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1 Introduction

A binary decision diagram (BDD) [1] is one of representation forms of Boolean functions.
It can represent many practical Boolean functions by feasible size and there exists a unique
canonical form for each Boolean function. Therefore it is widely used for manipulating Boolean
functions on computers.

A BDD represents a Boolean function. On the other hand, a family of BDD’s represents
a language. The class of languages accepted by families of polynomial-size BDD’s (PolyBDD)
[2] can be seen as a complexity class which is computable by BDD’s of feasible size. A family
of symmetric functions, the language {0"1"} and the language {ww|w € {0,1}*} are examples
of elements of PolyBDD.

In this paper, we show a complete language for PolyBDD under constant-depth circuit
reducibility. It reflects the characteristics of PolyBDD and is the representative language of
PolyBDD. To clarify the relations between PolyBDD and other complexity classes, it is suffi-
cient to clarify the relations between a complete language for PolyBDD and other complexity
classes.

This paper is organized as follows. In section 2, we define a BDD and PolyBDD. In section
3, we show a complete language for PolyBDD under constant-depth circuit reducibility. In
section 4, we conclude our discussion.

2 Preliminaries

2.1 Binary Decision Diagram (BDD)

A binary decision diagram (BDD) (Figure 1) [1] which represents an n-variable Boolean func-
tion f(zy,--,z,) is a 6-tuple (Ny, N¢,init,edge, level, w), where

Ny is a set of variable nodes,
N¢ = {co, 1} is the set of constant nodes,
tnit € Ny is an initial node,
edge : Ny x {0,1} — (Ny U N¢) is a set of edges,
level : (Ny UN¢g) — {1,---,n + 1} is a mapping from the set of nodes to the set
of levels such that
level(init) = 1,
level(v) < level(edge(v, b)) (b€ {0,1}) if v € Ny,
level(v) =n+1if v € Ng,
m: {1,---,n} = {1,---,n} is a permutation from the set of levels of variable nodes
to the set of indexes of variables, called a variable order.
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Figure 1: A BDD representing a Boolean function z - x2 + 23

Each node v of a BDD represents a Boolean function f, defined as follows,

feo =0 (inconsistency),
fe, =1 (tautology),
fu = Tr(level(v)) * fedge(v,O) + Lr(level(v)) * fedge(v,l) it v e Ny.

A BDD (Ny, Ng,init,edge, level, r) represents the Boolean function fi;;. A BDD is called
reduced if there are not any node v such that edge(v,0) = edge(v,1) and any pair of nodes v, v’
such that level(v) = level(v'), edge(v,0) = edge(v’,0) and edge(v,1) = edge(v’,1). A reduced
BDD represents a Boolean function with a variable order is unique up to isomorphism.

2.2 Family of Polynomial-Size BDD’s

A BDD is one of representation forms of Boolean functions. On the other hand, a family
of BDD'’s represents a language. A family {B,} of BDD’s is a sequence By, By, - of BDD’s,
where B, = (Ny, N¢,init, edge, level, 7) is a BDD representing an n-variable Boolean function.
A family {B,} of BDD’s is said to accept a language L C {0,1}* if and only if

Vn, by b, € L & fu(by,-+,b,) =1, where f, is the Boolean function which B,
represents.

We can regard a family of BDD’s as a computational model which accept a language.

Definition 1 Let PolyBDD be the class of languages which are accepted by families of BDD’s
whose size are bounded by a polynomial of the number of the variables. ]

In this paper, we do not consider the uniformity, the property that the function n — B, is
computable easily, of families {B,} of BDD’s. In order to characterize nonuniform families of
BDD’s, we use nonuniform on-line Turing machines.

A nonuniform Turing machine is a Turing machine with a two-way read-only input tape,
a two-way work tape and a two-way read-only advice tape. For an input by ---b, (b1,---,b, €
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Figure 2: The relations among the classes

{0,1}), a nonuniform Turing machine start its computation with b; ---b, on the input tape
and with a(n) on the advice tape, where a : {1,2,---} — {0,1}* is called an advice function.
A nonuniform on-line Turing machine is a nonuniform Turing machine whose input tape is
one-way.

Let DL/poly, NL/poly and 1- DL/poly be the class of languages accepted by logarithm-space
bounded deterministic nonuniform Turing machines with polynomial advice, logarithm-space
bounded nondeterministic nonuniform Turing machines with polynomial advice and logarithm-
space bounded deterministic nonuniform on-line Turing machines with polynomial advice.

Let NC* (k = 1,2, -) be the class of languages accepted by nonuniform families of constant
fan-in logic circuits of logk n-depth and polynomial-size for n inputs.

On the relations between PolyBDD and other classes, the following results are obtained
(Figure 2), planar-NC' C 1-DL/poly (3], 1-DL/poly C PolyBDD C DL/poly [2] [4], NC' C
DL/poly C NL/poly C NC? [5], where REG is the class of regular languages and planar-NC*
is the class of languages accepted by nonuniform families of constant fan-in planar circuits of
log n-depth and polynomial-size for n inputs.

3 A Complete Language for the class PolyBDD

3.1 Constant-Depth Circuit Reducibility

Let L,L. C {0,1}*. We say that L is constant-depth reducible to L. (denote L <. L.) if
and only if there exists a function f: {0,1}* — {0,1}* computable by a family of constant
fan-in logic circuits of constant-depth and polynomial-size such that for all € {0,1}*, €
L & f(z) € L.. Note that |f(z)| is bounded by a polynomial of |z| since the circuits are
polynomial-size.

For a class C, if VL € C, L <.4 L., we say that L. is hard for C under constant-depth circuit
reducibility. If L. is hard for C and L. € C, we say that L. is complete for C. If L, is complete
for C and L. € NC', it follows that C C NC.
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Figure 3: A directed graph and its adjacency matrix

3.2 A Complete Language - Topologically Arranged Deterministic
Graph Accessibility Problem

We show that Topologically Arranged Deterministic Graph Accessibility Problem (TADGAP)
[6] is a complete language for PolyBDD under constant-depth circuit reducibility. Before
defining the language TADGAP, we define a directed graph and its adjacency matrix (Figure
3). A directed graph is a 2-tuple (V, E), where

V={w, - ,vv| }is a set of nodes,
E C { (v;,vj) | vi,v; €V } is a set of directed edges.

The adjacency matrix (z;;) of a directed graph G = (V, F) is a |V| x |V| matrix and its element
zij, (1 £4,7 < |V|) is defined as follows,

o 0 if (vi,vj)¢E,
TiT\ 1 i (w,v) € E.

We say that there exists a path from a node v;, to a node v;, in a directed graph (V, F) if
there exist nodes vj,,v;,, - -, v;, € V such that (vi,,v;,), (vj,v5), -, (Vji,vi,) € E. We define
that the outdegree of a node v; is the value | { v; | (v;,v;) € E } |. We say that a directed
graph (V, E) is topologically sorted if for all v;,v; € V, (v;,v;) € E = ¢ < j is satisfied.

Definition 2 TADGAP = { T11Z12 " T1m """ Tmm |
(2;;) is the adjacency matrix of a directed graph G such that
G is topologically sorted,
the outdegree of each node of G is 0 or 1,
there exists a path from v, to v,,, of G. } O

Theorem 1 TADGAP is constant-depth complete for PolyBDD.
[proof] From the following two lemmas. o

Lemma 1 TADGAP € PolyBDD

[proof] We prove that TADGAP € 1-DL/poly (C PolyBDD). Let M be a logarithm-space
bounded nonuniform on-line Turing machine with polynomial advice. We design M to accept
the language TADGAP. Let the input of M be y € {0,1}* and ¥ is the adjacency matrix of
a directed graph G. The advice of M for the input of length n is the value of m = /n. M
can check the following three conditions using the logarithm-space since M knows the value
of m = \/n, 1) G is topologically sorted, 2) the outdegrees of nodes of G is 0 or 1, 3) there
exists a path from node v, to v, satisfying the conditions above. Therefore TADGAP €1-
DL/poly C PolyBDD. a
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Figure 4: An example of reduction

Lemma 2 VL € PolyBDD, L <., TADGAP

[proof] For each L € PolyBDD, we consider the family {B,} of polynomial-size BDD’s ac-
cepting the language L. Let the n-variable BDD of {B,} be B, = (Ny, N¢,init, edge, level, 7)
and v}, v} € (Nv U N¢) such that

vy = init,
v} = edge(vi,b) = i < j, (Yo, v}, Vb € {0,1}),
’U:n =0 (m = 1IVV U /Vcl).

For B, and the input b;---b, € {0,1}" of B,, we consider the directed graph G = (V, E)
(figured), where

V = (Ny U N¢) such that v; = v} (1 <7 <m),
E= { (vlvedge(v,a'bﬂ'(leuel(v’)))) l v' € Ny }

The directed graph G has the outdegree of 0 or 1 and is topologically sorted. It seems to be
clear that there exists a path from node v, to v,, of G if and only if b; - - - b,, € L. Hence, if we
let the adjacency matrix of G be y,

by---b, e L &yec TADGAP.

|y| is bounded by a polynomial of n because m, the size of B, is bounded by a polynomial of
n. An element z;; (1 <¢,7 < m) of y is computable by the formula

zi; = Viego) ( br(ievel(vt)) = b AV = edge(v],b) ).

Therefore y is computable by a constant-depth circuit from b; - - - b,,. 0



3.3 The Relation between PolyBDD and NC'

It is known that NC' € PolyBDD because the Boolean function of the n-th bit output of
the n-bit binary multiplier can not be represented by a BDD of polynomial-size whereas can
be represented by a logic circuit of logarithm-depth [7]. Here, we have a question whether
PolyBDD C NC" or not (Figure 2). From the result of theorem 1, we have the following
result.

Corollary 1 TADGAP € NC' & PolyBDD C NC! a

We conclude that the necessary and sufficient condition for PolyBDD C NC'is TADGAP €
NC'. However, the following result indicate that to clarify whether (1- DL/poly C) PolyBDD C
NC' is as difficult as to clarify whether DL/poly C NC', which is one of the famous open
problems.

Theorem 2 ([3]) 1-DL/poly C NC' & DL/poly C NC! 0

4 Conclusion

In this paper, we show that TADGAP is a complete language for PolyBDD under constant-
depth circuit reducibility and that the necessary and sufficient condition for PolyBDD C NC*
is TADGAP € NC'. However, to clarify whether PolyBDD C NC! is as difficult as to clarify
whether DL/poly C NC', one of the famous open problems.
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