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1 Introduction

The original idea of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer [4], Klop and De Vrijer [7] for giving a simpler proof of Chew’s theorem
[2, 10]. They developed an interesting method for proving the unique normal form property for
some non-Church-Rosser, non-left-linear term rewriting system R. The method is based on the
fact that the unique normal form property of the original non-left-linear term rewriting system
R follows the Church-Rosser property of an associated left-linear conditional term rewriting
system R which is obtained form R by linearizing the non-left-linear rules. In Klop and
Bergstra [1] it is proven that non-overlapping left-linear conditional term rewriting systems are
Church-Rosser. Hence, combining these two results, Klop and De Vrijer [4, 7, 6] showed that
the term rewriting system R has the unique normal form property if R’ is non-overlapping.
However, as their conditional linearization technique is based on the Church-Rosser property
for the traditional conditional term rewriting system R”, its application is restricted in non-
overlapping R (though this limitation may be slightly relaxed with R” containing only trivial
critical pairs).

In this paper, we introduce a new conditonal linearization based on a left-right separated
conditional term rewriting system Ry. The point of our linearization is that by replacing a

traditional conditional system R with a left-right separated conditional system R; we can
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easily relax the non-overlapping limitation of conditional systems originated from Klop and
Bergstra [1].

By developing a new concept of weighted reduction systems we present a sufficient condition
for the Church-Rosser property of a left-right separated conditional term rewriting system Rp,
which may have overlapping rewrite rules. Applying this result to our conditional linearization,
we show a sufficient condition for the unique normal form property of a non-duplicating non-
left-linear overlapping term rewriting system R.

Moreover, our result can be naturally applied to proving the Church-Rosser property of
some non-duplicating non-left-linear overlapping term rewriting systems such as right-ground
term rewriting systems. Oyamaguch and Ota [8] proved that non-E-overlapping right-ground
term rewriting systems are Church-Rosser by using the joinability of E-graphs, and Oyamaguch
extended this result into some overlapping systems [9]. The results by conditonal linearization
in this paper strengthen some part of Oyamaguchi’s results by E-graphs [8, 9], and vice verse.
Hence, we believe that both approach should be working together for developing the potential

of non-left-linear term rewriting system theory.

2 Reduction Systems

Assuming that the reader is familiar with the basic concepts and notations concerning reduction
systems in [3, 5, 6], we briefly explain notations and definitions.

A reduction system (or an abstract reduction system) is a structure A = (D, —) consisting
of some set D and some binary relation — on D (i.e., =C D x D), called a reduction relation.
A reduction (starting with z¢) in A is a finite or infinite sequence zog — 23 — 22 — ---. The
identity of elements z, y of D is denoted by = y. = is the reflexive closure of —, « is the
symmetric closure of —, = is the transitive reflexive closure of —, and < is the equivalence
relation generated by — (i.e., the transitive reflexive symmetric closure of —).

If € D is minimal with respect to —, i.e., -3y € D[z — y], then we say that z is a normal
form; let NF be the set of normal forms. If z 5y and y € NF then we say = has a normal

form y and y is a normal form of z.

Definition 2.1 A = (D,—) is Church-Rosser (or confluent) iff
Vz,y,2 € Dz >yAzSz=Jwe€ Ay SwAz>w)|.
Definition 2.2 A = (D, —) has unique normal forms iff
Vz,y € NF[z &y =z =y).
The following fact observed by Klop and De Vrijer [7] plays an essential role in our lin-
earization too.
Proposition 2.3 [Klop and De Vrijer] Let Ag = (D,?) and A, = (D,—1>) be two reduction

systems with the sets of normal forms N Fy and N Fy respectively. Then Ay has unique normal

forms if each of the following conditions holds:
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(i) 7 extends -
(ii) Ay is Church-Rosser,

(iii) NF, contains NF.

3 Weight Decreasing Joinability

This section introduces the new concept of weight decreasing joinability. In the later sections
this concept is used for analyzing the Church-Rosser property of conditional term rewriting
systems with extra variables occurring in conditional parts of rewriting rules.

Let N* be the set of positive integers. A = (D, —) is a weighted reduction system if
—= UyeN+ —u, that is, positive integers (weights w) are assigned to each reduction to represent
costs.

A proof of z &y is a sequence P: zg Sy Tl gy Ty Oy, Tp osuch that ¢ = 2 and
y = z,. The weight w(P) of the proof P is ©"  w;. We usually abbreviate a proof P of z &y
by P: £&y. The form of a proof may be indicated by writing, for example, P: z 5 - &y, P

z — -5 —y, etc. We use the symbols P, Q,--- for proofs.

Definition 3.1 A weighted reduction system A = (D,—) is weight decreasing joinable iff
Vz,y € D [ for any proof P: x>y there exists some proof P': x = - <y such that w(P) > w(P’)

J.

It is clear that if a weighted reduction system A is weight decreasing joinable then A is

Church-Rosser. We will now show a sufficient condition for the weight decreasing joinability.

Lemma 3.2 Let A be a weighted reduction system. Then A is weight decreasing joinable if the
following condition holds:

for any z,y € D [ for any proof P: x « - — y there exists a proof P' : x <>y such that (1)
w(P) > w(P"), or (i) w(P) > w(P') and P': v 5 S y].

Proof. The lemma can be easily proven by induction on the weight of a proof of z<y. O

The following lemma is used to show the Church-Rosser property of non-duplicating systems.

Lemma 3.3 Let Ay = (D,—0>) and A, = (D,?). Let P;: J:,-%)y (t=1,---n) and let w =
L w(P;). Assume that for any a,b € D and any proof P: a%b such that w(P) < w there
exists proofs P': a%c{—b with w(P') < w(P) and a—(?c{—)-b for some ¢ € D. Then, there exist

proofs P’;: :z:i—g)z (t=1,---n)and Q: y<—:+z with w(Q) < w for some z.
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Proof. By induction on w. Base step w = 0 is trivial. Induction step: From [.H., we have
proofs P;: xi%»z’ (i=1,---n—1)and Q: y«li»z’ for some 2’ such that S w(P;) > w(Q).
By connecting the proofs Q and P, we have a proof P z'%»y{»:cn. Since Y1 w(P;) > w(Q)
and w(P) = w(Q) + w(Pr), it follows that w > w(P). By the assumption, we have proofs
P: z’—I»z*I—mn with w > w(P) > w(P) and z’%z%xn for some z. Thus we obtain proofs P';:

:c,'%z (t=1,---,n).

1

and Q": y%);cn—:—)z. Note that w + w > w(P) + w(P) = w(Q') + w(Q"). Thus w > w(Q') or
w > w(Q"). Take Q" as Q if w > w(Q'); otherwise, take Q" as Q. O

. . ~ * * > * * *
combining su roois O L2 eOYoT, an L2 /22— T,, WE Call IMakKe . :‘)ZI—)Z
B b b fs of P: 2/ oY d P: 2 —Tn, ke Q' e
2

4 Term Rewriting Systems

In the following sections, we briefly explain the basic notions and definitions concerning term
rewriting systems [3, 5, 6].

Let F be an enumerable set of function symbols denoted by f,g,h,---, and let V be an
enumerable set of variable symbols denoted by z,y, z,--- where F NV = ¢. By T(F,V), we
denote the set of terms constructed from F and V. The term set T'(F,V) is sometimes denoted
by T.

A substitution 6 is a mapping from a term set T'(F,V) to T(F,V) such that for a term ¢,
0(t) is completely determined by its values on the variable symbols occurring in t. Following
common usage, we write this as t0 instead of 6(¢).

Consider an extra constant O called a hole and the set T(F U {O},V). Then C € T(F U

{30},V) is called a context on F. We use the notation C[ ,..., | for the context containing
n holes (n > 0), and if t,...,t, € T(F,V), then Cl[t,...,t,] denotes the result of placing
ti,...,t, in the holes of C[,..., ] from left to right. In particular, C[ ] denotes a context

containing precisely one hole. s is called a subterm of t = C[s]. If s is a subterm occurrence of
t, then we write s C ¢. If a term ¢ has an occurrence of some (function or variable) symbol e, we
write e € t. The variable occurrences zy, - -, z, of C[zq,- -+, z,] arefreshif zy,- -+, 2z, € C[, -+, ]
and z; Z z; (1 # 7).

A rewriting rule is a pair (I, 7) of terms such that [ ¢ V and any variable in r also occurs
in l. We write [ — r for (I,7). A redex is a term (8, where | — r. In this case 8 is called a
contractum of [f. The set of rewriting rules defines a reduction relation — on T as follows:

t— siff t = C[l10], s = C[rf]

for some rule [ — r, and some C[ ], 4.

When we want to specify the redex occurrence A = [0 of ¢ in this reduction, we write tS s,

Definition 4.1 A term rewriting system R is a reduction system R = (T(F,V),—) such that
the reduction relation — on T'(F,V) s defined by a set of rewriting rules. If R has | — r as a
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rewriting rule, we write [ — r € R.

We say that R is left-linear if for any | — r € R, [ is linear (i.e., every variable in [ occurs
only once). If R has critical pair then we say that R is overlapping: otherwise non-overlapping
[5, 6].

A rewriting rule [ — r is duplicating if r contains more occurrences of some variable then
l; otherwise, [ — r is non-duplicating. We say that R is non-duplicating if every [ — r € R is

non-duplicating.

5 Left-Right Separated Conditional Systems

In this section we introduce a new conditional term rewriting system R in which [ and r of
any rewrite rule | — r do not share the same variable; every variable in r is connected to
some variable in [ thorough an equational condition. A decidable sufficient condition for the
Church-Rosser property of R is presented.

V(t) denotes the set of variables occurring in a term t.

Definition 5.1 A left-right separated conditional term rewriting system is a conditional term

rewriting system with extra variables in which every conditional rewrite rule has the form:
l—r & 2=y, T =Yn

with I,r € T(F,V), V(1) = {z1, -, z,} and V(r) C {y1, - ,yn} such that (1) | is left-linear,

(1) {z1, -,z N {yr, -, yn} = ¢, (111) 2y # a; if ¢ # 7, (iv) r does not contain more

occurrences of some variables than the conditional part x1 = y1,- -, &y = Yn.

Definition 5.2 Let R be a left-right separated conditional term rewriting system. We induc-
tively define term rewriting systems R; for ¢ > 1 as follows:
Bi={l0—r0 | l-r & 1=y, e, =y, €ER
and ;0 =y;0 (j=1,---,n)},
Ryw={l0—-r0 | lor « 21=y1,- ", ¢n=Yyn, €R
and a:ﬂ«}%»yj@ G=1,---,n)}.
In R;,y, proofs of :L‘jee—;—'+ y;0 (7 =1,---,n ) are called subproofs associating with one step
reduction by 10 — rf. Note that R; C R;yq for allt > 1. We have s —?t if and only if s ?t

2

for some 1.
The weight w(s - t) of one step reduction s —R—>t 1s inductively defined as follows:

(i) w(s—é—»t)——-llfs—RT)t,

(i1) w(s?t) =1+ wP)+- -+ wP,)if §——1 (: > 1), where Py,---,P,, (m > 0) are
141
subproofs associating with one step reduction s - t.
P41
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Let | - r < 21 =y, ,Zm = Y and ' — ¢ 2] = y],---, 2, = y, be two rules
in a left-right separated conditonal term rewriting system R. Assume that we have renamed
the variables appropriately, so that two rules share no variables. Assume that s ¢ V is a
subterm occurrence in [, i.e., t = C[s], such that s and !’ are unifiable, i.e., s = I'§, with
a minimal unifier §. Note that rf = r, r'0 = v/, y:0 = y; (2 = 1,---,m) and y}0 = y/
(j=1,---,n)as {z1, T} N {y1,- - Yn} = ¢ and {}, -, 2.} N {y}, - -,y.} = ¢. Thus,
from 16 = C[s]§ = CO[I'0], two reductions starting with 18, i.e., {§ — CO[r'] and I8 — r, can
be obtained by using { - r < z, =y1, -, T =y and I' > v & 2 =yp, -, 2, =y if
we have subproofs of 20 <>y, -+, 2m0 & Yy and 20 Syl - 270 Sy Then we say that
lor<s s1=y, "y Tm =Ym and ' > ' 2] =y}, -,z =y, are overlapping, and

E F {(CO[r'],r)
is a conditional critical pair associated with the multiset of equations F = [2,0 = y;, -,
Tm = Ym, 210 =y}, -+, x10 = y.] in R. We may choose | - r < x, =y, -, 2m = ym and
' - 2y =y, -,z =y, to be the same rule, but in this case we shall not consider the case
s = 1. If R has no critical pair, then we say that R is non-overlapping.

E U E’ denotes the union of multisets £ and E’. We write £ C E’ if no elements in E occur

more than F’.

. Definition 5.3 Let E be a multiset of equations t' = s’ and a fresh constant . Then relations

trgs and tf\éb s on terms is inductively defined as follows:
1) t~t,

() ¢

i) t ~ s,

( ) [t:s]

i) Ift~s, th ~t

(i) If ~ s, then s ~1,

(iv) Ifthr and s, then t

~
/S’

Euk

(v) [ftrEs, then C[t]rEC[s],
(Vi) Ifl > r < 1=y, ,2n =Yyn € R and :L‘,Hgfy,ﬂ (1=1,---,n), then C[IH}}DC[TQ]
where £ = EyU---UE,, |

(vii) Iftmbyr, then tE’lj[o]S'

Lemma 5.4 Let F = [p1 = q1, . Pm = ¢m,®, -, 9| be a multiset in which ® occurs n times
(n>0), and let P;: pi0q0 (i=1,---,m).
(1) ]ftrgs then there exists a proof Q: t0<5s0 with w(Q) < Y™ w(P;) + n.

(2) Ift s then there exists a proof Q': t0—s6 with w(Q') < ¥, w(P;)+n+ 1.
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Proof. By induction on the construction of th s and tr\l;ys in Definition 5.3, we prove (1)
and (2) simultaneously.

Base Step: Trivial as (1) t;s =t or (ii) t[t;]s of Definition 5.3.

Induction Step: 1f we have t v by (iii) (iv) (v) and tps by (vi) of Definition 5.3, then from
the induction hypothesis (1) and (2) clearly follow. Assume that ¢ P by (v) of Definition 5.3.
Then we have a rule | - r < @ = y1,---,zx = yi such that ¢t = C[l0'], s = C[ré],
z;0' ~ y:0' (1 =1,--- k) for some § and E = F;U---U Fy. From the induction hypothesis and
E= 2‘_}1 U---U E}, it can be easily shown that Q;: ;0’05200 (i = 1,---, k) and 38, w(Q;) <
ity w(P;) + n. Therefore we have a proof Q': t§ — s with w(Q') <7, w(P;) +n+1. O

Theorem 5.5 Let R be a left-right separated conditional term rewriting system. Then R is
weight decreasing joinable if for any conditional critical pair E + (q,q') one of the following

conditions holds:

(i) q}r;q' for some E' such that E' T F U [e] or,

(i1) qfit: . %\;q’ for some Ey and Ey such that E; U Ey CT E or,
(iii) qr}:gq' (or q'??q) and E' C E U [e].

Note. The above conditions (i) (i) (iii) are decidable if R has finite rewrite rules. Thus, the

theorem presents a decidable condition for guaranteeing the Church-Rosser property of R.

Proof. The theorem follows from Lemma 3.2 if for any P: t«—p—s (t # s) there exists some
proof Q: t&s such that (i) w(P) > w(Q), or (i) w(P) > w(Q) and Q: t - & 5. Hence we
will show a proof Q satisfying (i) or (i1) for a given proof P: t«—p—s.

Let P: tﬁpgs where two redexes A = [0 and A’ = ['§’ are associated with two rules ry:
l—or< 1=y, &m =yYm and ry: I' = ' &< 2] =9), -,z =y, respectively.

Case 1. A and A’ are disjoint. Then p = C[A, A’] for some context C[, | and P: t =
C[t', A)EC[A, A] EX C[A,s'] = s for some t' and s’. Thus, we can take Q: t = C[t', A'] 2
C[t', s1&C[A, ') = s with w(Q) = w(P).

Case 2. A’ occurs in § of A = 10 (i.e., A’ occurs below the pattern /). Without loss of

generality we may assume that ry: Cplzy, -, 2m] = Crly1, - yn] < 21 =y1,-  ,Zm = Y

3

( all the variable occurrences are displayed and n < m), P p = C’[CL[pl,"~,pm]]é>t
C[CRlt1,- -, t,]] with subproofs P;: p; <> t; (1 = 1,---,m), and P": p = C[Crlp1,p2," P
2 s = ClCLp,par -+, Pml] by pi2p,. Thus w(P) = w(P') + w(P") and w(P') =

>, w(P;). Since we have a proof Q: p’1<A—,p1 Sty with w(Q') = w(P”) + w(Py), we can apply

+ =

r, to s = C[CL[p},p2, -, Pm]] too. Then, we have a proof Q: s = C[CL[p], - ,pm]] = t =
ClCRty, - -, ta]] with w(Q) =1+ w(Q') + T, w(Pi) = w(P).
Case 3. A and A’ coincide by the application of the same rule, i.e., r = r;y = ry. (Note.

In a left-right separated conditional term rewriting system the application of the same rule at
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the same position -does not imply the same result as the variables occurring in the left-hand
side of a rule does not cover that in the right-hand side. Thus this case is necessary even if
the system is non-overlapping.) Let the rule applied to A and A’ be r: Cplzy, -, z,] —
Crly1, " yn)] < 1 = ¥y1,",&m = Ym ( all the variable occurrences are displayed and
n < m), and let P": p = C[CL[pl,---,pm]]gt = C[CRglt1,- - -, ta]] with subproofs P';: p; < t;
(t =1,---,m) and P": p = C'[CL[pl,'-~,pm]]£:s = C|[Crls1," -, sa]] with subproofs P”;:
pisi (i = 1,0 ym). Here w(P) = w(P) + w(P") = 1+ S0, w(Py) +1+ S, w(P).
Thus we have a proof Q: t = C[Cgrlt1,"+,t.]] © C[Cr[p1,-, pal] & C[CR[s1, -, 8,]] = s
with w(Q) = X7, w(P;) + X, w(P') < w(P).

Case 4. A’ occurs in A but neither Case 2 nor Case 3 (i.e., A’ overlaps with the pattern
l of A = 10). Then, there exists a conditional critical pair [p; = ¢1, -, pm = @) F (g,¢)
between r; and ry, and we can write P: t = C[¢f]E&p = C[A]gs = C[q'6) with subproofs P;:
pi0 S0 (i =1,---,m). Thus w(P) = 72, w(P;) + 2. From the assumption about critical
pairs the possible relations between ¢ and ¢’ are give in the following subcases.

Subcase 4.1. 9% q' for some E’ such that E'C EU[e]. By Lemma 5.4 and E' C E'U [e], we

have a proof Q" q0 < q'0 with w(Q') = =7, w(Pi) + 1 < w(P). Hence it is obtained that Q:
t = Clgb] & s = Clq'0] with w(Q) < w(P).

Subcase 4.2. qr;;-%:q’ for some E; and FE, such that F, U F, € F. By Lemma 5.4 and
E,UE, C E, we have a proof Q" ¢f — - — ¢'0 with w(Q') = 7, w(P;) + 2 < w(P). Hence
we can take Q: t = C[¢] — - — s = C[¢'6] with w(Q) < w(P).

Subcase 4.3. q}?q' (or q'fEl?q) and £/ C E U [e]. By Lemma 5.4 and E' C E U [e],
we have a proof Q': ¢f — ¢'6 with w(Q') = T2, w(P:) + 2 < w(P). Hence we obtain Q:
t = C[q@] — s = C[¢’] with w(Q) < w(P). For the case of ¢ 1P q we can obtain Q: s « t
with w(Q) < w(P) similarly. O

Corollary 5.6 Let R be a left-right separated conditional term rewriting system. Then R is

weight decreasing joinable if R is non-overlapping.

Example 5.7 Let R; be the left-right separated conditional term rewriting system with the

following rewriting rules:

f(@',2") = hiz, f(z,b)) <2’ =z,2" =2
R flg(y),y") = h(y, fg(y),a)) = y' =y
a—b

Here, we have a conditonal critical pair
l9(v) = 2,9" ==,¢' =y, =y] F (h(z, [(z,})), h(y, f(9(y), )))

Since h(z, f(z,b)) [y,:;x]h(y”,f(x b))[ (y”, (9(y"),0)) W h(y, f(g(y),0)) ~

h(ysf(g(y)aa))} we have h($7f($ b)) ( >f(g(y)’a)) where E' = [ (y,) =,y = :E»y” =
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v,y = y,e]. Thus, from Theorem 5.5 it follows that Ry, is weight decreasing joinable. O

In Theorem 5.5 we request that every conditional critical pair £ F (g, ¢’) satisfies (i), (ii) or
(iii). However, it is clear that we can ignore the conditional critical pairs which cannot appear

in the actual proofs of R. Thus, we can strengthen Theorem 5.5 as follows.

Corollary 5.8 Let R be a left-right separated conditional term rewriting system. Then R is
weight decreasing joinable if any conditional critical pair E + {q,q') such that E is satisfiable
in R satisfies (i), (ii) or (%) in Theorem 5.5.

Note. The satisfiability of F is generally undecidable.

6 Conditonal Linearization

The original idea of the conditional linearization of non-left-linear term rewriting systems was
introduced by De Vrijer [4], Klop and De Vrijer [7] for giving a simpler proof of Chew’s theorem
[2, 10]. In this section, we introduce a new conditonal linearization based on left-right sepa-
rated conditional term rewriting systems. The point of our linearization is that by replacing
traditional conditional systems with left-right separated conditional systems we can easily relax
the non-overlapping limitation because of the results of the previous section.

Now we explain a new linearization of non-left-linear rules. For instance, let consider a
non-duplicating non-left-linear rule f(z,z,z,y,y,2) — g(z,z,z,z). Then, by replacing all the
variable occurrences z,z,z,y,y,z from left to right in the left handside with distinct fresh
variable occurrences ', 2", 2", y', y", 2’ respectively and connecting every fresh variable to cor-
responding original one with equation, we can make a left-right separated conditional rule
fla', 2", 2",y y",2') — g(z,z,2,2) < 2’ =z, 2" = z,2" =2,y =y,y =y,z = z. More
formally we have the following definition, the framework of which originates essentially from

De Vrijer [4], Klop and De Vrijer [7].

Definition 6.1 (i) Ifr is a non-duplicating rewrite rule [ — r, then the (left-right separated)
conditional linearization of v is a left-right separated conditional rewrite rule rp: I' —
TS =Y T, = Ym

such that ' = 1 for the substitution § = [z; = y1, -+, Ty := Yum]-

(i) If R is a non-duplicating term rewriting system, then Ry, the conditional linearization of
R, is defined as the set of the rewrite rules {rp|r € R}.

Note. The non-duplicating limitation of R in the above definition is necessary to guarantee

that Ry is a left-right separated conditional term rewriting system.

Note. The above conditional linearization is different form the original one by Klop and De

Vrijer [4, 7] in which the left-linear version of a rewrite rule r is a traditional conditonal rewrite
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rule without extra variables in the right handside and the conditional part. Hence, in the case
r is already left-linear, Klop and De Vrijer [4, 7] can take r itself as its conditional linearization.
On the other hand, in our definition we cannot take r itself as its conditional linearization

because r must be translated into a left-right separated rewrite rule.

Theorem 6.2 If a conditional linearization Ry of a non-duplicating term rewriting system R

is Church-Rosser, then R has unique normal forms.
Proof. By Propsiton 2.3, similar to Klop and De Vrijer [4, 7]. O

Example 6.3 Let R be the non-duplicating term rewriting system with the following rewriting

rules:

f(z,z) — h(z, f(z,0))
R fla(y),y) — Ry, f(9(y),a))

a—b

Note that R is non-left-linear and non-terminating. Then we have the following R as the

linearization of R:

f(&' 2"y — h(z, f(z,b)) < ' :z:” =z
Ry q fle(y),y") — R(y, f(g(y), )) vy =y
a—b

In Example 5.7 the Church-Rosser property of Ry has already been shown. Thus, form Theo-

rem 6.2 it follows that R has unique normal forms. O

7 Church-Rosser Property of Non-Duplicating Systems

In the previous section we have shown a general method based on the conditional lineariza-
tion technique to prove the unique normal form property for non-left-linear overlapping non-
duplicating term rewriting systems. In this section we show that the same conditional lin-
earization technique can be used as a general method for proving the Church-Rosser property

of some class of non-duplicating term rewriting systems.

Theorem 7.1 Let R be a right-ground (i.e., no vartables occur in the right handside of rewrite
rules) term rewriting system. If the conditional linearization Ry of R is weight decreasing
jotnable then R s Church-Rosser.

Proof. Let R and Ry have reduction relations — and > respectively. Since - extends
— and Ry i1s weight decreasing joinable, the theorem clearly holds if we show the claim: for

any t, s and P: t<—;—>s there exist proofs Q: t—;jr%s with w(P) > w(Q) and t Sr & s
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for some term r. We will prove this claim by induction on w(P). Base Step w(P) = 0
is trivial. Induction Step w(P) = w (w > 0): Form the weight decreasing joinability of
Ry, we have a proof P": t—;_:» . %s with w > w(P’). Let P’ have the form t?s’—? . 42—3.
Without loss of generality we may assume that Cr[zq, - ,2n] = Cr < z, =z, 2, =<
( all the variable occurrences are displayed) is a linearization of Cplz,---,z] —» Cgr and P":
t =C[CLlty,- - ,tm]]—zs' = C[CRg] with subproofs P;: t; %) t (¢=1,---,m) for some ¢'. Then,
from Lemma 3.3 and the induction hypothesis we have proofs t;—t" (: = 1,---m). Hence we
can take the reduction t = C[CL[ty, - -, tm]] > C[CL[t", - -, t"]] = s’ = C[CRg]. Let P: s’—Z) : i:—s.
From w > w(P) and LH., we have Q: 3'%7‘%3 with w(P) > w(Q) and s'Srs for some 7.
Thus, the theorem follows. O

The following corollary is originally proven by Oyamaguchi [8].

Corollary 7.2 [Oyamaguchi] Let R be a right-ground term rewriting system having a non-

overlapping conditional linearization Ry. Then R is Church-Rosser.

Next we relax the right-ground limitation of R in Theorem 7.1.

Theorem 7.3 Let R be a term rewriting system in which every rewrite rule | — r s right-
linear and no non-linear variables in | occur in r. If the conditional linearization Ry of R s

weight decreasing joinable then R s Church-Rosser.

Proof. The proof is similar to that of Theorem 7.1. Let R and Rj, have reduction relations
— and - respectively. Since - extends — and Ry is weight decreasing joinable, the theorem

clearly holds if we show the claim: for any ¢, s and P: ¢ %) s there exist proofs Q: ¢ % T i— s with

w(P) > w(Q) and t = r «— s for some term r. We will prove this claim by induction on w(P).
Base Step w(P) = 0 is trivial. Induction Step w(P) = w (w > 0): Form the weight decreasing

joinability of Ry, we have a proof P’ t—;—»%s with w > w(P’). Let P’ have the form t7§-£—>-+*—3.

Without loss of generality we may assume that Cplzy, -+, 2, y1] — Crly] < 2z, =2, -, :vi =
z,y1 = y ( all the variable occurrences are displayed) is the linearization of Cr[z,---,z,y] —
Crly] and t = C[C’L[tl,---,tm,pl]]?é = (C[Cg[p]] with subproofs P;: t; %t’ (i=1,---,m)
for some t' and p, %p, Then, we can take t = C[CL[tl,-'-,tm,pl]]—Es’ = C|[Cg[p1]] %) S =
C[CR[p]]—Zé <Z— s with the weight w(P’). Let P": t = C[CL[t1, -, tm,p1]] 7 s' = C[Cgr[m]]-
Then, from Lemma 3.3 and the induction hypothesis we have proofs ¢,~t” (i = 1,---m). Hence

we can take the reduction t = C[CL[t1, -, tm, p1]]=C[CL[t", -+ ,t", ;)] — s’ = C[Cr[p:1]]. Let

P s’%é% . %s. From w > w(73) and LH., we have Q: s’—}r%—s with 10(75) > w(@) and

s'Sr&s for some r. Thus, the theorem follows. O
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Corollary 7.4 Let R be a term rewriting system in which every rewrite rule | — r is right-
linear and no non-linear variables in | occur in r. If the conditional linearization Ry of R is

non-overlapping then R is Church-Rosser.
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