings wg,
“++, Wkp, €ach of length log, n;. (Note: T' can do this because n2 + n, > n,log, n,.)

Step 3.2: For each 1 < k < ¢(|z|) and each [ in [1,n,], T sets fe(l) = diey + 1, where
dr, is the integer whose binary representation is wg,.

Step 4: For each 1 < k < e(|z|), T computes the maximum number m; with
(z,n1, fx, M) € B,. This is done by asking the queries (z,%, fi,j) with 0 < 7 < n,,
1 <k < e(lz|), and 0 £ j < in, to the oracle set B,. (Note: In this step, T asks the
queries of the form (z,1, fi, j) for all possible values of 7, k, and j because the machine
needs to prepare all queries independently of each other. )

Step 5: For 1 < k < e(|z|) and 1 <1 < ny, T computes ax; = x5, ({z,n1, f, Mk, ).
This is done by asking the queries (z,7, fi,7,!) with 0 < 7 < n,,. 1 < k < e(|z|),
0 <j <ing and 1 <[ < ¢ to the oracle set By. (Note: In this step, T asks the queries
of the form (z, i, fx, 5,1) for all possible values i, k, j, and [ because the machine needs
to prepare all queries independently of each other.)

Step 6: For each 1 < k < e(|z|), T checks whether (z,n1, fi,mz) € Bs. This is done
by asking the queries (z,¢, fi,J) With 0 < ¢ < n,, 1 < k < ¢(|z]), and 0 < j < in, to
the oracle set Bs. If for some k, (z,ny, fi, mr) & Bs, then T outputs ag1akz - - Grn, and
halts; otherwise, T outputs the special symbol # and halts.

Let F' denote the function computed by T with oracle B. We can easily see that T is
polynomial-time bounded and all query strings are prepared independently of each other;
this means that the query strings made by T on input (z,w) can be realized as parallel

queries to the oracle set B. Thus, F' is in FPﬁg.
Let G be a multi-valued function defined by G(z) = {F(z,w) : w € {0,1}#0=D) and

F(z,w) is defined} — {#}. We show that G solves Q and is in RP- FPII To this end,
we first prove two claims.

Claim 1 Suppose that for some k with 1 < k < e(|z|), z has a unique solution with
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length n; and of weight m; under fi. Then, the string ax1axs - - @k, output by 7' is a
maximal solution of z.

Claim 2 Suppose that = has solutions and w is randomly chosen from {0, 1}#(l=D.
Then, Pr[F(z,w) is a maximal solution of z] > 1 — 2~<(I=D),

Proof. Since w is randomly chosen from {0,1}P(®]), the functions fi, fz, *++, fe(ep
constructed in Step 3 must be random n;-weight functions over [1,n,]. Note that n, =
21+[logznzl > 9y Thus, from Claim 1 and Lemma 3.1, we have that

Pr[F(z,w) is a maximal solution of z]

= Pr[(3k,1 < k < e(|z])) ar1@rz2 " * Gkm, 1s @ maximal solution of z]

> Pr[(3k,1 < k < e(|z])) = has a unique solution with maximum length and of
maximum weight under fj]

>1- Hi(lﬁl) Pr[z has two or more solutions with maximum length and of maximum

weight under fi]
>1-— (%)e(!ml) = 1—9-<l=D, B

In the case when z has no solution, F(z,w) is undefined for all w € {0, 1}?(=D) by Step
1 and hence G(z) = 0. On the other hand, when z has solutions, G(z) # @ by Claim 2
and the definition of G, and each element of G(z) is a maximal solution of z by Claim
1. Therefore, G solves Q.

If G(z) = 0, we know that z has no solution by the discussions in the last paragraph
and thus that F(z,w) is undefined for all w € {0,1}?(=) by Step 1. On the other hand,
if G(z) # 0, then = has solutions by the discussions in the last paragraph, Pr[F(z,w) €
G(z) U {#}] = 1 by Step 6 and the definition of G, and Pr[F(z,w) € G(z)] > 1 — 27<(=D)

by Claim 2. Therefore, G is in RP-FPﬁ:g. [ |

4 Hardness of solving MAXP’s

In the light of Proposition 3.1(1), the following proposition shows that FP is a tight
lower bound on the complexity of solving MAXP’s whose instance-solution relation is
P-decidable and hereditary.

Proposition 4.1 There is MAXP @ = (D, R) such that R is P-decidable and hered-
itary and @ is hard for FP.

By Proposition 3.1(2), the following theorem shows that NPMV //OptP[O(logn)] is a
tight lower bound on the complexity of solving MAXP’s whose instance-solution relation
is P-decidable but not hereditary.

Theorem 4.1 There is a MAXP Q = (D, R) such that R is P-decidable (but not
hereditary) and @ is hard for NPMV //OptP[O(log n)].

The following corollary is immediate from the proof of Theorem 4.1.

Corollary 4.1 The following problem (called X-MaxModel hereafter) is complete for
NPMV //OptP[O(log n)]:

Instance: A CNF boolean formula ¢ and a subset X of the set of variables in ¢.

Output: A truth assignment @ to the variables in X such that @ can be extended to
a satisfying truth assignment to ¢ but no b with @ C b and || = |b| can be extended to
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a satisfying truth assignment to ¢.

X-MaxModel is essentially the same problem as considered by Papadimitriou in Sec-
tion 3 of [9]. In [9], Papadimitriou claimed without a precise proof that the problem is
complete for FPN?, However, he later withdrew his claim and thus left the complexity of
the problem open [10]. In [3], we proved that the complexity of the problem is roughly
captured by FPNP. Now, Corollary 4.1 gives, for the first time, the exact complexity of
the problem. Corollary 4.1 is also of special interest in the sense that no natural problem
complete for NPMV //OptP[O(logn)] has been shown before.

By modifying the proof of Theorem 4.1, we can show that NPMV //OptP[O(log n)] is a
tight lower bound on the complexity of solving MAXP’s whose instance-solution relation
is NP-decidable and hereditary.

Theorem 4.2 There is a MAXP @ = (D, R) such that R is NP-decidable and
hereditary and @ is hard for NPMV //OptP[O(log n)].

The instance-solution relation of X-MaxModel is NP-decidable but not hereditary. A
natural question arises: Are there natural MAXP’s @) such that @ is hard for NPMV/
/OptP[O(logn)] and the instance-solution relation of @ is either NP-decidable and
hereditary or P-decidable (but not hereditary)? Unfortunately, we are unable to settle
this question. However, we below show that the question will have a positive answer if

NPMV //OptP[O(logn)] in it is replaced by FPﬁIP.

Definition 4.1 A MAXP @ = (D, R) is paddable if there are two functions f and ¢
in FP such that for every list I = (z1,22,-+,2,) of instances of @, f(I) € D and for
every maximal solution w of f(I), g(I,w) gives a maximal solution for each z;.

Lemma 4.1 If a MAXP is paddable and hard for NP, then it is hard for FP” .

Theorem 4.3 The following MAXP’s are hard for FP“ .

(1) MAXIMAL MODEL (MaxModel)

Instance: A CNF boolean formula ¢.

Output: A mazimal satisfying truth assignment to ¢, i.e., a satlsfylng truth a551gnment
d to ¢ such that there is no other satisfying truth as31gnment b to ¢ with @ C b.

(2) MAXIMAL CUBIC SUBGRAPH (MaxCubSubgraph)

Instance: An undirected graph G.

Output: A maximal subset F' of E(G) such that every vertex in the graph (V(G), F)
has either degree 3 or degree 0. (Note: V(G) and E(G) denote hereafter the sets of
vertices and edges of G, respectively.)

(3) MAXIMAL SATISFIABILITY (MaxSat)

Instance: A CNF boolean formula ¢ = {C,Cs,---,Cn }.

Output: A maximal subset ¢’ of ¢ that is satisfiable.

(4) MAXIMAL k-COLORABILITY (k > 3) (Max-k-Colorability)

Instance: An undirected graph G.

Output: A maximal subset of V(G) whose induced subgraph is k-colorable.

(5) MAXIMAL HAMILTONIAN SUBGRAPH (MaxHamSubgraph)

Instance: A pair (G, w) of a connected undirected graph and a vertex in G.
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Output: A maximal subset U of V(G) such that w € U and the subgraph induced by
U has a Hamiltonian circuit.

We here note that a different proof for the FPﬁIp—hardness of MaxModel has been given
in [3]. Note that the instance-solution relations of the first two problems in Theorem 4.3
are P-decidable but not hereditary, while the instance-solution relations of the third and
fourth problems in Theorem 4.3 are NP-decidable and hereditary. The last problem in
Theorem 4.3 is a concrete MAXP whose instance-solution relation is NP-decidable but
not hereditary.

For those MAXP’s (Q whose instance-solution relation is coNP-decidable and heredi-
tary, we are only able to show a loose lower bound.

Proposition 4.2 There is a MAXP @ = (D, R) such that R is a coNP-decidable
hereditary relation and @ is hard for FPﬁ‘P.

In the light of Theorem 3.1(2), the following theorem shows that F Pﬁg is a nearly op-
timal lower bound on the complexity of solving MAXP’s whose instance-solution relation
is coNP-decidable but not hereditary.

Theorem 4.4 There is a MAXP @ = (D, R) such that R is coNP-decidable and @
is hard for FPﬁ:g.

5 Characterizations of coNP, D* and I}

The following proposition can be easily proved.

Proposition 5.1 Let @ = (D, R) be a MAXP.

(1) If R is P-decidable and hereditary, then Lg 1s in P.

(2) If R is P-decidable, then Lq is in coNP.

(3) If R is NP-decidable, then Lg is in DP.

(4) If R is coNP-decidable and hereditary, then Lg is in DP.
(5) If R is coNP-decidable, then Lg is in IIE.

Similar to Proposition 4.1, we can simply show that P is a tight lower bound on
the complexity of Lo for MAXP’s ) whose instance-solution relation is P-decidable and
hereditary.

The following theorem gives us characterizations of coNP, DF, and I} via MAXP’s.

Theorem 5.1 The following hold:

(1) A set L is in coNP if and only if it can be expressed as L = {z : f(z) is a maximal
solution of z in @} for some f € FP and some MAXP @) whose instance-solution relation
is P-decidable.

(2) A set L is in DP if and only if it can be expressed as L = {z : f(z) is a maximal
solution of z in @} for some f € FP and some MAXP @ whose instance-solution relation
is NP-decidable (and hereditary).

(3) A set L is in DP if and only if it can be expressed as L = {z : f(z) is a maximal
solution of z in @} for some f € FP and some MAXP @ whose instance-solution relation
1s coNP-decidable and hereditary.
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(4) A set L is in II¥ if and only if it can be expressed as L = {z : f(z) is a maximal
solution of = in Q} for some f € FP and some MAXP @ whose instance-solution relation
is coNP-decidable.

From the proof of Theorem 5.1(1), we easily see that there is a MAXP whose instance-
solution relation is P-decidable (but not hereditary) and whose associated decision prob-

lem is <P -complete for coNP. However, the following proposition gives us two concrete
such MAXP’s.

Proposition 5.2 The decision problems associated with MaxModel and MaxCub-
Subgraph are <F -complete for coNP:

The following corollary follows immediately from the proof of Theorem 5.1(2) and
Cook’s theorem.

Corollary 5.1 The decision problem associated with X-MaxModel is <F -complete
for DP.

We next show three natural MAXP’s whose instance-solution relations are in NP and
whose associated decision problems are <F -complete for DF.

Proposition 5.3 The decision problems associated with MaxSat, Max-k-Colorability
and MaxHamSubgraph are <F -complete for DF:

We next show a natural MAXP whose instance-solution relation is coNP-decidable
and hereditary and whose associated decision problem is <F-complete for DF. Other
such natural MAXP’s may be found in [2,11,12].

Proposition 5.4 The following problem is <F -complete for D¥:

Instance: A triple (¢, X, @), where ¢ is a CNF boolean formula, X is a set of variables
appearing only positively in ¢, and @ is a truth assignment to the variables in X.

Question: Is it the case that d has no extension satisfying ¢ but each b € DXl with
@ C b has an extension satisfying ¢?

6 Conclusion

In this paper, we have suggested a general framework for studying the complexity of
solving maximization problems. Our results are summarized in Table 1 and Table 2. The
results give, systematically, characterizations of several important complexity classes via
MAXP’s. An important consequence of the results is that the complexity of the problem
X-MinModel is exactly captured by NPMV //OptP[O(logn)], giving an answer to an
open question of Papadimitriou [9].

As seen from Table 1, the complexity of solving those MAXP’s whose instance-solution
relation is coNP-decidable and hereditary is unclear. Two obvious open questions are to
ask whether the trivial upper bound FP™? can be lowered and to ask whether the trivial
lower bound FP}F can be raised. As a step toward the investigation of the two questions,
we may first consider what is the complexity of solving MinUnsat (or other natural such
problems). Although FPI‘IIP is a loose lower bound, proving the FPN*-hardness of solving
MinUnsat seems to be a hard task in the sense that at least the ideas used in proving the
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DF-hardness of the decision problem associated with MinUnsat do not work [11]. Also,
showing that MinUnsat is solvable in a class below FPNF needs new ideas; at least, our
ideas used in the proof of Theorem 3.1 do not seem to be applicable.

It would be also.interesting to consider the complexity of MAXP’s whose instance-
solution relation is C-decidable and hereditary for some complexity class C below P.
These MAXP’s are obviously solvable in FP. Are they solvable in a class below FP or is
there such a MAXP @ that solving @ is complete for FP (say, under <¥%. reductions)?
The two questions are important in parallel computation in the case when C C NC.
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