
120

A Faster Algorithm
for the Minimum Capacity Cut Problem

of Undirected Networks

Tadashi ONO Hiroshi NAGAMOCHI Toshihide IBARAKI

(小野 正) (永持 仁) (茨木 俊秀)

Department of Applied Mathematics and Physics,
Faculty of Engineering,

Kyoto University

1 Introduction

Let $\mathcal{N}=(G=(V, E),$ c) be a simple undirected network with a set V of vertices and a set E

of edges, where $c:Earrow \mathcal{R}^{+}$ (the set of nonnegative reals) gives the capacities of edges. The
minimum capacity cut problem is to find a nonempty subset $U\subset V,$ $U\neq V$ that minimizes
the total capacity of the edges between U and $V-U$.

Gomory and Hu [3] show that the optimal solution of this problem can be obtained
by solving $|V|-1$ max-flow problems. The currently best bound for solving the max-flow
problem is $O(mn\log(n^{2}/m))$ due to Goldberg and Tarjan [2], where $n=|V|$ and $m=|E|$.

Thus the time complexity of Gomory and Hu’s method is $O(mn^{2}\log(n^{2}/\gamma\gamma l))$.
Padberg and Rinaldi [8] present an improved approach such that two vertices are shrunk

into a single vertex to obtain a smaller network after examining the minimum capacity cut
separating these vertices. Although their method requires $n-1$ max-flow computations in
the worst case as Gomory and Hu’s does, they also provide a simple test to shrink a pair
of vertices, by which the number of max-flow computations which need to be conducted
is considerably reduced. Their algorithm is considered to be one of the fastest one in the
practical sense.

数理解析研究所講究録
第 833巻 1993年 120-130

121

In this paper, we present an efficient implementation of a faster $O(mn+n^{2}\log n)$ algorithm
proposed by Nagamochi and Ibaraki [6], and add various mechanisms so that as many edges
as possible can be shrunk in each iteration. From numerical experiments, we find out that
our implementation is much faster and more stable t,han Padberg and Rinaldi’s for a wide

variety of networks.

2 Preliminaries

Let $\mathcal{N}=(G=(V, E),$ c) stand for a simple undirected network with a vertex set V , an edge
set E , and nonnegative real capacities $c(e),$ $e\in E$. We denote $e=(u, v)$ if the end vertices
of $e\in E$ are u and v . A nonempty subset $U\subset V,$ $U\neq V$ is called a cut, and the capacity
for a cut U is given by $c(U)= \sum_{u\in U,v\in \mathcal{V}-U}c(u, v)$

. For notational convenience, a singleton set

$\{u\}$ may also be written as u . The minimum capacity cut problem is the problem of finding
a cut U that minimizes $c(U)$ in \mathcal{N} . We simply call such U a minimum cut and denote by
$\lambda(\mathcal{N})$ the capacity of a minimum cut of \mathcal{N} .

For $x,$ $y\in V$, the capacity of a cut with the minimum capacity among the cuts that
separate x and y is denoted $\lambda(x, y)$.

Shrinking edge $e=(u, v)$ of \mathcal{N} is defined as follows: merge u and v into a single vertex
by deleting edge $e=(u, v)$, and combine the resulting multiple edges with the same pair of

end vertices into a single edge having the sum of the capacities of such edges. We denote the

network obtained by shrinking e as $\mathcal{N}‘=(G/e, c’)$ (we may write $G/\{u,$ $v\}$ instead of G/e),

where $c’$ is the capacities of the resulting network.

3 Shrinking Edges by CAPFOREST

3.1 Computing the Minimum Cut Based on Shrinking

In this section, we describe a general framework to compute $\lambda(\mathcal{N})$ by using edge shrinking.

LEMMA 1 For a network $\mathcal{N}=(G, c)$ and a shrunk network $’=(G/e, c’)$ where $e=(x, y)\in$

E , we have

$\lambda(\mathcal{N})=\min\{\lambda(\mathcal{N}’), \lambda(x, y)\}$. \square (1)

LEMMA 2 Let $\overline{\lambda}$ be the capacity of a cut $X\subset V$. If there exist two vertices x and y satisfying

122

$\lambda(x, y)\geq\overline{\lambda}$, (2)

then there are no cuts separating x and y whose capacities are less than $\overline{\lambda}$.

PROOF. It is immediate from the definition of $\lambda(x, y)$. \square

If condition (2) holds for x and y , we have $\lambda(\mathcal{N})=\min\{\lambda(\mathcal{N}’),\overline{\lambda}\}$ for network $\mathcal{N}’$ obtained
by shrinking x and y . For an edge $e=(x, y)$ which satisfies the condition (2) for a $\overline{\lambda}$, we call

such an edge shrinkable.
Based on this observation, we can compute $\lambda(\mathcal{N})$ in the following manner: we first

examine all $c(v),$ $v\in V$ in the given network, and store the smallest $c(v)$ as A. Second,
find two vertices x and y satisfying (2) for the current $\overline{\lambda}$, and shrink x and y into a vertex
x ‘, setting $\overline{\lambda}=\min\{\overline{\lambda}, c’(x’)\}$. When we repeat this shrinking until the number of vertices
becomes two, the current $\overline{\lambda}$ is equal to $\lambda(\mathcal{N})$.

This procedure is stated as follows.

Procedure SHRINK
Input: a simple undirected network $\mathcal{N}=(G, c)$

Output: $\lambda(N)$

begin
$\overline{\lambda}$ $:= \min\{c(\iota))|v\in V\};\mathcal{N}’$ $:=(G’=(V’, E’),$ $c’$) $:=\mathcal{N}$;
while $|V’|\geq 3$ do

begin
if a cut $X\subset V$ with c’(X) $<\overline{\lambda}$ is found then $\overline{\lambda}$ $:=c’(X)$;

Find two vertices $x,$ y such that $\lambda(x,y)\geq\overline{\lambda}$;
Shrink x and y into $x’$ and let $\mathcal{N}’=(G’=(V’, E’),$ $c’$) be the resulting network;

$\overline{\lambda}$ $:= \min\{c’(x’),\overline{\lambda}\}$;
end

Conclude that $\lambda(\mathcal{N})=\overline{\lambda}$;
end.

We can get the minimum cut capacity after performing $n-1$ operations of vertex shrink-

ing. In order to find two vertices x and y such that $\lambda(x, y)\geq\overline{\lambda}$, we may compute $\lambda(x, y)$ by
the max-flow algorithm. In this case, after setting A $:= \min\{\overline{\lambda}, \lambda(x, y)\}$, the above condition
is satisfied. Padberg and Rinaldi) s algorithm [8] is the first one which is based on procedure

SHRINK. Specifically, they try to find an edge $e=(x, y)$ with $\lambda(x, y)\geq$ A using a simple
test, and rely on a max-flow algorithm only when this heuristic test fails to find such edge
$e=(x, y)$ (see [8], for detail).

123

3.2 Algorithm CAPFOREST

Algorithm CAPFOREST presented by Nagamochi and Ibaraki [6] computes the following
lower bound $q(e)$ on $\lambda(x, y)$ for all edges $e=(x,y)$ in $O(m+n\log n)$ time.

LEMMA 3 [6] The $q(e)$ obtained by CAPFOREST satisfies

$\lambda(x, y)\geq q(e)$, $e=(x, y)\in E$, (3)

and at least one edge $e^{*}=(x^{*}, y^{*})\in E$ satisfies

$q(e^{*})=\lambda(x^{*}, y^{*})$. \square (4)

To compute $\lambda(\mathcal{N})$ based on procedure SHRINK, we exploit these $q(e)$ obtained by CAP-
FOREST for finding shrinkable edges.

LEMMA 4 Let $q(e)$ be the lower bound obtained by CAPFOREST, and $\overline{\lambda}$ be the capacity of
a cut which has already been detected. If

$q(e)\geq\overline{\lambda}$, (5)

then e is shrinkable.

PROOF. It is obvious from Lemma 2 and condition (3). \square

By employing CAPFOREST to find shrinkable edges in algorithm SHRINK, we have the
following algorithm to compute $\lambda(\mathcal{N})$, which is a modification of the original algorithm by
Nagamochi and Ibaraki [6].

Algorithm CF-SHRINK
Input: a simple undirected network $\mathcal{N}=(G=(V, E)_{7}c)$

Output: $\lambda(\mathcal{N})$

begin
X $:= \min\{c(v)|v\in V\}\cdot,$ $\mathcal{N}’$ $:=(G’=(V’, E’),$ $c’$) $:=\mathcal{N}$;

while $|V’|\geq 3$ do
begin

Execute CAPFOREST $(G’, c’;q)$;
$\overline{\lambda}$

$:= \min\{\overline{\lambda}, \lambda(x^{*}, y^{*})\}$ for the edge (x^{*}, y^{*}) of (4);
while there exist edges $e=(x, y)$ with $q(e)\geq\overline{\lambda}$ do

124

begin
Shrink $x,$ y into x

‘ and let $\Lambda^{r/}=$ $(G’= (V‘, E’),$ $c’$) be the resulting network;
$\overline{\lambda}$ $:= \min\{c(x’),\overline{\lambda}\}$;

end
end

Conclude that $\lambda(\mathcal{N})=\overline{\lambda}$;
end.

Once we execute CAPFOREST in CF-SHRINK, we can find at least one edge $e^{*}=$

(x^{*}, y^{*}) that satisfies (3) by Lemma 3, which implies that (x^{*}, y^{*}) is shrinkable after setting
A $:= \min\{\overline{\lambda}, \lambda(x^{*}, y^{*})\}$. Therefore, we can continue vertex shrinking until the number of
vertices becomes two. Hence, $\lambda(\mathcal{N})$ can be computed by executing CAPFOREST at most

$n-2$ times, and thus the running time of CF SHRINK is $O(mn+n^{2}\log n)$.

3.3 Algorithm MODIFIED CAPFOREST

In this section, We revise CAPFOREST in order to find shrinkable edges and small cuts

more efficiently. The revised CAPFOREST, called MODIFIED-CAPFOREST, computes a

set T of shrinkable edges and detects a certain cut capacity a in addition to the original
computation of CAPFOREST.

Algorithm MODIFIED-CAPFOREST $(G, c,\overline{\lambda};q, T, \alpha)$

Input: a simple undirected network $\mathcal{N}=(G=(V, E),$ c), and the currently obtained
minimum cut capacity $\overline{\lambda}>0$;
Output: the lower bound $q(e)$, a shrinkable edge set T , and a certain cut capacity α ;
begin

Label all vertices $v\in V$ and all edges $e\in E$ unscanned;
$r(v)$ $:=0,$ $a(v):=0$, for all $v\in V$;
$q(e)$ $:=0$, for all $e\in E$;
T $:=\emptyset;\alpha’$ $:=0,\cdot$

while there exist “unscanned” vertices do

begin
Choose an (unscanned’ vertex x with the largest r ;
Of $:=\alpha’+c(x)-2r(x);\alpha(x)$ $:=\alpha’$;
for each vertex y adjacent to x by an (unscanned’ edge do

125

begin
if $r(y)<\overline{\lambda}\leq r(y)+c(e)$ then $T:=T\cup\{e\}$;
$q(e)$ $:=r(y)+c(e);r(y)$ $:=r(y)+c(e)$;
Mark e “scanned” ;

end
Mark x “scanned”;

end
α $:= \min\{\alpha(v)|v\in V\}$;

end.

The output $q(e)$ is the same as by CAPFOREST [6], so it also satisfies conditions (3)
and (4).

THEOREM 5 Let $G_{q,\overline{\lambda}}$ define a subgraph of G such as $G_{q,\overline{\lambda}}=(V, \{e\in E|q(e)\geq\overline{\lambda}\})$. An
edge set T obtained by MODIFIED-CAPFOREST is a maximal spanning forest of $G_{q,\overline{\lambda}}$.

PROOF. See [7]. \square

The network resulting from shrinking all edges in a maximal spanning forest T of $G_{q,\overline{\lambda}}$ is
the same as the one obtained by shrinking all edges in $G_{q,\overline{\lambda}}$. The mechanism of identifying
such T in MODIFIED-CAPFOREST saves the unnegligible time, if compared with the time
to collect all edges in $G_{q,\overline{\backslash }}$ of in T from scratch.

Next we mention about the capacity α of a certain cut.

LEMMA 6 Let $x_{i}(1\leq i\leq n-1)$ be the i-th vertex visited by MODIFIED-CAPFOREST
and define $X_{i}=\{x_{1)}x_{2}, \ldots, x_{i}\}$. Then $Cy(X;)=c(X_{i})$. \square

By Lemma 6, the minimum capacity $0=\min_{i}\alpha(x_{i})$ among the cuts X_{i} may be relatively
small, because CAPFOREST tends to select a subset of some vertices connected each other
by those edges with relatively large capacities in the early stage of computation. If this a
satisfies $\alpha<\overline{\lambda}$, we update A $:=a$. So A may decrease in an earlier stage, thereby enlarging
the set of edges satisfying condition (5).

By replacing CAPFOREST with $MODIFIED_{-}CAPFORES^{r}l^{\urcorner}$ in CF-SHRINK, we have
the following more efficient algorithm.

Algorithm MCF
Input: a simple undirected network $\mathcal{N}=(G=(V, E),$ c)

126

Output: $\lambda(\mathcal{N})$

begin
$\overline{\lambda}$ $:= \min\{c(v)|v\in V\};N’$ $:=(G’=(V’, E’),$ $c’$) $:=\mathcal{N},\cdot$

while $|V$
‘ $|\geq 3$ do

begin
Execute MODIFIED-CAPFOREST $(G‘, c’,\overline{\lambda};q, T, \alpha)$;

$\overline{\lambda}$ $:= \min\{\alpha,\overline{\lambda}\}$;
for $e=(x, y)\in T$ do

begin
Shrink $x,$ y into $x’$ and let $\mathcal{N}’=(G’=(V’, E’),$ $c’$) be the resulting network;

$\overline{\lambda}$

$:= \min\{c(x’),\overline{\lambda}\}$;

end
end

Conclude that $\lambda(\mathcal{N})=\overline{\lambda}$;
end.

4 Computational Experiments

In this section, we report the results from the computational experiments conducted to eval-
uate the performance of the proposed algorithm MCF. All computer programs were coded in
FORTRAN 77 in double precision and run on a workstation SUN SPARC 1 IPX.

4.1 Generation of Networks for Experiments

In our numerical experiments, we specify network types by the following four parameters:

the number of vertices n , the density of edges $d= \frac{2m}{n(n-1)}\cross 100$ (%) (m is the number of

edges), a decomposition number $k(1\leq k\leq n)$, and a constant p satisfying $0<p\leq 1$ (for
$k\geq 2)$. Based on these parameters, we generate a network as follows: First, we construct a

connected graph with n vertices and $\frac{n(n-1)(d/100)}{2}$ edges by randomly generating an edge
between a pair of vertices, after creating a Hamilton path to ensure the connectivity. Second,
we define the capacity of each edge by the following rule. When $k=1$, capacity of each edge
is randomly chosen from the interval $[0,100$) uniformly. When $k\geq 2$, we divide vertices into k

subsets randomly (each subset is called a cluster), and the capacities of the edges connecting
two vertices in the same cluster are selected from $[0,100$), while the capacities of the rest

127

of edges are randomly chosen from $[0,100p$). In our experiments, p is set to $1/n$ except in
Figure 6 so that a set of clusters is likely to form a minimum cut in the generated network.
Note that $p=1/n$ is used because the ratio of the capacity $c(x)$ of a singleton $\{x\}$ to that of
non-singleton set is at most $\frac{n-1}{n(n-1)/2}=\frac{2}{n}$.

4.2 Computational Results

By solving the networks generated in the above manner, we compare the average running
times of Padberg and Rinaldi’s algorithm (abbreviated to PR), the proposed algorithm (ab-
breviated to MCF), and a single max-flow computation by Goldberg and Tarjan [2] (abbre-
viated to MAXFLOW), where ten instances are tested with the same four parameter values.

Figures 1 and 2 show the CPU time of the above three algorithms for various values of
n for density $d=50$ (%), for $k=1$ and $k=2$ respectively. From these figures, we can see
that MCF is much faster than PR, and the larger the number of vertices is, the greater the
difference of the computational time becomes. When $k=2$, PR takes longer time compared
with case of $k=1$, because the network loses uniformity of capacity distribution and it
becomes hard to find shrinkable edges only by heuristic test. Contrary to this, MCF could
accelerate the shrinking process, with the help of the value α of a small capacity cut. As a
result, the difference between MCF and PR becomes greater when k is changed from 1 to 2.

Figures 3 and 4 illustrate the CPU time of the above algorithms for different densities.
In Figure 3, running time of PR fluctuates depending on the density. In PR, the probability
of finding shrinkable edges tends to become small when the density is low, and hence the
number of times to rely on max-flows computations increases. Conversely, when density is
high, the probability that the heuristic test of PR for a single edge succeeds becomes very
close to 1. The time required to find one shrinkable edge by PR is shorter than that by

MCF. For this reason, PR is slightly faster than MCF if $d=100$ (%) and $k=1$ (Figure 3).
However, for $k=2$ (Figure 4), computing (y helps MCF run faster even for highly dense
networks.

Figure 5 shows the results when the decomposition number k changes. As we discussed
above for case of $k=2$ previously, an edge whose both end vertices are in the same cluster

is not likely to be shrinkable by the heuristic test in PR. It still has the same difficulty for
$3\leq k\leq 20$. When $k\geq 50$, the capacities distribute nearly uniformly in the sense that a

handful of edges with relatively large capacities are scattered over the entire network, and
such edges can be shrunk in an early stage of the algorithm, resulting in the high performance

128

of PR. On the contrary, MCF is litt,le influenced by the decomposition number k and always
remains faster than PR.

Figure 6 shows the effect of parameter p in the $rallge$ [0.0005, 1]. Note that when $p=1$,
there is one cluster. When $p=0.005=2/n$, since the expectation of the capacity of a

singleton is approximately equal to that of one clust,er produced by $k=2$, both a singleton
and non-singleton cuts may be a minimum cut. Generally by the heuristic test in PR, it
is difficult to find a minimum cut if the capacities of both types of cuts are nearly equal.
Therefore PR takes large time for $0.005\leq p\leq 0.1$.

From the above observation, we conclude th\^ot proposed MCF is much faster than PR.
MCF may be considered as one of the fastest practical program available for the minimum
capacity cut problem. Its running time is almost comparable (i.e., always at most $O(mn+$

$n^{2}\log n)$ times) with the fastest max-flow algorithm. Another advantage of MCF is its sim-
plicity of implementation, because MCF basically consists only of MODIFIED-CAPFOREST,

while PR requires the max-flow algorithm and a sophisticat ed control for computing heuristic
tests. Only in the case of $k=1$ and $d\geq 95$ (%), PR runs slightly faster than MCF in above

experiment.

4.3 A Hybrid Implementation: Algorithm HCF

In order to improve our algorithm MCF for the case of $k=1$ and $d=100$ (%), we also propose
algorithm HCF, a hybrid version of MCF and PR obtained by including the heuristic test of

PR into MCF. The reason why PR runs faster than MCF in case of $k=1$ and $d\geq 95$ (%)
is that the heuristic test for shrinking succeeds with probability nearly close to 1. Only in
this situation, the time required by PR for finding one shrinkable edge is shorter than MCF.
We want to capture this power of the heuristic test, but have to take care not to increase the

running time of MCF for other cases. Concretely speaking, after MODIFIED-CAPFOREST
followed by shrinking T , we execute the heuristic test only for those edges having relatively
large capacities among the edges incident to the vertex that was shrunk most recently. We
continue this test only when the previous one successfully finds a shrinkable edge, and once
it fails, we go back to start MODIFIED.-CAPFOREST (see [7], for detail).

As aimed, the above heuristics works effectively for the case of $k=1$ and $d\geq 95$ (%) in

HCF. As a result, HCF runs faster than any of PR and MCF, as shown in Figure 3. It is also
observed that HCF performs almost the same as MCF in other cases. The HCF algorithm is
slightly complicated than MCF to implement.

129

5 Conclusion

By revising some part of the algorithm proposed by Nagamochi and Ibaraki [6], we obtained
a practically efficient implementation for computing the $\min i\iota n\iota lnl$ capacity cut of undirected
networks. From computational results, we have shown that MCF is faster than PR proposed
by Padberg and Rinaldi in most cases except the case in which capacities are uniformly
distributed on network with very high density. Moreover, an important advantage of MCF
is in its simplicity of implementation. We also proposed a hybrid implementation obtained
by including the heuristic test of PR into MCF, and sh0wed that it is never slower than any
of the PR and MCF for all types of networks we examined in this study.

References

[1] L. Ford, and D. Fulkerson: “Maximal Flow Through a Network,“ C’anadian Journal of
Mathematics, Vol. 8, pp.399-404, 1956.

[2] A. Goldberg and T. Tarjan: “A new approach to the maximum flow problems,” Pro-
ceedings of 18th A CM Symposium on the Theory of Computing, pp.136-146, 1986.

[3] R. Gomory and T. Hu: “Multi-terminal network flows,“ ’9lAM Journal on Applied Math-
ematics, Vol. 9, pp.551-570, 1961.

[4] T. Ibaraki: Algorithms and Data Structu$7^{\cdot}es$ (in Japanese), Shokodo, 1989.

[5] T. Ibaraki and M. Fukushima: FORTRAN 77 optimization Programming (in Japanese),
Iwanami-Shoten, 1991.

[6] H. Nagamochi and T. Ibaraki: “Computing edge-connect,ivity in multigraphs and capac-
itated graphs,” SlAM Journal on Discrete Mathematics, Vol. 5, pp.54-66, 1992.

[7] T. Ono: “A Faster Algorithm for the Minimum Capacity Cut Problem of Undirected
Networks,” Master thesis, Department of Applied Mathematics and Physics, Faculty of

Engineering Kyoto University, 1993.

[8] M. Padberg and G. Rinaldi: “An efficient algorithm for the minimum capacity cut
problem,” Mathematical Programming, Vol. 47, pp.19-36, 1990.

130

$\wedge\vee\dot{8}\omega$ $\wedge\vee\dot{8}$

svE ξv

$6\supset$ $\cup\alpha\supset$

Figure 1: CPU time of algorithm PR, MCF and Figure 4: Cl)U $\uparrow\dot{|}l11$) of algorithm PR, MCF
MAXFLOW when the number of vertices ι cbanges and MAXFLOW when $t1_{h}e$ edge density d changes
(d=50(%), k $=1,$ p $=1/n$). (n $=400,$k $=2, l)=|/n)$.

\S . $\vee\wedge\dot{o}\Re$

svE $a\in v$

$\cup\supset a$. $\circ\supset\alpha$

Figure 2: CPU time of algorithm PR, MCF and Figure 5: Cl) \cup time of $algorit1_{h}m$ PR, MCF and
MAXFLOW when the number of vertices n changes M A XFLOW for various decomposition number k

(d=50(%), k $=2,$ p $=1/n$). $(?l=400,$d $=50(()),$ l $=1/?1$).

$\vee\wedge 8n$ $\wedge\vee\dot{8}a$

gv $5\in\Phi$

$b\supset$ $\circ\supset$

Figure 3: CPU time of algorithm PR, MCF, HCF Figure 6: CPU time of algorithm PR, MCF and
and MAXFLOW when the edge density d Changes MAXFLOW for various $\mathfrak{c}0l1\backslash ta11\uparrow p(\uparrow\iota=$ 400, d $=$

(n $=400,$k $=1,$p $=1/n)$. 50(%), k $=2$).

