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1 Introduction

Intuitively, a maximization problem is to select a maximal solution for a given input
according to some selection criterion. The maximal independent set problem (MIS) [5]
and the minimal unsatisfiability problem (MinUnsat) [11] are two standard examples of
such problems. Much work has been devoted to the study of maximization problems
[1,2,3,4,5,7,9,11,12]. Most of the previous work has involved studying specific maximiza-
tion problems and either finding an efficient algorithm (e.g., [5]) or proving the problem
is hard to solve (e.g., [11]). An attractive alternative approach is to study maximization
problems in a general framework and to prove general results.

In this paper, we formalize a maximization problem (MAXP) $Q$ as a pair $(D, R)$ ,
where $D$ is the set of instances and $R$ : $D\cross\{0,1\}^{*}arrow$ {$true$ , false} is the instance-
solution relation. The objective in solving $Q$ is to select, given an instance $x\in D$ , a
maximal solution, i.e., a binary string $y$ such that $R(x, y)$ is true but changing one or
more arbitrary O-bits of $y$ to l-bits will change the value of $R(x, y)$ to false. As an
example, consider MIS in our framework. For it, $D$ is the set of all undirected graphs,
and $R(G, b_{1}b_{2}\cdots b_{n})$ is true if and only if $G$ has $n$ vertices (say, 1, 2, $\cdots,$ $n$ ) and { $i$ :
$b_{i}=1\}$ is an independent set in $G$ . Our goal is to demonstrate what factors make $Q$

easy or hard to solve and how the factors influence the complexity of solving $Q$ . We
are able to find two such factors. One obvious factor is the complexity of $R$ . This can
be seen by comparing MIS with MinUnsat. The instance-solution relation of MIS is
decidable in NC while that of MinUnsat is coNP-complete. Because of this gap, solving
MinUnsat is much harder than solving MIS. In fact, MIS is solvable in NC $[5,7]$ while
solving MinUnsat is $D^{P}$-hard [11]. The other factor is whether $R$ is hereditary or not,
where $R$ is said to be hereditary if and only if for every $x$ and $w$ , whenever $R(x, w)$ is true,
$R(x, w)$ remains true even one or more arbitrary l-bits of $w$ are changed to O-bits. The
instance-solution relation of MIS (also MinUnsat) is hereditary. In [9], Papadimitriou
considered the following problem (MinModel): Given a CNF boolean formula $\phi$ , find a
satisfying truth assignment $aarrow$ to $\phi$ such that changing one or more arbitrary l-bits of $aarrow$ to
O-bits will make $aarrow$ no longer satisfy $\phi$ . The instance-solution relation of MinModel is not
hereditary but is decidable in NC. Unlike MIS, solving MinModel is obviously NP-hard.

In this paper, we restrict to consider only those MAXP’s whose instance-solution
relation is decidable in NP or $coNP$. We first consider upper bounds on the complexity
of solving such MAXP’s. Let $Q=(D, R)$ be a MAXP. The following give trivial upper
bounds: (i) $Q$ is solvable in FP if $R$ is decidable in $P$ and hereditary; (ii) $Q$ is solvable
in $NPMV\parallel OptP[O(\log n)]$ if $R$ is decidable in NP; (iii) $Q$ is solvable in $FP^{NP}$ if $R$ is
decidable in $coNP$ and hereditary; (iv) $Q$ is solvable in $FP^{\Sigma_{2}^{P}}$ if $R$ is decidable in $coNP$.
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Our main results concerning upper bounds are the following:
(v) Suppose $Q$ is a MAXP whose instance-solution relation is NP decidable. Let $e$

be an arbitrary polynomial. Then, there exist a function $F\in FP_{||}^{NP}$ and a polynomial $p$

such that for every $x,$ $Pr$ [$F(x,$ $w)$ is a maximal solution of $x$ in $Q$] $\geq 1-2^{-e(|x|)}$ , where
$w\in\{0,1\}^{p(|x|)}$ is randomly chosen under uniform distribution.

(vi) Suppose $Q$ is a MAXP whose instance-solution relation is $coNP$ decidable. Let $e$

be an arbitrary polynomial. Then, there exist a function $F\in FP_{||}^{\Sigma_{2}^{P}}$ and a polynomial $p$

such that for every $x,$ $Pr$ [$F(x,$ $w)$ is a maximal solution of $x$ in $Q$] $\geq 1-2^{-e(|x|)}$ , where
$w\in\{0,1\}^{p(|x|)}$ is randomly chosen under uniform distribution.

(v) and (vi) are shown by extending the technique used in [3].
We then show that $NPMV\parallel OptP[O(\log n)]$ is also a lower bound for solving those

MAXP’s whose instance-solution relation is decidable in NP or is decidable in $P$ but not
$\Sigma^{P}$

$hreditandtha_{4_{ab1eincoNPbutnothereditary.Combiningtheupperandlower}^{2}}So^{e_{1utionre1ationisdeci}}$

bounds, we obtain characterizations of $NPMV\parallel OptP[O(\log n)]$ and $FP_{||}^{\Sigma_{2}^{P}}$ via MAXP’s.
As an important consequence of the characterization of $NPMV\parallel OptP[O(\log n)]$ , we ob-
tain the first natural complete problem for $NPMV\parallel OptP[O(\log n)]$ . The problem (called
$X$-MinModel) is defined as follows: Given a CNF boolean formula $\phi$ and a subset $X$ of
the set of variables in $\phi$ , find a satisfying truth assignment $aarrow$ to $\phi$ such that changing
one or more arbitrary l-bits of $\vec{a}$ corresponding to variables in $X$ to O-bits will make
$aarrow$ no longer satisfy $\phi$ . $X$-MinModel was first considered by Papadimitriou in [9], and
was claimed without a precise proof to be $\triangle_{2}^{P}$-complete there. However, Papadimitriou
later withdrew his claim and thus left the complexity of $X$-MinModel open [10]. In [3],
we proved that the complexity of $X$-MinModel is roughly captured by $FP_{||}^{NP}$ . Now, the
results in this paper give, for the first time, the exact complexity of solving $X$-MinModel.

We also characterize complexity classes of sets via MAXP’s. The following are shown:
(a) $coNP$ is the class of all sets $L$ that can be expressed as $L=\{x$ : $f(x)$ is a maximal

solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is P-decidable.

(b) $D^{P}$ is the class of all sets $L$ that can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is NP-decidable.

(c) $D^{P}$ is the class of all sets $L$ that can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is coNP-decidable and hereditary.

(d) $\Pi_{2}^{P}$ is the class of all sets $L$ that can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is coNP-decidable.

As consequences, we obtain several new natural problems that are $\leq_{m}^{P}$-complete for
$coNP$ or $D^{P}$ .

2 Preliminaries

We use $\Sigma=\{0,1\}$ as our alphabet. By a set, we mean a subset of $\Sigma^{*}$ . Similarly, by a
string, we mean a string in $\Sigma^{*}$ . We denote by $|x|$ the length of a finite string $x$ . The bits
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of a finite string with length $n$ are indexed from left to right as the 1st, $2nd,$ $\cdots$ , nth
bits, respectively. For a finite string $x$ , we usually identify $x$ with the set of all indices $i$

such that the ith bit of $x$ is 1. Thus we will often use some set-theoretical notations for
finite strings. A finite string $x$ is smaller than another finite string $y$ if either $|x|<|y|$

or $|x|=|y|$ and $x\subset y$ . A maximal string in a set $S$ of finite strings is a string in $S$ that
is not smaller than any other string in $S$ .

We assume a one-to-one pairing function from $\Sigma^{*}\chi\Sigma^{*}$ to $\Sigma^{*}$ that is polynomial-time
computable and polynomial-time invertible. For strings $x$ and $y$ , we denote the output of
the pairing function by $\langle x, y\rangle$ ; this notation is extended to denote any k-tuples for $k>2$
in a usual manner. W.l. $0.g.$ , we assume that $|\langle x, y\rangle|$ depends only on $|x|$ and $|y|$ .

For any finite set $A,$ $||A||$ denotes the number of strings in $A$ . For a set $L,\overline{L}$ denotes
its complement (i.e., $\Sigma^{*}-L$ ), and $\chi_{L}$ denotes the characteristic function of $L$ . For a class
$C$ of sets, $coC$ denotes the class of all sets whose complement is in C. Let $\Sigma^{n}$ denote
the set of all strings with length $n$ . For two sets $L_{1}$ and $L_{2},$ $L_{1}\oplus L_{2}$ denotes the set
$\{0x : x\in L_{1}\}\cup\{1y : y\in L_{2}\}$ .

All functions considered here are ones from $\Sigma^{*}$ to $\Sigma^{*}\cup\{\#\}$ . The symbol $\#$ is assumed
to be not in $\Sigma^{*}$ . We consider both single-valued functions and multi-valued functions, but
by a function we mean a (partial) single-valued function. For a multi-valued function
$G,$ $G(x)$ denotes the set of all possible values of $G$ at $x$ . Thus, when $G(x)=\emptyset$ , the
multi-valued function $G$ is undefined at the argument $x$ .

We assume that the reader is familiar with the basic concepts from the theory of
computational complexity. Our computational models are variations of standard Turing
machines. A machine is either an acceptor or a transducer, and may be deterministic
or nondeterministic. An acceptor is denoted by $M$ or $M_{i}$ while a transducer is denoted
by $T$ or $T_{i}$ . A deterministic (resp., nondeterministic) Turing machine is abbreviated as
DTM (resp., NTM). On a given input, a branch of a (nondeterministic) machine may
halt by entering either a rejecting state or an accepting state. For simplicity, we say that
a branch of a machine halts if the branch halts by entering an accepting state. Let $L(M)$

denote the set of all strings accepted by $M$ . A transducer $T$ computes a string $y$ on input
$x$ if some branch of $T$ on input $x$ halts with $y$ on the output tape. $T(x)$ denotes the
set of all strings computed by $T$ on input $x$ . A DTM $T$ computes a function $f$ if for all
$x\in\Sigma^{*},$ $T(x)=\emptyset$ if $f(x)$ is undefined, and the unique element of $T(x)$ is $f(x)$ otherwise.

Classes in the first three levels of the polynomial-time hierarchy are denoted in the
usual way: $P$, NP, $coNP,$ $\Sigma_{2}^{P},$ $\Pi_{2}^{P}=co\Sigma_{2}^{P}$ . Let $D^{P}=$ { $L_{1}\cap L_{2}$ : $L_{1}\in NP$ and $L_{2}\in coNP$ }.

FP denotes the class of all functions computed by polynomial-time bounded DTM’s.
Let $A$ be a set. $FP^{A}$ denotes the class of all functions computed by polynomial-time
bounded deterministic oracle Turing machines (DOTM) with oracle A. $FP_{||}^{A}$ denotes
the class of all functions $F$ for which there exists a polynomial-time bounded DOTM $T$

such that $T$ , while computing $F(x)$ for a given $x$ , prepares all its query strings before
asking them to the oracle $A$ . More precisely, a function $F$ is in $FP_{||}^{A}$ if there exist two
functions $f$ and $g$ in FP such that for all strings $x,$ $F(x)=g(x, \chi_{A}(y_{1})\cdots\chi_{A}(y_{m}))$ , where
$f(x_{AnNP^{1}metri^{m}\tau_{urimachinei1no^{C}mia1imebo^{A}undedN}^{Frac1assCofsets_{o}FP=\cup FPan_{\#\ovalbox{\tt\small REJECT}_{at}}}})=\langle y,\cdots,y_{c}\rangle.o_{ngsap’ y-t^{A\in C}M\tau_{sucht}^{A\in C}}dFP^{C_{1}}=\cup FP^{A}$

.
on

every input, every branch of $T$ outputs a binary number and halts [6]. $OptP[O(\log n)]$

denotes the class of all (total) integer-valued functions $H$ for which there exist a poly-
nomial $p$ and an NP metric Turing machine $T$ such that for every $x,$ $H(x)\leq p(|x|)$ and



14

$H(x)$ equals to the maximum number in $T(x)$ . $NPMV\parallel OptP[O(\log n)]$ denotes the class
of all (partial) multi-valued functions $G$ for which there exist an NTM $T$ and a function
$H\in OptP[O(\log n)]$ such that for every $x,$ $G(x)=T(\langle x, H(x)\rangle)$ .

A maximization problem (MAXP) $Q$ is a pair $(D, R)$ , where (i) $D$ is the set of instances
and (ii) $R:D\cross\Sigma^{*}arrow$ {$true$ , false} is the instance-solution relation.

$R$ is said to be hereditary if for every $x\in D$ and every $w\in\Sigma^{*}$ , whenever $R(x, w)$ is
true, $R(x, w’)$ is also true for every $w’$ with $|w’|=|w|$ and $w’\subset w$ . Let $x\in D$ . A string $w$

is called a solution of $x$ if $R(x, w)$ is true. A maximal solution of $x$ is a maximal string in
the set of all solutions of $x$ . The objective in solving $Q$ is to compute, given an instance
$x\in D$ , a maximal solution of $x$ .

Each MAXP $Q=(D, R)$ considered in this paper is required to satisfy the following:
(1) $D$ is P-decidable (i.e., decidable in polynomial time), (2) there is a polynomial $p$ such
that for every $x\in D$ and every string $w$ , whenever $R(x, w)$ is true, $|w|\leq p(|x|)$ , and (3)
$R$ is NP-decidable or coNP-decidable.

Deflnition 2.1 A function $F$ solves $Q$ if for every $x\in D,$ $(a)F(x)$ is undefined if
$x$ has no solution in $Q$ and (b) $F(x)$ is a maximal solution of $x$ in $Q$ otherwise. A
multi-valued function $G$ solves $Q$ if for every $x\in D,$ $(a)G(x)=\emptyset$ if $x$ has no solution in
$Q$ and (b) $G(x)$ is nonempty and each element of $G(x)$ is a maximal solution of $x$ in $Q$

otherwise. $Q$ is solvable in a class $H$ of (single-valued or multi-valued) functions if some
$H\in H$ solves $Q$ .

Definition 2.2 Let $F$ be a function, and let $G$ be a multi-valued function. Then, $F$

(resp., $G$ ) is reducible to $Q$ if there exist two functions $f,$ $g$ in FP such that for every $x$ ,
$f(x)\in D$ and $g(x, w)=F(x)$ (resp., $g(x,$ $w)\in G(x)$ ) for every maximal solution $w$ of
$f(x)$ in Q. $Q$ is hard for a class $H$ of (single-valued or multi-valued) functions if every
$H\in H$ is reducible to Q. $Q$ is complete for a class $H$ of (single-valued or multi-valued)
functions if $Q$ is solvable in and hard for H. $Q$ is hard for a class $C$ of sets if $Q$ is hard
for the class $\{\chi_{L} : L\in C\}$ .

Deflnition 2.3 The set $L_{Q}=$ { $\langle x,$ $w\rangle$ : $w$ is a maximal solution of $x$ in $Q$} is called
the decision problem associated with $Q$ .

3 Upper bounds

In this section, we show upper bounds on the complexity of solving MAXP’s. The
following proposition shows trivial upper bounds.

Proposition 3.1 Let $Q=(D, R)$ be a MAXP.
(1) If $R$ is hereditary and P-decidable, then $Q$ is solvable in FP.
(2) If $R$ is NP-decidable, then $Q$ is solvable in $NPMV\parallel OptP[O(\log n)]$ .
(3) If $R$ is hereditary and coNP-decidable, then $Q$ is solvable in $FP^{NP}$ .
(4) If $R$ is coNP-decidable, then $Q$ is solvable in $FP^{\Sigma_{2}^{P}}$ .

We next proceed to show two other non-trivial upper bounds. To do this, we need
several definitions and a known result.

Deflnition 3.1 Let $F$ be a class of functions. Then we define a class $RP\cdot F$ of
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multi-valued functions as follows: A multi-valued function $G$ is in $RP\cdot F$ if for every
polynomial $e$ , there exist a function $F\in F$ and a polynomial $p$ such that for every
string $x,$ $(a)F(x, w)$ is undefined for all $w\in\{0,1\}^{p(|x|)}$ if $G(x)$ is undefined and (b)
$Pr[F(x, w)\in G(x)\cup\{\#\}]=1$ and $Pr[F(x, w)\in G(x)]\geq 1-2^{-e(|x|)}$ otherwise, where $w$

is a random string chosen from $\{0,1\}^{p(|x|)}$ . Intuitively speaking, $G$ is in $RP\cdot F$ if for every
string $x$ , we can randomly pick up an element of $G(x)$ using a function in F.

Notation: For $k\geq 1,$ $[1, k]$ denotes the set of all integers $i$ with $1\leq i\leq k$ .
Deflnition 3.2 Let $S$ be a finite set and let $k$ be a positive integer. A weight function

over $S$ is a function from the elements of $S$ to positive integers. A k-weight function over
$S$ is a weight function $f$ over $S$ such that for each $s\in S,$ $f(s)$ is in $[1, k]$ . A random
k-weight function over $S$ is a k-weight function $f$ over $S$ such that for each $s\in S,$ $f(s)$ is
chosen uniformly and independently from $[1, k]$ . The weight of a subset $S’$ of $S$ under a
weight function $f$ is $\Sigma_{\iota\in S’}f(s)$ . Note that for every k-weight function over $S$ , the weight
of each subset of $S$ under $f$ is no more than $k||S||$ and that the empty set $\emptyset$ is the unique
subset of $S$ with weight $0$ .

Lemma 3.1 [8]. Let $S$ be a nonempty family of subsets of a finite set $S$ . Then, for
any random k-weight function $f$ over $S$ with $k\geq 2||S||$ , Pr[There is a unique maximum
weight set in $S$ under $f$] $\geq\frac{1}{2}$

Now we are ready to show the two non-trivial upper bounds. The idea used in the
proof is a generalization of the one used in [3].

Theorem 3.1 Let $Q=(D, R)$ be a MAXP.
(1) If $R$ is NP-decidable, then $Q$ is solvable in $RP\cdot FP_{||}^{NP}$ .
(2) If $R$ is coNP-decidable, then $Q$ is solvable in $RP\cdot FP_{||}^{\Sigma_{2}^{P}}$

Proof. We only show a proof for (2). (1) can be shown in a similar manner.
(2) We first explain the idea behind the proof. Let $p_{Q}$ be a polynomial such that for

all $x\in D$ , the length of each solution of $x$ is no more than $pQ(|x|)$ . Let $x$ be an instance
of $Q$ . Then, we consider $S$ , the family of all solutions of $x$ with maximum length. To
find a maximal solution for $x$ , we first get a random 2$p_{Q}(|x|)$-weight function $f$ over
$[1, p_{Q}(|x|)]$ . Then, by Lemma 3.1, with probability at least $\frac{1}{2}$ there is a unique solution
in $S$ of maximum weight. To find this unique solution of maximum weight, it suffices
to ask only one round of parallel queries to a $\Sigma_{2}^{P}$ oracle set. Since the weight assigned
to each element of $[1, pQ(|x|)]$ is positive, all maximum weight solutions are maximal
solutions (but not necessarily solutions of maximum l-bits). In order to get the high
probability of success, we may perform several copies of this computation in parallel.

We now proceed to give the precise proof. Let $p_{Q}$ be a polynomial that bounds the
lengths of solutions of $x$ from above. For convenience, let $n_{x}=p_{Q}(|x|)$ for all $x\in D$ .
Then we define five sets as follows:

$L_{R}=$ { $x$ : $x$ has a solution},
$B_{1}=$ {{ $x,$ $i\rangle$ : $0\leq i\leq n$. and $x$ has a solution of length $i$ },
$B_{2}=\{\langle x, i, f,j\rangle$ : $x\in D,$ $0\leq i\leq n_{x},$ $f$ is a $2^{1+\int\log_{2}n_{x}\rceil}$ -weight function over $[1, n_{x}]$ ,

$0\leq j\leq i2^{1+f^{\log_{2}n_{x}\rceil}}$ , and $x$ has a solution $u$ such that $|u|=i$ and $j$ is the weight of $u$

under $f$},
$B_{3}=\{\langle x,$ $i,$ $f,j$ ) : $x\in D,$ $0\leq i\leq n_{x},$ $f$ is a $2^{1+R\circ g_{2}n_{x}\rceil}$ -weight function over $[1, n_{x}]$ ,
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$0\leq j\leq i2^{1+R\circ g_{2}n_{x}\rceil}$ , and $x$ has two or more solutions $u$ such that $|u|=i$ and $j$ is the
weight of $u$ under $f$}, and

$B_{4}=\{\langle x, i, f,j, k\rangle$ : $x\in D,$ $0\leq i\leq n_{x},$ $f$ is a $2^{1+\int\log_{2}n_{x}\rceil}$ -weight function over $[1, n_{x}]$ ,
$0\leq j\leq i2^{1+\beta og_{2}n_{x}\rceil},$ $1\leq k\leq i$ , and $x$ has a solution $u$ such that $|u|=i,$ $j$ is the weight
of $u$ under $f$ , and the kth bit of $u$ is 1}.

Obviously, $L_{R},$ $B_{1},$ $B_{2},$ $B_{3}$ , and $B_{4}$ are in $\Sigma_{2}^{P}$ . Let $B=(((L_{R}\oplus B_{1})\oplus B_{2})\oplus B_{3})\oplus B_{4})$ .
Then, $B\in\Sigma_{2}^{P}$ .

Let $e$ be an arbitrary polynomial. We define a polynomial $p$ as follows: $p(i)=e(i)$ .
$(p_{Q}^{2}(i)+p_{Q}(i))$ . Below, we define a DOTM $T$ which uses $B$ as an oracle set. Given an
input ( $x,$ $w\rangle$ with $x\in D$ and $w\in\{0,1\}^{p(|x|)},$ $T$ operates as follows:

Step 1: $T$ checks whether $x$ has a solution by asking a query to $L_{R}$ . If $x$ has no
solution, then $T$ halts by entering a rejecting state.

Step 2: $T$ finds $n_{1}$ , the length of the longest solutions of $x$ . This is done by asking the
queries $\langle x, 0\rangle,$ ( $x,$ $1\rangle$ , $\cdots,$

$\langle x, n_{x}\rangle$ to the oracle set $B_{1}$ .
Step 3: $T$ computes $n_{2}=2^{1+[\log_{2}n_{x}\rceil}$ and constructs, from $w,$ $n_{2}$ -weight functions $f_{1}$ ,

$f_{2},$
$\cdots,$ $f_{e(|x|)}$ over the set $[1, n_{x}]$ as follows:
Step 3.1: $T$ first computes $e(|x|)$ strings $w_{1},$ $\cdots,$ $w_{e(|x|)}$ from $w$ such that $|w_{1}|=\cdots=$

$|w_{e(|x|)}|=n_{x}\log_{2}n_{2}$ and the string $w_{1}w_{2}\cdots w_{e(|x|)}$ is a prefix of $w$ (the remaining part of
$w$ is ignored), and then for each $1\leq k\leq e(|x|)$ , it partitions $w_{k}$ into $n_{x}$ substrings $w_{k,1}$ ,

$w_{k,n_{x}}$ each of length $\log_{2}n_{2}$ . (Note: $T$ can do this because $n^{2}ae+n_{x}\geq n_{x}\log_{2}n_{2}.$)
Step 3.2: For each $1\leq k\leq e(|x|)$ and each $I$ in $[1, n_{x}]$ , $T$ sets $f_{k}(l)=d_{k,l}+1$ , where

$d_{k,1}$ is the integer whose binary representation is $w_{k,l}$ .
Step 4: For each 1 $\leq k\leq e(|x|),$ $T$ computes the maximum number $m_{k}$ with

$\langle x, n_{1}, f_{k}, m_{k}\rangle\in B_{2}$ . This is done by asking the queries $\langle x, i, f_{k},j\rangle$ with $0\leq i\leq n_{x}$ ,
$1\leq k\leq e(|x|)$ , and $0\leq j\leq in_{2}$ to the oracle set $B_{2}$ . (Note: In this step, $T$ asks the
queries of the form ( $x,$ $i,$ $f_{k},$ $j\rangle$ for all possible values of $i,$ $k$ , and $j$ because the machine
needs to prepare all queries independently of each other.)

Step 5: For $1\leq k\leq e(|x|)$ and $1\leq l\leq n_{1},$ $T$ computes $a_{k,l}=\chi_{B_{4}}(\langle x, n_{1}, f_{k}, m_{k}, l\rangle)$.
This is done by asking the queries $\langle x, i, f_{k},j, l\rangle$ with $0\leq i\leq n_{x},$ $1\leq k\leq e(|x|)$ ,
$0\leq j\leq in_{2}$ , and $1\leq I\leq i$ to the oracle set $B_{4}$ . (Note: In this step, $T$ asks the queries
of the form $\langle x, i, f_{k},j, l\rangle$ for all possible values $i,$ $k,$ $j$ , and $l$ because the machine needs
to prepare all queries independently of each other.)

Step 6: For each $1\leq k\leq e(|x|),$ $T$ checks whether $\langle x, n_{1}, f_{k}, m_{k}\rangle\in B_{3}$ . This is done
by asking the queries $\langle x, i, f_{k},j\rangle$ with $0\leq i\leq n_{x},$ $1\leq k\leq e(|x|)$ , and $0\leq j\leq in_{2}$ to
the oracle set $B_{3}$ . If for some $k,$ $\langle x, n_{1}, f_{k}, m_{k}\rangle\not\in B_{3}$ , then $T$ outputs $a_{k,1}a_{k,2}\cdots a_{k,n_{1}}$ and
halts; otherwise, $T$ outputs the special symbol $\#$ and halts.

Let $F$ denote the function computed by $T$ with oracle $B$ . We can easily see that $T$ is
polynomial-time bounded and all query strings are prepared independently of each other;
this means that the query strings made by $T$ on input ( $x,$ $w\rangle$ can be realized as parallel
queries to the oracle set $B$ . Thus, $F$ is in $FP^{\Sigma_{2}^{P}}$

$||$
.

Let $G$ be a multi-valued function defined by $G(x)=\{F(x, w)$ : $w\in\{0,1\}^{p(|x|)}$ and
$F(x, w)$ is $defined$} $-\{\#\}$ . We show that $G$ solves $Q$ and is in $RP\cdot FP_{||}^{\Sigma_{2}^{P}}$ . To this end,
we first prove two claims.

Claim 1 Suppose that for some $k$ with $1\leq k\leq e(|x|),$ $x$ has a unique solution with
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length $n_{1}$ and of weight $m_{k}$ under $f_{k}$ . Then, the string $a_{k,1}a_{k,2}\cdots a_{k,n_{1}}$ output by $T$ is a
maximal solution of $x$ .

Claim 2 Suppose that $x$ has solutions and $w$ is randomly chosen from $\{0,1\}^{p(|x|)}$ .
Then, $Pr$ [$F(x,$ $w)$ is a maximal solution of $x$ ] $\geq 1-2^{-e(|x|)}$ .

Proof. Since $w$ is randomly chosen from $\{0,1\}^{p(|x|)}$ , the functions $f_{1},$ $f_{2},$
$\cdots,$ $f_{e(|x|)}$

constructed in Step 3 must be random $n_{2}$-weight functions over $[1, n_{x}]$ . Note that $n_{2}=$

$2^{1+\beta og_{2}n_{*}\rceil}\geq 2n_{x}$ . Thus, from Claim 1 and Lemma 3.1, we have that
$Pr$ [$F(x,$ $w)$ is a maximal solution of $x$]

$=Pr$ [ $(\exists k,$ $1\leq k\leq e(|x|))a_{k,1}a_{k,2}\cdots a_{k,n_{1}}$ is a maximal solution of $x$ ]
$\geq Pr[(\exists k, 1\leq k\leq e(|x|))x$ has a unique solution with maximum length and of

maximum weight under $f_{k}$]
$\geq 1-\Pi_{k=1}^{e(|x|)}Pr[x$ has two or more solutions with maximum length and of maximum

weight under $f_{k}$ ]
$\geq 1-(\frac{1}{2})^{e(|x|)}=1-2^{-e(|x|)}$ . 1
In the case when $x$ has no solution, $F(x, w)$ is undefined for all $w\in\{0,1\}^{p(|x|)}$ by Step

1 and hence $G(x)=\emptyset$ . On the other hand, when $x$ has solutions, $G(x)\neq\emptyset$ by Claim 2
and the definition of $G$ , and each element of $G(x)$ is a maximal solution of $x$ by Claim
1. Therefore, $G$ solves $Q$ .

If $G(x)=\emptyset$ , we know that $x$ has no solution by the discussions in the last paragraph
and thus that $F(x, w)$ is undefined for all $w\in\{0,1\}^{p(|x|)}$ by Step 1. On the other hand,
if $G(x)\neq\emptyset$ , then $x$ has solutions by the discussions in the last paragraph, $Pr[F(x, w)\in$

$G(x)\cup\{\#\}]=1$ by Step 6 and the definition of $G$ , and $Pr[F(x, w)\in G(x)]\geq 1-2^{-e(|x|)}$

by Claim 2. Therefore, $G$ is in $RP\cdot FP_{||}^{\Sigma_{2}^{P}}$ . \S

4 Hardness of solving MAXP’s

In the light of Proposition 3.1(1), the following proposition shows that FP is a tight
lower bound on the complexity of solving MAXP’s whose instance-solution relation is
P-decidable and hereditary.

Proposition 4.1 There is MAXP $Q=(D, R)$ such that $R$ is P-decidable and hered-
itary and $Q$ is hard for FP.

By Proposition 3.1(2), the following theorem shows that $NPMV\parallel OptP[O(\log n)]$ is a
tight lower bound on the complexity of solving MAXP’s whose instance-solution relation
is P-decidable but not hereditary.

Theorem 4.1 There is a MAXP $Q=(D, R)$ such that $R$ is P-decidable (but not
hereditary) and $Q$ is hard for $NPMV\parallel OptP[O(\log n)]$ .

The following corollary is immediate from the proof of Theorem 4.1.

Corollary 4.1 The following problem (called $X$-MaxModel hereafter) is complete for
$NPMV\parallel OptP[O(\log n)]$ :

Instance: A CNF boolean formula $\phi$ and a subset $X$ of the set of variables in $\phi$ .
Output: A truth assignment $aarrow$ to the variables in $X$ such that $aarrow$ can be extended to

a satisfying truth assignment to $\phi$ but no $barrow$ with $aarrow\subset barrow$ and $|\vec{a}|=|b|arrow$ can be extended to
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a satisfying truth assignment to $\phi$ .
$X$-MaxModel is essentially the same problem as considered by Papadimitriou in Sec-

tion 3 of [9]. In [9], Papadimitriou claimed without a precise proof that the problem is
complete for $FP^{NP}$ . However, he later withdrew his claim and thus left the complexity of
the problem open [10]. In [3], we proved that the complexity of the problem is roughly
captured by $FP_{||}^{NP}$ . Now, Corollary 4.1 gives, for the first time, the exact complexity of
the problem. Corollary 4.1 is also of special interest in the sense that no natural problem
complete for $NPMV\parallel OptP[O(\log n)]$ has been shown before.

By modifying the proof of Theorem 4.1, we can show that $NPMV\parallel OptP[O(\log n)]$ is a
tight lower bound on the complexity of solving MAXP’s whose instance-solution relation
is NP-decidable and hereditary.

Theorem 4.2 There is a MAXP $Q=(D, R)$ such that $R$ is NP-decidable and
hereditary and $Q$ is hard for $NPMV\parallel OptP[O(\log n)]$ .

The instance-solution relation of $X$-MaxModel is NP-decidable but not hereditary. A
natural question arises: Are there natural MAXP’s $Q$ such that $Q$ is hard for $NPMV/$

$/OptP[O(\log n)]$ and the instance-solution relation of $Q$ is either NP-decidable and
hereditary or P-decidable (but not hereditary)? Unfortunately, we are unable to settle
this question. However, we below show that the question will have a positive answer if
$NPMV\parallel OptP[O(\log n)]$ in it is replaced by $FP_{||}^{NP}$ .

Deflnition 4.1 A MAXP $Q=(D, R)$ is paddable if there are two functions $f$ and $g$

in FP such that for every list $I=(x_{1},$ $x_{2},$ $\cdots$ , $x_{m}\rangle$ of instances of $Q,$ $f(I)\in D$ and for
every maximal solution $w$ of $f(I),$ $g(I, w)$ gives a maximal solution for each $x_{i}$ .

Lemma 4.1 If a MAXP is paddable and hard for NP, then it is hard for $FP_{||}^{NP}$ .

Theorem 4.3 The following MAXP’s are hard for $FP_{||}^{NP}$ .
(1) MAXIMAL MODEL (MaxModel)
Instance: A CNF boolean formula $\phi$ .
Output: A maximal satisfying truth assignment to $\phi$ , i.e., a satisfying truth assignment

$\vec{a}$ to $\phi$ such that there is no other satisfying truth assignment $\sim b$ to $\phi$ with $\vec{a}\subset barrow$.
(2) MAXIMAL CUBIC SUBGRAPH (MaxCubSubgraph)
Instance: An undirected graph $G$ .
Output: A maximal subset $F$ of $E(G)$ such that every vertex in the graph $(V(G), F)$

has either degree 3 or degree $0$ . (Note: $V(G)$ and $E(G)$ denote hereafter the sets of
vertices and edges of $G$ , respectively.)

(3) MAXIMAL SATISFIABILITY (MaxSat)
Instance: A CNF boolean formula $\phi=\{C_{1}, C_{2}, \cdots, C_{m}\}$ .
Output: A maximal subset $\phi’$ of $\phi$ that is satisfiable.
(4) MAXIMAL k-COLORABILITY $(k\geq 3)$ (Max-k-Colorability)
Instance: An undirected graph $G$ .
Output: A maximal subset of $V(G)$ whose induced subgraph is k-colorable.
(5) MAXIMAL HAMILTONIAN SUBGRAPH (MaxHamSubgraph)
Instance: A pair $\langle G, w\rangle$ of a connected undirected graph and a vertex in $G$ .
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Output: A maximal subset $U$ of $V(G)$ such that $w\in U$ and the subgraph induced by
$U$ has a Hamiltonian circuit.

We here note that a different proof for the $FP_{||}^{NP}$-hardness of MaxModel has been given
in [3]. Note that the instance-solution relations of the first two problems in Theorem 4.3
are P-decidable but not hereditary, while the instance-solution relations of the third and
fourth problems in Theorem 4.3 are NP-decidable and hereditary. The last problem in
Theorem 4.3 is a concrete MAXP whose instance-solution relation is NP-decidable but
not hereditary.

For those MAXP’s $Q$ whose instance-solution relation is coNP-decidable and heredi-
tary, we are only able to show a loose lower bound.

Proposition 4.2 There is a MAXP $Q=(D, R)$ such that $R$ is a coNP-decidable
hereditary relation and $Q$ is hard for $FP_{||}^{NP}$ .

In the light of Theorem 3.1(2), the following theorem shows that $FP_{||}^{\Sigma_{2}^{P}}$ is a nearly op-
timal lower bound on the complexity of solving MAXP’s whose instance-solution relation
is coNP-decidable but not hereditary.

Theorem 4.4 There is a MAXP $Q=(D, R)$ such that $R$ is coNP-decidable and $Q$

is hard for $FP_{||}^{\Sigma_{2}^{P}}$ .

5 Characterizations of $coNP,$ $D^{P}$ and $\Pi_{2}^{P}$

The following proposition can be easily proved.

Proposition 5.1 Let $Q=(D, R)$ be a MAXP.
(1) If $R$ is P-decidable and hereditary, then $L_{Q}$ is in P.
(2) If $R$ is P-decidable, then $L_{Q}$ is in $coNP$.
(3) If $R$ is NP-decidable, then $L_{Q}$ is in $D^{P}$ .
(4) If $R$ is coNP-decidable and hereditary, then $L_{Q}$ is in $D^{P}$ .
(5) If $R$ is coNP-decidable, then $L_{Q}$ is in $\Pi_{2}^{P}$ .

Similar to Proposition 4.1, we can simply show that $P$ is a tight lower bound on
the complexity of $L_{Q}$ for MAXP’s $Q$ whose instance-solution relation is P-decidable and
hereditary.

The following theorem gives us characterizations of $coNP,$ $D^{P}$ , and $\Pi_{2}^{P}$ via MAXP’s.

Theorem 5.1 The following hold:
(1) A set $L$ is in $coNP$ if and only if it can be expressed as $L=\{x$ : $f(x)$ is a maximal

solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is P-decidable.

(2) A set $L$ is in $D^{P}$ if and only if it can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$ } for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is NP-decidable (and hereditary).

(3) A set $L$ is in $D^{P}$ if and only if it can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$} for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is coNP-decidable and hereditary.
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(4) A set $L$ is in $\Pi_{2}^{P}$ if and only if it can be expressed as $L=\{x$ : $f(x)$ is a maximal
solution of $x$ in $Q$ } for some $f\in FP$ and some MAXP $Q$ whose instance-solution relation
is coNP-decidable.

Ekom the proof of Theorem 5.1(1), we easily see that there is a MAXP whose instance-
solution relation is P-decidable (but not hereditary) and whose associated decision prob-
lem is $\leq_{m}^{P}$-complete for $coNP$. However, the following proposition gives us two concrete
such MAXP’s.

Proposition 5.2 The decision problems associated with MaxModel and MaxCub-
Subgraph are $\leq_{m}^{P}$-complete for $coNP$ :

The following corollary follows immediately from the proof of Theorem 5.1(2) and
Cook’s theorem.

Corollary 5.1 The decision problem associated with $X$-MaxModel is $\leq_{m}^{P}$-complete
for $D^{P}$ .

We next show three natural MAXP’s whose instance-solution relations are in NP and
whose associated decision problems are $\leq_{m}^{P}$-complete for $D^{P}$ .

Proposition 5.3 The decision problems associated with MaxSat, Max-k-Colorability
and MaxHamSubgraph are $\leq_{m}^{P}$-complete for $D^{P}$ :

We next show a natural MAXP whose instance-solution relation is coNP-decidable
and hereditary and whose associated decision problem is $\leq_{m}^{P}$-complete for $D^{P}$ . Other
such natural MAXP’s may be found in [2,11,12].

Proposition 5.4 The following problem is $\leq_{m}^{P}$-complete for $D^{P}$ :
Instance: A triple $\langle\phi, X, aarrow\rangle$ , where $\phi$ is a CNF boolean formula, $X$ is a set of variables

appearing only positively in $\phi$ , and $\vec{a}$ is a truth assignment to the variables in $X$ .
Question: Is it the case that $aarrow has$ no extension satisfying $\phi$ but each $arrow b\in\Sigma^{||X||}$ with

$\vec{a}\subsetarrow b$ has an extension satisfying $\phi$ ?

6 Conclusion

In this paper, we have suggested a general framework for studying the complexity of
solving maximization problems. Our results are summarized in Table 1 and Table 2. The
results give, systematically, characterizations of several important complexity classes via
MAXP’s. An important consequence of the results is that the complexity of the problem
X-MinModel is exactly captured by NPMV\parallel OptP $[O(\log n)]$ , giving an answer to an
open question of Papadimitriou [9].

As seen from Table 1, the complexity of solving those MAXP’s whose instance-solution
relation is coNP-decidable and hereditary is unclear. Two obvious open questions are to
ask whether the trivial upper bound $FP^{NP}$ can be lowered and to ask whether the trivial
lower bound $FP_{||}^{NP}$ can be raised. As a step toward the investigation of the two questions,
we may first consider what is the complexity of solving MinUnsat (or other natural such
$problMinU$麗融総濫麟蕪\iota e擁膿黙瓢農糖拙 nhge
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$D^{P}$-hardness of the decision problem associated with MinUnsat do not work [11]. Also,
showing that MinUnsat is solvable in a class below $FP^{NP}$ needs new ideas; at least, our
ideas used in the proof of Theorem 3.1 do not seem to be applicable.

It would be also interesting to consider the complexity of MAXP’s whose instance-
solution relation is C-decidable and hereditary for some complexity class $C$ below P.
These MAXP’s are obviously solvable in FP. Are they solvable in a class below FP or is
there such a MAXP $Q$ that solving $Q$ is complete for FP (say, under $\leq_{1}^{NC_{T}}$ reductions)?
The two questions are important in parallel computation in the case when $C\subseteq NC$ .
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