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1 Introduction
A binary decision diagram (BDD) [1] is one of representation forms of Boolean functions.
It can represent many practical Boolean functions by feasible size and there exists a unique
canonical form for each Boolean function. Therefore it is widely used for manipulating Boolean
functions on computers.

A BDD represents a Boolean function. On the other hand, a family of BDD’s repIesents
a language. The class of languages accepted by families of polynomial-size BDD’s (PolyBDD)
[2] can be seen as a complexity class which is computable by BDD’s of feasible size. A family
of symmetric functions, the language $\{0^{n}1^{n}\}$ and the language $\{ww|w\in\{0,1\}^{*}\}$ are examples
of elements of PolyBDD.

In this paper, we show a complete language for PolyBDD under constant-depth circuit
reducibility. It reflects the characteristics of PolyBDD and is the representative language of
PolyBDD. To clarify the relations between PolyBDD and other complexity classes, it is suffi-
cient to clarify the relations between a complete language for PolyBDD and other complexity
classes.

This paper is organized as follows. In section 2, we define a BDD and PolyBDD. In section
3, we show a complete language for PolyBDD under constant-depth circuit reducibility. In
section 4, we conclude our discussion.

2 Preliminaries

2.1 Binary Decision Diagram (BDD)
A binary decision diagram (BDD) (Figure 1) [1] which represents an n-variable Boolean func-
tion $f(x_{1}, \cdots, x_{n})$ is a 6-tuple ( $N_{V},$ $N_{C}$ , init, edge, level, $\pi$ ), where

$1V_{V}$ is a set of variable nodes,
$N_{C}=\{c_{0}, c_{1}\}$ is the set of constant nodes,
$init\in N_{V}$ is an initial node,
edge : $N_{V}\cross\{0,1\}arrow(1V_{V}\cup N_{C})$ is a set of edges,
level : $(N_{V}\cup lV_{C})arrow\{1, \cdots, n+1\}$ is a mapping from the set of nodes to the set
of levels such that

level(init) $=1$ ,
level(v) $<$ level(edge(v, $b$)) $(b\in\{0,1\})$ if $v\in JV_{V}$ ,
level $(v)=n+1$ if $v\in 1V_{C}$ ,

$\pi$ : $\{1, \cdots, n\}arrow\{1, \cdots, n\}$ is a permutation from the set of levels of variable nodes
to the set of indexes of variables, called a variable order.
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Figure 1: A BDD representing a Boolean function $x_{1}\cdot x_{2}+x_{3}$

Each node $v$ of a BDD represents a Boolean function $f_{v}$ defined as follows,

$f_{c_{0}}=0$ (inconsistency),
$f_{c_{1}}=1$ (tautology),
$f_{v}=\overline{x_{\pi(level(v))}}\cdot f_{edge\langle v,0)}+x_{\pi\{level(v))}\cdot f_{edge(v,1)}$ if $v\in N_{V}$ .

A BDD ( $N_{V},$ $JV_{C}$ , init, edge, level, $\pi$ ) represents the Boolean function finit. A BDD is called
reduced if there are not any node $v$ such that edge$(v, 0)=edge(v, 1)$ and any pair of nodes $v,$ $v’$

such that level(v) $=level(v’),$ $edge(v, 0)=edge(v’, 0)$ and edge$(v, 1)=edge(v’, 1)$ . A reduced
BDD represents a Boolean function with a variable order is unique up to isomorphism.

2.2 Family of Polynomial-Size BDD’s
A BDD is one of representation forms of Boolean functions. On the other hand, a family
of BDD’s represents a language. A family $\{B_{n}\}$ of BDD’s is a sequence $B_{1},$ $B_{2},$ $\cdots$ of BDD’s,
where $B_{n}=$ ( $4V_{V},$ $1V_{C}$ , init, edge, level, $\pi$ ) is a BDD representing an n-variable Boolean function.
A family $\{B_{n}\}$ of BDD’s is said to accept a language $L\subseteq\{0,1\}^{*}$ if and only if

$\forall n,$ $b_{1}\cdots b_{n}\in L\Leftrightarrow f_{n}(b_{1}, \cdots, b_{n})=1$ , where $f_{n}$ is the Boolean function which $B_{n}$

represents.

We can regard a family of BDD’s as a computational model which accept a language.

Definition 1 Let PolyBDD be the class of languages which are accepted by families of BDD’s
whose size are bounded by a polynomial of the number of the variables. $\square$

In this paper, we do not consider the uniformity, the property that the function $narrow B_{n}$ is
computable easily, of families $\{B_{n}\}$ of BDD’s. In order to characterize nonuniform families of
BDD’s, we use nonuniform on-line Turing machines.

A nonuniform Turing machine is a Turing machine with a two-way read-only input tape.
a two-way work tape and a two-way read-only advice tape. For an input $b_{1}\cdots b_{n}(b_{1\cdot}.b_{n}\in$
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Figure 2: The relations among the classes

$\{0,1\})$ , a nonuniform Turing machine start its computation with $b_{1}\cdots b_{n}$ on the input tape
and with $\alpha(n)$ on the advice tape, where $\alpha$ : $\{1, 2, \cdots\}arrow\{0,1\}^{*}$ is called an advice function.
A nonuniform on-line Turing machine is a nonuniform Turing machine whose input tape is
one-way.

Let $DL/poly,$ $NL/poly$ and l-DL/poly be the class of languages accepted by logarithm-space
bounded deterministic nonuniform Turing machines with polynomial advice, logarithm-space
bounded nondeterministic nonuniform Turing machines with polynomial advice and logarithm-
space bounded deterministic nonuniform on-line Turing machines with polynomial advice.

Let $NC^{k}(k=1,2, \cdots)$ be the class of languages accepted by nonuniform families of constant
fan-in logic circuits of $\log^{k}$ n-depth and polynomial-size for $n$ inputs.

On the relations between PolyBDD and other classes, the following results are obtained
(Figure 2), planar-NC’ $\subseteq$ l-DL/poly [3], l-DL/poly $\subset$ PolyBDD $\subset DL/poly[2][4],$ $NC^{1}\subseteq$

$DL/poly\subseteq NL/poly\subseteq NC^{2}[5]$ , where $REG$ is the class of regular languages and planar-NC1
is the class of languages accepted by nonuniform families of constant fan-in planar circuits of
$\log$ n-depth and polynomial-size for $n$ inputs.

3 A Complete Language for the class PolyBDD

3.1 Constant-Depth Circuit Reducibility
Let $L,$ $L_{c}\subseteq\{0,1\}^{*}$ . We say that $L$ is constant-depth reducible to $L_{c}$ (denote $L\leq_{cd}L_{c}$ ) if
and only if there exists a function $f$ : $\{0,1\}^{*}arrow\{0,1\}^{*}$ computable by a family of constant
fan-in logic circuits of constant-depth and polynomial-size such that for all $x\in\{0,1\}^{*},$ $i1^{\backslash }\in$

$L\Leftrightarrow f(x)\in L_{c}$ . Note that $|f(x)|$ is bounded by a polynomial of $|x|$ since the circuits are
polynomial-size.

For a class $C$ , if $\forall L\in C,$ $L\leq_{cd}L_{c}$ , we say that $L_{c}$ is hard for $C$ under constant-depth circuit
reducibility. If $L_{c}$ is hard for $C$ and $L_{c}\in C$ , we say that $L_{c}$ is complete for $C$ . If $L_{c}$ is complete
for $C$ and $L_{c}\in NC^{1}$ , it follows that $C\subseteq NC^{1}$ .
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Figure 3: A directed graph and its adjacency matrix

3.2 A Complete Language-Topologically Arranged Deterministic
Graph Accessibility Problem

We show that Topologically Arranged Deterministic Graph Accessibility Problem (TADGAP)
[6] is a complete language for PolyBDD under constant-depth circuit reducibility. Before
defining the language TADGAP, we define a directed graph and its adjacency matrix (Figure
3). A directed graph is a 2-tuple (V, $E$ ), where

$V=\{v_{1}, \cdots, v_{|V|}\}$ is a set of nodes,
$E\subseteq\{(v_{i}, v_{j})|v_{i}, v_{j}\in V\}$ is a set of directed edges.

The adjacency matrix $(x_{\mathfrak{i}j})$ of a directed graph $G=(V, E)$ is a $|V|\cross|V|$ matrix and its element
$x_{ij},$ $(1\leq i,j\leq|V|)$ is defined as follows,

$x_{ij}=\{\begin{array}{l}0if(v_{i},v_{j})\not\in Elif(v_{i},v_{j})\in E\end{array}$

We say that there exists a path from a node $v_{i_{1}}$ to a node $v_{i_{2}}$ in a directed graph (V, $E$ ) if
there exist nodes $v_{j_{1}},$ $v_{j_{2}},$ $\cdots,$ $v_{j_{k}}\in V$ such that $(v_{i_{1}}, v_{j_{1}}),$ $(v_{j_{1}}, v_{j_{2}}),$

$\cdots,$ $(v_{j_{k}}, v_{i_{2}})\in E$ . We define
that the outdegree of a node $v_{i}$ is the value $|\{v_{j}|(v_{\mathfrak{i}}, v_{j})\in E\}$ . We say that a directed
graph (V, $E$ ) is topologically sorted if for all $v_{i},$ $v_{j}\in V,$ $(v_{\mathfrak{i}}, v_{j})\in E\Rightarrow i\leq j$ is satisfied.

Definition 2 TADGAP $=\{x_{11}x_{12}\cdots x_{1m}\cdots x_{mm}|$

$(x_{ij})$ is the adjacency matrix of a directed graph $G$ such that
$G$ is topologically sorted,
the outdegree of each node of $G$ is $0$ or 1,
there exists a path from $v_{1}$ tO $v_{m}$ of $G$ $\}$ 口

Theorem 1 TADGAP is constant-depth complete for PolyBDD.
[proof] From the following tWO lemmas 口

Lemma 1 $TADGAP\in$ PolyBDD
[proof] We prove that TADGAP $\in$ l-DL/poly ( $\subseteq$ PolyBDD). Let $M$ be a logarithm-space
bounded nonuniform on-line Turing machine with polynomial advice. We design $M$ to accept
the language TADGAP. Let the input of $M$ be $y\in\{0,1\}^{*}and/|$ is the adjacency matrix of
a directed graph $G$ . The advice of $M$ for the input of length $\uparrow\tau$ is the value of $\gamma\eta=\sqrt{n}$ . $\wedge’\backslash /j$

can check the following three conditions using the logarithm-space since $M$ knows the value
of $m=\sqrt{n},$ $1$ ) $G$ is topologically sorted, 2) the outdegrees of nodes of $G$ is $0$ or 1. 3) there
exists a path from node $v_{1}$ to $v_{n}$ satisfying the conditions above. TherefoIe TADGAP $\in 1-$

$DL/poly\subseteq PolyBDD$ . $\square$
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Figure 4: An example of reduction

Lemma 2 $\forall L\in$ PolyBDD, $L\leq_{cd}$ TADGAP
[proof] For each $L\in$ PolyBDD, we consider the family $\{B_{n}\}$ of polynomial-size BDD’s ac-
cepting the language $L$ . Let the n-variable BDD of $\{B_{n}\}$ be $B_{n}=$ ( $N_{V},$ $1V_{C}$ , init, edge, level, $\pi$ )
and $v_{i}’,$ $v_{j}’\in(N_{V}\cup N_{C})$ such that

$v_{1}’=init$ ,
$v_{j}’=edge(v_{i}’, b)\Rightarrow i<j,$ $(\forall v_{\mathfrak{i}}’, v_{j}’, \forall b\in\{0,1\})$ ,
$v_{m}’=c_{1}(m=|1V_{V}\cup 1V_{C}|)$ .

For $B_{n}$ and the input $b_{1}\cdots b_{n}\in\{0,1\}^{n}$ of $B_{n}$ , we consider the directed graph $G=(V, E)$
(figure4), where

$V=(N_{V}\cup N_{C})$ such that $v;=v_{i}’(1\leq i\leq m)$ ,
$E=\{(v’, edge(v’,\cdot b_{\pi\langle level\langle v’))}))|v’\in N_{V}\}$ .

The directed graph $G$ has the outdegree of $0$ or 1 and is topologically sorted. It seems to be
clear that there exists a path from node $v_{1}$ to $v_{m}$ of $G$ if and only if $b_{1}\cdots b_{n}\in L$ . Hence, if we
let the adjacency matrix of $G$ be $y$ ,

$b_{1}\cdots b_{n}\in L\Leftrightarrow y\in$ TADGAP.

$|y|$ is bounded by a polynomial of $n$ because $m$ , the size of $B_{n}$ , is bounded by a polynomial of
$n$ . An element $x_{ij}(1\leq i,j\leq m)$ of $y$ is computable by the formula

$x_{ij}=_{b\in\{0,1\}}(b_{\pi(level\langle v’))}=b\wedge v_{j}’=edge(v_{i}’, b))$ .

Therefore $y$ iS computable $by$ a constant-depth circuit from $b_{1}\cdot$ $b_{n}$ 口
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3.3 The Relation between PolyBDD and $NC^{1}$

It is known that $NC^{1}\not\subset$ PolyBDD because the Boolean function of the n-th bit output of
the n-bit binary multiplier can not be represented by a BDD of polynomial-size whereas can
be represented by a logic circuit of logarithm-depth [7]. Here, we have a question whether
PolyBDD $\subset NC^{1}$ or not (Figure 2). From the result of theorem 1, we have the following
result.

Corollary 1 TADGAP $\in NC^{1}\Leftrightarrow PolyBDD\subset NC^{I}$ 口

We conclude that the necessary and sufficient condition for $PolyBDD\subset NC^{1}$ is TADGA $P\in$

$NC^{1}$ . However, the following result indicate that to clarify whether $(1- DL/poly\subseteq)PolyBDD\subset$

$NC^{1}$ is as difficult as to clarify whether $DL/poly\subseteq NC^{1}$ , which is one of the famous open
problems.

Theorem 2 $([3])1-DL/poly\subseteq NC^{1}\Leftrightarrow DL/poly\subseteq NC^{1}$ 口

4 Conclusion
In this paper, we show that TADGAP is a complete language for PolyBDD under constant-
depth circuit reducibility and that the necessary and sufficient condition for $PolyBDD\subset NC^{1}$

is TA $DGAP\in A’C^{1}$ . However, to clarify whether PolyBDD $\subset NC^{1}$ is as difficult as to clarity
whether $DL/poly\subseteq NC^{1}$ , one of the famous open problems.
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