goooboooogn
O 8?13& 1993 0 142-152

Cooperative Control Algorithms for
Anonymous Mobile Robots

$3K—BF (Ichiro Suzuki)
Department of Electrical Engineering and Computer Science

University of Wisconsin — Milwaukee
P.O. Box 784, Milwaukee, WI 53201, U.S.A.

suzuki@Qcvax.cs.uwm.edu

(I'FHESE  (Masafumi Yamashita)
IRERE T2
724 WIKET SEILET

mak@se.hiroshima-u.ac.jp

Abstract

A system consisting of multiple mobile robots in which the robots can see each other
by their eye sensors but they are not equipped with any communication system, can be
viewed as a distributed system in which the components (i.e., robots) can “communicate
” with each other only by means of their moves. We use this system to investigate,
through a case study of a number of problems on the formation of geometric figures in
the plane, the power and limitations of the distributed control method for mobile robots.
In the distributed method, each robot executes a simple algorithm and determines its
movement adaptively based on the observed movement of other robots, so that the
robots as a whole group will achieve the given goal. Each robot is a mobile processor
with an eye sensor which, at every tick of its local clock, observes the positions of all the
robots and moves to a new position. The local clocks of the robots are not necessarily
synchronized, and initially, the robots do not have a common z-y coordinate system.
The problems we discuss include (1) converging the robots to a single point, (2) moving
the robots to a single point, (3) agreement on a single point, (4) agreement on the unit
distance, (5) agreement on direction, and (6) leader election. We develop algorithms
for solving some of these problems under various conditions. Some impossibility results
are also presented.



143

1 Introduction

In the last several years, the interest in the distributed control method for multiple mobile
robots has increased considerably among the researchers in the U.S. and Japan([l, 2, 3, 4,
6, 7). The main idea of the method is to let each robot execute a simple algorithm and
determine its movement adaptively based on the observed movement of other robots, so
that the robots as a whole group will achieve the given goal. This approach has been shown
to be very promising for the generation of certain patterns and collision avoidance. In the
earlier works on distributed robot control, the main emphasis is on the development of
heuristic algorithms for various problems and the presentation of simulation results, and in
. many cases, formal discussions on the correctness and performance of the algorithms are
not given [3] [6].

A robot system in which the robots can communicate with each other by radio, for
example, such as a system of radio-controlled vehicles or spaceships, can be considered as
a distributed system whose communication topology is a complete graph. Therefore, such
systems can be analyzed using the standard techniques developed in the field of distributed
computing (although such analyses are by no means easy). In this paper, we consider a sys-
tem consisting of multiple mobile robots in which the robots can see each other by their eye
sensors, but they are not equipped with any communication system. We view this system as
a distributed system in which the components (i.e., robots) can “communicate” with each
other only by means of their moves. Clearly this system is a suitable model for studying
the distributed control method mentioned in the previous paragraph. As the reader might
expect from the assumptions we make about the robots below, the study reveals delicate
interplay of a number of key concepts of distributed computing, such as synchrony and asyn-
chrony, communication, termination detection, self-stabilization, anonymity of processors,
and knowledge (in a casual sense).

A basic problem for such a robot system is to design an algorithm such that, if all the
robots execute it individually, then the robots as a whole group will eventually form the
given geometric figure. The main goal of this paper is to present some theoretical results
related to this problem. The results presented here provide useful insights that will help us
to answer certain fundamental questions, such as whether the given algorithm really solves
the given problem and, for that matter, whether the given problem is solvable at all in a
strict sense by a distributed algorithm. This work is a step toward the ultimate goal of
determining exactly what class of problems are solvable in a distributed manner.

We assume that each robot is a mobile processor having an eye sensor which, at every
tick of its local clock, observes the positions of all the robots (including itself) in terms of its
own local z-y coordinate system and moves to a new position. (The new position need not
be distinct from the current position.) The robot (or the algorithm it uses to compute the
new position) is oblivious if the new position is determined only from the positions of the
robots observed at that time instant. Otherwise, it is not oblivious and the new position
may depend also on the observations made in the past. The local clocks of the robots are not
necessarily synchronized, and thus the clock of a robot may tick much more frequently than
that of some other robots. It is assumed that initially, the robots do not have a common
sense of direction and unit distance, and hence the local z-y coordinate system of a robot
may not be the same as that of another robot. Thus, the robots do not have a common
z-y coordinate system. Finally, we assume that the robots are anonymous, in the sense



144

that they all use the same algorithm for determining the next position, and they cannot be
distinguished from their appearances. This implies, for example, that depending on what
movements are allowed, a robot that observes other robots at two consecutive clock ticks
may not be able to tell which robot has moved to which position between the two ticks.

Under these assumptions, we first consider the problem-of converging all the robots
toward a single point. Note that since the robots do not have a common z-y coordinate
system, we cannot simply use an algorithm such as “move toward point (0,0)”. For this
problem, we give an oblivious algorithm that works correctly even if robots are added or
deleted from the system a finite number of times. (For simplicity, in this paper we assume
that a robot can move to its new position instantaneously.) We then discuss the subtlety
of the problem by showing how certain minor changes in the algorithm or the assumption
affect the possibility of achieving the goal. Also, we show that the set of geometric figures
realizable by any deterministic algorithm must necessarily include the configuration in which
all robots are located at the same position.

Next, we investigate the problem of letting the robots agree on a common z-y coordinate
system. Clearly, such an agreement can greatly reduce the complexity of subsequent motion
coordination algorithms. The problem consists of three subproblems, agreement on the
origin, agreement on the unit distance, and agreement on the direction of the positive z-
axis. We first consider a related problem of moving (instead of converging) two robots to a
single point, and show that this problem can be solved by a nonoblivious algorithm but not
by any oblivious algorithm. Since two robots can agree on the origin if they can move to
a single point, this result shows that agreement on the origin for two robots is solvable by
a nonoblivious algorithm. Moreover, we show that agreement on the origin is solvable by a
nonoblivious algorithm even for the case n > 2, where n is the number of robots. We also
show that agreement on the unit distance is solvable by a nonoblivious algorithm if either
n =2 or n > 2 and no two robots occupy the same position initially. On the other hand, we
show that agreement on the direction is not solvable even if n = 2. This last result shows
that the robots cannot agree on a common z-y coordinate system in general.

Finally, we consider the case in which the robots have a sense of direction (i.e., the
direction of the positive X-axis is the same for all robots). For this case, we show that
the robots can agree on a common z-y coordinate system, and that the robots can elect a
leader provided that no two robots occupy the same position initially. Once a unique leader
is elected, the robots can be moved to form any geometric figure.

As a final note of this section, we remark that if the local clocks are synchronized,
then the robots can easily communicate with each other by means of the distances of their
moves. Therefore, many problems on synchronized robot systems can be reduced to the
corresponding problems on anonymous complete networks, and can be analyzed using the
techniques developed, for example, in [8].

We present necessary definitions and basic assumptions in Section 2. Section 3 discusses
the problem of converging the robots to a point. Agreement on a common coordinate system
is discussed in Section 4. In Section 5 we consider the case in which the robots have a sense
of direction. Concluding remarks are found in Section 6.

In this abstract, we present only the key ideas. All the details and the missing proofs
can be found in the full paper.



145

2 Definitions and Basic Assumptions

We consider robots in 2-dimensional Euclidean space E2. (Many of the results given in the
paper also hold for robots in 3-dimensional Euclidean space.) We fix an z—y coordinate
system Z and specify the position of a robot as a pair (z,y) of real numbers using Z. It is
assumed, however, that Z is used only for specifying the positions of robots and the robots
have no information on Z.

A robot 7 is modeled as a mobile processor with sufficiently large memory space, an
artificial eye sensor, and a local clock ¢,. It can see and locate other robots in its visibility
range with respect to its local z—y coordinate system Z,, and also move to any position
specified as coordinates of Z,. The coordinate system Z, is local to r, in the sense that two
robots may have different local coordinate systems. We denote by c,(t) the clock reading
of.c, at real time t. (The robots have no access to real time.) We assume that for any
real times ¢t and t/, ¢.(t) < ¢.(¥) if t < ¢/, and that for any non-negative integer k, there
exists a real time t such that ¢,(t) = k. The clocks ¢, are said to be synchronized if there
is a constant integer d such that for any r and ¢, ¢ — ¢,(t) = d holds. Otherwise, they are
said to be asynchronous, and many different degrees of asvnchrony can be defined. If the
local clocks are synchronized and the number of robots never changes, then for simplicity,
we may assume that when robot = is initialized, the clock reading of ¢, is 0.

Let Z be the set of all possible configurations I (i.e., contents) of the memory of a robot
7. Let R be the set of real numbers. An algorithm for 7 is a function ¥ from Z to the set
of subsets of RZ, such that +(I) is the set of possible next positions of r (given in terms
of Z,) when the memory configuration of » is I. If ¢(I) is a singleton for each I, then 1
is said to be deterministic. Otherwise, r randomly selects from 4 (I) its next position (and
moves there), and hence 9 is a randomized algorithm. Note that the identifier r is not an
argument of .

Let P, be the set of the positions of all robots, including r itself, given in terms of Z,.
That is, P, shows the positions of the robots from the viewpoint of robot r. We naturally
assume that r knows its current position with respect to Z,. Note that r may be able to
obtain only a partial information on P,, since r cannot see those robots that are outside
its visibility range. (But we assume that all robots have the same eye sensor.) So we let
viz(P,) C P, denote the set of the positions of all robots that are visible from r. For
example, if 7 can see only those objects that are within distance 6, then viz(P,) contains
the positions of those robots that are within distance é from r. To simplify the discussion,
in this paper, we assume that 7 has unlimited visibility, and hence viz(P.) = P,. We
assume that r observes the positions of other robots every time its local clock reaches an
integer value, and that only those positions that have been observed can be used as data
for determining the possible next positions of 7. This means that the robots never observe,
for example, the velocity of other robots.

From the preceding discussion, the behavior of robot r is given as follows. Here, I is a
fixed (common) initial configuration of the memory of a robot.

[Behavior of robot 7]

I := Ip;
Wait until the clock reading of ¢, becomes an integer s;
repeat

/* Start Move Action*/



146

Let P, be the positions of the robots at local time s;
I:=TU{(p,s)lp € viz(Pr)};
Randomly select an element g from ¥(I);
Move to g;
s:=s4+1;
/* End Move Action*/
Wait until ¢, reaches the value s;
until forever.

The assignment I := I U {(p,s)|p € viz(P;)} means that robot r stores information
viz(P,) obtained at local time s with tag s, in order to distinguish it from the information
obtained at different times. Note that the robots are anonymous in the following sense: (1)
the initial configuration Iy and function ¥ are common to all robots, (2) the identifier » of
robot 7 is not an argument of ¢, and (3) viz(P,) contains only the positions of robots (but
not their identities). _

For the sake of simplicity, we assume that a robot can move to any position instanta-
neously. In other words, we assume that the time necessary for executing a move action, a
series of instructions between two comments “Start Move Action” and “End move Action”,
is negligibly small compared with one unit time of each local clock, and that whenever a
robot observes, all robots have already reached their destinations and are stationary.

Because of the assumption for local clock c¢,, the execution of move actions of robots
is fair. Every robot 7 executes its move action infinitely many times. Finally, note that if
synchronized clocks are available, by definition, all robots move simultaneously.

Let 7 be a predicate over the set of multisets of points which is invariant under any
motion (i.e., rotation and parallel transformation) and similarity. In what follows, predicates
over multisets we will discuss in this paper are assumed to satisfy the above condition. Let
7 be such a predicate. We are interested in designing algorithms (functions) 1 such that,
for example, the robot obeying 1 converge to points (with respect to coordinate system

Z) such that predicate 7 holds, no matter where the robots are initially distributed. Since

robots never can perceive the absolute coordinate system Z, all we can expect for algorithms
is to form a figure which is similar to the goal figure. The restriction for predicates was
introduced because of this reason. ‘

This framework permits us to add and/or remove robots dynamically. Although we will
not state it explicitly, all algorithms we will discuss in this paper correctly work (after small
modifications for some algorithms), even if the number of robots changes dynamically.
Algorithms having this property can be seen as self-stabilizing algorithms, which solve
problems in spite of any transient failures. Finally, throughout this paper, we reserve
symbol n for denoting the number of robots.

3 Converging to a Point

The convergence problem for a predicate 7 is the problem of designing an algorithm such
that the robots obeying the algorithm converge to points for which 7 holds, regardless of
their initial distribution. Define a predicate Tpoint a8 Tpoint(P1,-..,pPn) = true iff p; = p;
for any 1 <7,5 < n,2 < n. In this section we discuss the convergence problem for mpsins,
which we call POINT. That is, POINT is the problem of converging all the robots to a
single point. The aim of this section is not only to propose algorithms for POINT, but also



to discuss relations between additional assumptions we can make and possible algorithms.
We also discuss a limitation of deterministic algorithms.

Let P, be the current positions of robots with respect to Z,. Although r may not occupy
the origin of Z,, it can be assumed that r is at the origin, without loss of generality.

First of all, let us propose a deterministic algorithm for solving POINT. Let P and p
be a set of points and a farthest point in P from the origin, respectively. Define a function
Ypoint 85 Ypoint(P) = {p/2} for any P.! Since we assume that a robot r is at the origin
of its coordinate system Z,, r executing ¥point always moves to the midpoint of a farthest
robots and itself. Notice that the next position of such r is determined only from the current
positions P, of the robots (with respect to Z,), regardless of the rest of the history I that
7 might have observed. (Notice also that P, does not include time information.) Such an
algorithm is said to be oblivious. All algorithms we will discuss in this section are oblivious
deterministic.

Theorem 1 Function point correctly solves problem POINT.

Suppose we use point p instead of p/2 as the next position. Consider the case of two
robots. If their clocks are synchronized, then the two robots simply exchange their positions
and never converge to a point. In fact, using an argument similar to that in the proof of
Theorem 1, we can prove the following theorem. Let 9point1(P) = {p/b} for any P, where
b is a constant real number.

Corollary 1 2 Function Ypoint1 correctly solves problem POINT iff b > 1.

147

As another possible candidate for a POINT algorithm, one may choose function ¥poins2(P;)

= g, where ¢ is a point which is uniquely determined from the positions of robots, indepen-
dently of how they look from the view P, of r, such as the center of gravity. It is easy to see
that by using an argument similar to that in the proof of Theorem 1, one can show that this
new algorithm solves problem POINT, in this particular case of the center of gravity. Note
that if the local clocks are synchronized, then it can solve problem POINT very efficiently
since all robots simultaneously move to the center of gravity in the first move. However, it
is not clear whether or not ¥peins2 can solve POINT more efficiently than tpeint in general
using more information on the robot positions.

Function ¥peint3(P) = q/2, where g is a nearest point in P from the origin (except the
points at the origin), seems to be a better algorithm than %peint, since finding a nearest
robot should be easier than finding a farthest one. Note that 1pin:3 always moves a robot to
the midpoint of the nearest robot (except those at the same point) and itself. Unfortunately,
Ypoint3 cannot solve POINT. To see this, consider the case of four robots r1,72,73 and 74
initially distributed in such a way that r; and ro (resp. r3 and r4) occupy close positions.
Suppose that none of them move at the same time. Then, robots r; and ro (resp. r3 and
r4) converge to a point, which is unachievable within a finite time. Hence, Ypoint3 cannot
solve POINT.

The next theorem states that any problem solvable by a deterministic algorithm is
actually solvable by an algorithm for POINT, such as ¥point.

!Since an algorithm is a function from Z to the set of subsets of R?, strictly speaking, ¥point must be
defined as ¥,0int(I) = {p/2} for any I. Here, p is a farthest point in P from the origin, and P = {p| (p,s) €
I}, where s is the integer such that (q,t) does not exist in I for any q and #(> s).

2The corollary is partially suggested by Saito[5).



148

Theorem 2 Let w be a predicate which is invariant under any motion and stmilarity. Then
there is a deterministic algorithm for solving the convergence problem for m if and only if
for any P, Tpoint(P) implies w(P).

The proof of Theorem 2 uses the fact that “clones” remain indistinguishable forever,
where two robots r» and s are clones of each other if they share a coordinate system in
common (i.e., Z, = Z,), their local clocks always show the same value (i.e., ¢, = c;)
after they are initialized, and both their initial positions and the times at which they are
initialized, respectively, are the same. In what follows, we assume that no clones exist.

4 Agreeing on a Coordinate System

In the previous section, we investigated oblivious algorithms for POINT. Although oblivious
algorithms are useful (because they are easy to understand and to analyze), they have also
apparent drawbacks caused by the fact (actually the definition) that the robots cannot com-
municate with each other, since some common concepts (e.g., how large the unit distance
is, which direction north means, and so on) are inevitable for communication, but remem-
bering the concepts requires memory. This section investigates the problem of obtaining a
common coordinate system. Assuming that robots share a coordinate system in common,
roughly speaking, robots can be named in terms of their coordinates, and a special leader
robot can be elected (if it is necessary) who controls all other robots. The fact is, however,
that agreeing on a coordinate system is not possible in general. The problem of agreeing
on a coordinate system consists of the following three agreement problems; agreeing on the
origin, agreeing on the direction, and agreeing on the unit distance. We, therefore, examine
which ones of these are difficult. Through the investigation, we will learn what kind of
knowledge is essential to have a common coordinate system. We also explain a limitation
of oblivious algorithms.

4.1 Agreeing on the Origin

Recall that an algorithm 1 is said to solve POINT if the robots obeying ¥ converge to a
point from any initial distribution. This definition does not require that the process finishes
in finite steps. In fact, algorithm %pnt, for example, does not assure that the robots will
move to a single point in finite steps. In this subsection we first consider the problem of truly
moving two robots to a single point in finite steps. We call this problem RENDEZVOUS.
We have the following negative result.

Theorem 3 There is no oblivious algorithm to solve problem RENDEZVQUS.

On the other hand, we can show that there is an algorithm %,endesvous Which is not
oblivious for solving RENDEZVOUS. Instead of describing ¥, endezvous Using mathematical
notations, we explain the behavior of a robot executing it.

Algorithm Y,cudezvoust When a robot » wakes up for the first time, if it finds out that the
two robots reside at the same point, then there is nothing to do. Otherwise, if they occupy
different points, it transforms its coordinate systems Z, in such a way that (1) its position
(with respect to Z,) becomes its origin 0, and (2) the position (with respect to Z,) of the



other robot s becomes (0, a) for some real number a > 0. Then it moves one unit distance
(with respect to Z,) towards its right to (1,0).

It then continues to move one unit distance in the same direction on the X-axis, when-
ever it wakes up until it observes that the position of s changes for the second time.

If the trajectory of the first change of s’s position which » observes is parallel with »’s
X -axis, then it moves to (0,a/2); otherwise, it moves to the intersection of r’s X—axis and
the line which includes the trajectory of s. O

Theorem 4 Function Yyepdesvous correctly solves problem RENDEZVOUS.

Note that in ¥ endesvouss Poth robots know the point at which they will meet before
actually meeting each other there. (This is not true for the algorithms in the previous
section.) Thus Yrendezvous almost solves the problem of agreeing on the origin, which we
call ORIGIN, for two robots. Here, we say “almost,” since if initially the two robots are
at the same point p, then neither of them ever moves, and hence neither of them will ever
be convinced that the other robot has already woken up and recognized this situation.
Therefore, the robots will never be convinced that they have agreed on p. To remove this
small flaw, we may modify the instruction for this case as follows: If a robot finds that it
occupies the same point as the other robot when it wakes up at local time ¢ for the first
time, then it moves to (1,t) with respect to its coordinate system, and restarts the algorithm
Yrendesvous- Since we assume that clones do not exist, it is easy to see that the two robots
never move to the same point infinitely many times. So we obtain:

Theorem 5 Problem ORIGIN is solvable, provided n = 2. O

Now, we propose an algorithm t,rigin for ORIGIN for the case n > 2. Let P be the set
of the initial positions of the robots. The algorithm assumes that the robots are located at
distinct points. So we first transform any given initial distribution (in which two or more
robots may occupy the same point) into one in which this condition is satisfied. This can
be done by an algorithm t,catter given below. Although we execute gcqtter before Yorigin
as preprocessing, confusion between the two algorithms never occurs. Algorithm Y;catter
is an extension of the scattering process of Yrendezvous We explained immediately before
Theorem 5. '

Algorithm v,.411¢: Let P, be the current positions of robots r observes. Hence, r always
resides at its origin. When r wakes up, if no other robots are located at the origin, then it
stays there until all robots are located at distinct points. If there is at least one other robot
located at the origin, then it moves to (a/4,a/4t) (with respect to Z,) and repeats this
procedure from the beginning. Here a > 0 is the minimum distance between two positions
in P,, and t is the current local time. O

It is easy to check that in finite time, each robot occupies a distinct point, since no clones
exist.

Another technical difficulty is that in general, a robot cannot determine, given the
positions of the robots observed at two time instants ¢; and 2, which robot has moved to
which point between ¢; and ;. We overcome this problem by imposing a bound on the
maximum distance that any robot can move while another robot sleeps, so that the robot
at point p at time ¢; must be at the point closest to p at time t;. Specifically, let a, > 0

149



150

be the minimum distance between two robots, when robot r wakes up for the first time.
Then we allow 7 to move at most distance a,e¢/2* in the k-th move. Here, ¢ > 0 is a
(small) constant chosen by the algorithm. This restriction assures the above property, since
r remains inside the a,e—neighborhood of its initial position. Then any robot can correctly
recognize which robot has moved to which position even if it sleeps for a long time period.
Of course, this technique cannot be used in an algorithm in which a robot needs to move
over a long distance.

Algorithm  1,pigin: Let P be the initial distribution of robots, and let CH(P) be the
convex hull of P. It is assumed that the parameter ¢ mentioned above is chosen in such
a way that the farthest neighbor relation among vertex points of C H(P) does not change
by their moves. When a robot r» wakes up for the first time, it decides a,. Next, it moves
towards a farthest robot s from r, if r is located at a vertex point of CH (P); otherwise, it
moves along the line perpendicular to the line connecting » and s. Let d, be the direction
7 moves.

It then continues to move keeping the direction d, unchanged, until it observes that the
position of each robot changes at least twice.

Then, r» knows the trajectory £, of s’s first move for each robot s. We identify the
trajectory with the line including it, and let L = {{;}. Further let E be the envelop
polygon of L.3 Now, it chooses the center of gravity of the vertex points which define E as
the (common) origin. O

Theorem 6 Algorithm vorigin solves ORIGIN, provided n > 2.
Hence, we can conclude that ORIGIN is solvable.

Corollary 2 Problem ORIGIN is solvable. 0

4.2 Agreeing on the Unit Distance

We call the problem of agreeing on the unit distance UNITDIST. First, using an algorithm
similar to Yrendezvouss We can show the next theorem.

Theorem 7 UNITDIST 1s solvable, provided n = 2.

For the case n > 2, consider algorithm %,,tdist given below. Again, it is assumed that

We use Yscarter Defore executing Yynitdist S0 that no two robots are located at the same point
in P.

Algorithm  ,,;4is:: Let P be the initial distribution of robots, and let C H(P) be the
convex hull of P. It is assumed that the parameter € is chosen in such a way that the set of
vertex points of the convex hull of the current positions of robots does not change by their
move. When a robot r wakes up for the first time, it decides a,. Then it moves towards
a farthest robot s from r, if r is not a robot located at a vertex point of CH(P). If r is a
robot located at a vertex point v of CH(P), then r moves along the line perpendicular to
the bisector of the angle at v. Let d, be the direction r moves.

3The envelope polygon of a set L of lines is the polygon consisting of the finite length segments that
bound the infinite faces of the arrangement defined by L.



It then continues to move keeping the direction d, unchanged, until it observes that the
position of each robot changes at least twice.

Then, r knows the trajectory £, of s’s first move for each robot s. We identify the
trajectory with the line including it, and let L = {{,}. Let E be the envelop polygon of L.
Now, it chooses the shortest edge in F as the (common) unit distance. O

Theorem 8 Algorithm Vypnitdist solves UNITDIST, provided n > 2.
Hence, we can conclude that UNITDIST is solvable.

Corollary 3 Problem UNITDIST 1s solvable. O

4.3 Agreeing on Direction

This subsection shows that the third agreement problem of agreeing on direction is unsolv-
able in general. Let us call this problem DIRECTION.

Theorem 9 There is no algorithm for solving DIRECTION, even in the case of n = 2.

It is worth emphasizing that DIRECTION is unsolvable even if the local clocks are
synchronized. On the other hand, the other two agreement problems are trivially solvable
if the local clocks are synchronized.

5 Robots with a Sense of Direction

In this section, first we show that if the robots have a common sense of direction, then
they can agree on a common coordinate system. As before, we assume that no two robots
occupy the same position in the initial distribution. It is easy to verify that the following
algorithm achieves this goal.

Algorithm ¥.oordinatet When a robot r wakes up, it moves one unit distance (with respect
to Z,) to the east, and repeatedly does so until it observes that the position of each robot
has changed at least twice. Then r knows the trajectories £, of s’s first move for each robot
s, and since £;’s are parallel to each other, r chooses the minimum distance > 0 between any
two trajectories as the common unit distance, and the northern-most line as the common
X-axis.

Next, » moves one unit distance to the north, and repeatedly does so, until it again
observes that the position of each robot has changed at least twice. Then, » knows the
trajectories hy of s’s first northbound move for each robot s, and it chooses the eastern—
most line as the common Y-axis. O

Once the robots agree on a common coordinate system, they can elect a leader using
any suitable lexicographic ordering of their initial positions. (Recall that we may assume
that no two robots have the same initial position.) Here, a robot whose initial position is
(a,b) can communicate the values a and b to other robots by moving along line y = b first
and then along line ¢ = a. This idea is similar to that in Ycoordinate-

Let m be any predicate. The formation problem for 7 is the problem of designing an
algorithm such that the robots obeying the algorithm will eventually reach some points for

151



152

which 7 holds in finite steps. For example, RENDEZVOUS is the formation problem for
Tpoint for n = 2. By definition, if the formation problem for a predicate is solvable, so is
the convergence problem for the same predicate. Since the leader can compute the final
positions of all the robots that satisfy any given predicate and then communicate them to
the other robots using its movement by a technique similar to the one used in Y.oordinate,
we obtain the following theorem.

Theorem 10 For any predicate m, the formation problem for m is solvable, if robots have
a sense of direction.

Corollary 4 The problems of forming a circle and a line segment are both solvable, if robots
have a sense of direction.

6 Concluding Remarks

We regarded a robot system as a distributed system in which components can communicate
with only by means of their moves, and investigated the possibility and impossibility of
solving some of the problems related to the formation of geometric figures in the plane.
Our study indicates that the assumptions we make on the knowledge and capabilities of the
robots can affect the difficulty of solving the given problem in a subtle way. We are currently
conducting a similar investigation on randomized algorithms and for the 3-dimensional case.
The results will be reported in a future paper.

References

[1] R. Brooks, “Micro-brains for micro-brawn: Autonomous microrobots,” Proc. IEEE
Micro Robotics and Teleoperators Workshop, Hyannis, MA, November 1987.

[2] A. Flynn, “Gnat robots (and how they will change robotics),” Proc. IEEE Micro
Robotics and Teleoperators Workshop, Hyannis, MA, November 1987.

[3] K. Fujimura, “Model of reactive planning for multiple mobile agents,” Proc. IEEE Int.
Conf. on Robotics and Automation, Sacramento, CA, June 1991, pp. 1503-1509.

[4] T. Fukuda and S. Nakagawa, “Approach to the dynamically reconfigurable robot sys-
tems,” Journal of Intelligent and Robotics Systems 1, 1988, pp. 55-72.

[5] Y. Saito, private communication, 1992.

[6] K. Sugihara and I. Suzuki, “Distributed motion coordination of multiple mobile
robots,” Proceedings of the 5th IEEE International Symposium on Intelligent Control,
Philadelphia, Pennsylvania, September 1990, pp. 138-143.

[7] J. Wang and G. Beni, “Cellular robotic systems: Self-organizing robots and kinetic
pattern generation,” Proc. of the 1988 IEEE International Workshop on Intelligent
Robots and Systems, Tokyo, Japan, 1988, pp. 139-144.

(8] Yamashita, M., and Kameda, T., “Computing on anonymous networks,” Proc. 7th
ACM Symposium on Principles of Distributed Computing, 1988, 117-130.



