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Contact transformations, Huygens’s principle,
and the fourfold picture of the calculus of variations

STEFAN HILDEBRANDT

1. The transformations of Holder and Legendre.

Let $F(x, z,p)$ be a $C^{2}$ -function on $R^{n}\cross R\cross R^{n}$ ; the points in this space are denoted
by $(x, z,p)$ . With $F$ we associate an adjoint function $\Phi(x, z,p)$ defined by

(1.1) $\Phi$ $:=p\cdot F_{p}-F$,

and a momentum tensor $T$ defined by

(1.2) $T:=p\otimes F_{p}-FI$

where $I$ is the identity, i.e. the components of $T$ are given by

$T_{k}^{i}=p_{k}F_{p_{i}}-F\delta_{k}^{i}$ .

Then we define E. H\"older’s transformation generated by $F$ :

$\mathcal{H}_{F}$ : $(x, z,p)\mapsto(x, z, y)$

by

(13) $y= \frac{p}{F(x,z,p)}$ .

If this map is invertible, we can introduce the H\"older transform $H(x, z, y)$ of $F$ by

(1.4) $H$ $:=1/FoH_{F}^{-1}$

For the sake of simplicity we shall here and in similar cases assume that the inverse
mappings exist locally ; thus all considerations are to be understood in a local sense.

First we can prove:

Lemma 1.1. We have

(1.5) $\det T=(-1)^{n-1}F^{n-1}\Phi$

Lemma 1.2. The Jacobi matrix of the mapping $p\mapsto y$ given by (1.3) can be computed
$as$

(1.6) $\frac{\partial y}{\partial p}=-F^{-2}T$
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whence

(1.7) $\det\frac{\partial y}{\partial p}=-F^{-n-1}\Phi$ .

Hence $?t_{F}^{-1}$ exists locally if we assume

(A1) $F\neq 0$ and $\Phi\neq 0$ .

Thus $H$ is well-defined if we require (A1), and we immediately see that the transforma-
tion (1.3), (1.4) is an involution. In fact, if $(x, z,p)$ and $(x, z, y)$ are related by (1.3), we
obtain

(1.8) $y= \frac{p}{F(x,z,p)}$ , $p= \frac{y}{H(x,z,y)}$ ,

$H(x, z, y)= \frac{1}{F(x,z,p)}$ , $F(x, z,p)= \frac{1}{H(x,z,p)}$ .

Suppose that $\Psi(x, z, y)$ is the adjoint of $\Phi(x, z, y)$ given by

(1.9) $\Psi$ $:=y\cdot H_{y}-H$ ,

and let $P$ be the momentum tensor of $H$ ,

. (1.10) $P:=y\otimes H_{y}-HI$.

Then formulas (1.8) can be complemented by the following remarkable relations where
$F=F(x, z,p),$ $F_{x}=F_{x}(x, z,p),$ $\cdots$ , and $H=H(x, z, y),$ $H_{y}=H_{y}(x, z, y),$ $\cdots$ , and
$(x, z,p)$ and $(x, z, y)$ are related by formula (1.3) :

$y= \frac{p}{F},$ $H= \frac{1}{F}$ $\Psi=\frac{1}{\Phi}$

(1.11) $H_{x}= \frac{F_{x}}{F\Phi}$ $H_{y}= \frac{F_{p}}{\Phi}$ $H_{z}= \frac{F_{z}}{F\Phi}$

$\det H_{yy}=(\frac{F}{\Phi})^{n+2}\det F_{pp}$ .

A completely analogous set of formulas holds for $F$ and its derivatives. Moreover, one
can even express $H_{yy}$ in terms of $F$ ; this is, however, more elegantly done by the
Legendre transform $W$ of $F$ , see formula (1.16) below.

Next we recall Legendre’s transformation

$\mathcal{L}_{F}$ : $(x, z,p)\mapsto(x, z, \xi)$

generated by $F$ which is defined by
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(1.12) $\xi=F_{p}(x, z,p)$

The Legendre transform $W(x, z, \xi)$ of $F(x, z,p)$ is defined by

$W$ $:=\Phi 0\mathcal{L}_{F}^{-1}$ .

Here $\mathcal{L}_{F}^{-1}$ exists (locally) if we suppose

(A2) $\det F_{pp}\neq 0$ .

Let

(1.13) $M$ $:=\xi\cdot W_{\xi}-W$

be the adjoint of $W$ , and let

(1.14) $\Gamma$ $:=\xi\otimes W_{\xi}-WI$

be its momentum tensor.
It is well-known that the 2-step procedure $(x, z,p),$ $F(x, z,p)\mapsto(x, z, \xi),$ $W(x, z, \xi)$ of

first assigning $\xi$ to $p$ and then defining $W$ is an involution, satisfying

(1.15) $F+W=p\cdot\xi$ , $\xi=F_{p}$ , $p=W_{\xi}$ ,
$\ovalbox{\tt\small REJECT}+W_{x}=0$ , $F_{z}+W_{z}=0$ ,

where again $F=F(x, z,p),$ $F_{x}=F_{x}(x, z,p),$ $\cdots W=W(x, z, \xi),$ $W_{x}=W_{x}(x, z, \xi)$ ,
. . . , and $(x, z,p)rightarrow(x, z, \xi)$ .
By using the corresponding sloppy, but instructive notation if $(x, z,p)rightarrow(x, z, \xi)rightarrow$

$(x, z, y)$ , we obtain

(1.16) $M=F= \frac{1}{H}$ , $W= \Phi=\frac{1}{\Psi}$ , $F_{pp}=W_{\xi\xi}^{-1}$ ,

$H_{yy}=(W^{-2}\Gamma)\cdot F_{pp}\cdot(H^{-2}P)$ ,

and from the second line follows the last equation of (1.11). Thus we infer

Proposition 1.1. If $F\neq 0,$ $\Phi\neq 0$ , and $\det F_{pp}\neq 0$ , then also $H\neq 0,$ $\Psi\neq 0$ ,
$\det H_{yy}\neq 0$ , and also $W\neq 0,$ $M\neq 0,$ $\det W_{\xi\xi}\neq 0$ .

Thus we have under the assumptions (A1) and (A2) in past-center the following
formulas

$\mathcal{L}_{F}^{-1}=\mathcal{L}_{W}$ , $\mathcal{H}_{F}^{-1}=\mathcal{H}_{H}$ ,

(1.17) $W=\Phi 0\mathcal{L}_{F}^{-1}$ , $F=Mo\mathcal{L}_{W}^{-1}$ ,
$H=Fo\mathcal{H}_{F}^{-1}$ , $F=Ho\mathcal{H}_{H}^{-1}$ .

Furthermore, assumptions (A1), (A2) carry over from $F$ to its H\"older transform $H$ and
its Legendre transform $W$ .

From the above formulas we infer the following result:
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Proposition 1.2. We have

(1.18) $\mathcal{L}_{H}0\mathcal{H}_{F}=\mathcal{H}_{W}0\mathcal{L}_{F}$

provided that (A1) and (A2) are satisfied, $i.e$ . the following diagram is commuting:

$x,$ $z,p,$ $F$ $arrow^{\mathcal{H}p}$ $x,$ $z,$ $y,$ $H$

(1.19)

$x,$ $z,$ $\xi,$ $W$
$arrow$

$x,$ $z,$ $\nu,$
$L$

Here $L(x, z, v)$ is the Legendre transform of $H$ obtained by

(1.20) $L=Ho\mathcal{L}_{H}^{-1}$

and $\mathcal{L}_{H}$ : $(x, z, y)\mapsto(x, z, v)$ is the Legendre transformation generated by $H_{f}i.e$ .

(1.21) $v=H_{y}(x, z, y)$ .

Note that the transformation $\mathcal{R}_{F}$ : $(x, z,p)\mapsto(x, z, v)$ defined by

(1.22) $\mathcal{R}_{F}$ $:=\mathcal{L}_{H}0\mathcal{H}_{F}$

is an involution, which in a different context was introduced by A. Haar. However, this
transformation appears (implicitely) at many places in the calculus of variations as it is
closely related to a classical contact transformation, the mapping by reciprocal polars.
Proposition 2 implies that

(1.23) $\mathcal{R}_{F}=\mathcal{R}_{L}^{-1}$ ,

and this relation shows that Haar’s transformation is an involution.
Note also that $\mathcal{R}_{F}$ : $(x, z,p)\mapsto(x, z, v)$ is given by

(1.24) $p \mapsto v=\frac{F_{p}}{p\cdot F_{p}-F}$

i.e.

(1.24’) $v= \frac{F_{p}(x,z,p)}{\Phi(x,z,p)}$

and the Haar transform $L$ of $F$ is just

(1.25) $L(x, z, v)= \frac{1}{\Phi(x,z,p)}$ .

From the second line of (1.16) one can derive that

(1.26) $H_{yy}=(F^{3}/\Phi)P^{T}F_{pp}P$ ,

and this result can be used to show global invertibility of $\mathcal{L}_{F},$ $\mathcal{H}_{F}$ , and $\mathcal{R}_{F}$ assuming
also that $F_{pp}$ is definite.



17

2. Contact transformations and Lie’s equations.

Let us consider the configuration space $M=R^{n}\cross R$ with the points $(x, z)$ and the
corresponding contact space $\hat{M}$ with the points $(x, z,p)$ . The contact form $\omega$ on $\hat{M}$ is
defined by

(2.1) $\omega=dz-p\cdot dx$ .

Let $\mathcal{U}$ be an n-dimensional parameter domain. An immersion $\mathcal{E}$ : $\mathcal{U}arrow\hat{M}$ is called a
strip (more precisely, an n-dimensional strip) if it annulles $\omega$ , that is, if

(22) $\mathcal{E}^{*}\omega=0$

where $\mathcal{E}^{*}\omega$ denotes the pull-back of $\omega$ with respect to $\mathcal{E}$ . A contact transformation is a
mapping $\mathcal{T}$ : $\Omegaarrow\hat{M}$ of some domain $\Omega\subset\hat{M}$ into $\hat{M}$ such that

(2.3) $T^{*}\omega=\rho\omega$

for some nonvanishing function $\rho$ . Contact transformations map strips into strips. Lie
has proved that every one-parameter group of contact transformations

(2.4) $\overline{x}=X(\theta, x, z,p),\overline{z}=Z(\theta, x, z,p),\overline{p}=P(\theta, x, z,p)$

or

(25) $\overline{e}=\sigma(\theta, e)=T_{\theta}e$ ,

$e:=(x, z,p),\overline{e}:=(\overline{x},\overline{z},\overline{p})$, is generated by a vector field $\mathcal{H}_{F}$ of the form

(26) $\mathcal{H}_{F}=\Pi^{i}\frac{\partial}{\partial x^{i}}+\Phi\frac{\partial}{\partial z}+A_{i}\frac{\partial}{\partial\phi_{i}}$

where

(2.7) $\Pi^{i}=F_{pi},$ $\Phi=p\cdot F_{p}-F,$ $A_{i}=-F_{xi}-p_{i}F_{z}$ ,

i.e. $\mathcal{H}_{F}$ is derived from a single scalar function $F(x, z,p)$ which will be called Lie’s
function. In other words, $\sigma(\theta, e)$ $:=T_{\theta}e$ is a flow of Lie’s system of differential equations

(2.8) $\dot{x}=F_{p}$ , $\dot{z}=p\cdot F_{p}-F$, $\dot{p}=-F_{x}-pF_{z}$

where $\dot{x}=\frac{dx}{d\theta}$ etc. Conversely, every flow generated in the form (2.8) yields a (local)
one-parameter group of contact transformations.
As was observed by Lie, Vessiot, and E. H\"older, equations (2.8) describe the motion $\mathcal{T}_{\theta}\mathcal{E}$

of strips $\mathcal{E}$ in time by means of Huygens’s principle. More precisely, if $\zeta=W(x, z, \xi)$ is
the indicatrix of an optical medium at the point $(x, z)$ described in running coordinates
$\xi,$ $\zeta$ , and if $F$ is the Legendre transform of $W$ , then Huygens ’s envelope construction
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applied to surfaces $S$ in $M$ and to the strips $\mathcal{E}$ supported by $S$ leads to a motion $S_{\theta}$ and
$\mathcal{E}_{\theta}$ of $S$ and $\mathcal{E}$ given by $\mathcal{E}_{\theta}=\mathcal{T}_{\theta}\mathcal{E}$, i.e. by (2.8), if each point $(x, z)$ on $S$ is viewed as
source of an elementary wave $\{(\xi, \zeta):\zeta=W(x, z, \xi)\}$ . We call an n-parameter solution
$\sigma(\theta, c),$ $c=(c_{1}, \ldots, c_{n})$ of (2.8) a Lie flow provided that $\sigma_{c}$ has rank $n$ . The pull-back
$\sigma^{*}\omega$ of the contact form $\omega$ with respect to a Lie flow is of the form

(2.9) $\sigma^{*}\omega=-\varphi d\theta+\lambda_{\alpha}dc_{\alpha}$

where $\varphi$ $:=F(\sigma)$ and $\lambda_{1},$

$\ldots,$
$\lambda_{n}$ are solutions of the same homogeneous linear differential

equation, namely

(2.10) $\dot{\varphi}+F_{z}(\sigma)\varphi=0$, $\dot{\lambda}_{\alpha}+F_{z}(\sigma)\lambda_{\alpha}=0$.

A Lie flow is said to be a Huygens flow if it satisfies

(2.11) $\sigma^{*}\omega=-F(\sigma)d\theta$ .

It turns out that a Lie flow is Huygens if and only if its initial values $\mathcal{E}(c)=\sigma(0, c)$

satisfy the strip condition
$\mathcal{E}^{*}\omega=0’$ .

The ray map $r(\theta, c)=(X(\theta, c),$ $Z(\theta, c))$ of a Huygens flow

$(\theta, c)\mapsto\sigma(\theta, c)$

given by (2.4) is said to be a Huygens field (on $G$ ), if $r$ defines a diffeomorphism (onto
some domain $G$ in $M$). Let $P(\theta, c)$ be the p-component of $\sigma(\theta, c)$ and set

(2.12) $\mathcal{N}:=Por^{-1}$

and

(2.13) $\nu(x, z)=(x, z,\mathcal{N}(x, z))$ .

Moreover, we set

(2.14) $s(x, z)=(S(x, z),$ $T(x, z))$ ,

that is, $s=r^{-1}$ is given by

(2.15) $\theta=S(x, z)$ , $c=T(x, z)$ .

Then we have
$\nu(x, z)=(\sigma os)(x, z)=(ros, Pos)(x, z)$ ,

and (2.11) implies

(2.16) $\nu^{*}\omega=-F(\nu)dS$
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Le.

(2.16’) $d_{z}-\mathcal{N}\cdot dx=-F(\nu)dS$.

This implies

(2.17) $\mathcal{N}=-S_{x}/S_{z}$ and $F(\cdot, \cdot,\mathcal{N})S_{z}+1=0$

whence we obtain Vessiot’s differential equation

(2.18) $F(x, z, -S_{x}/S_{z})S_{z}+1=0$ .

The motion ofwave fronts of a Huygens field with the direction field $\nu(x, z)=(x,$ $z,$ $\mathcal{N}(x, z)$

is then obtained by forming the level surfaces

(2.19) $S_{\theta}=\{(x, z):S(x, z)=\theta\}$

of the function $S(x, z)$ which is called the eikonal of the Huygens field $r$ .
Applying the Legendre transformation $\mathcal{L}_{F}$ to Lie’s equations (2.8), these are trans-

formed into the Herglotz equations

(2.20) $\dot{x}=\xi$ , $\dot{z}=W$, $\frac{d}{d\theta}W_{\xi}-W_{x}-W_{z}W_{\xi}=0$

while Vessiot’s equation for $S$ is transformed into the characteristic system

$S_{x}=W_{\xi}(\cdot, \cdot, \mathcal{D}/M(\cdot, \cdot, \mathcal{D}))$

$(2.21)$
$S_{z}=-1/M(\cdot, \cdot, \mathcal{D})$

for the pair $\{S, \mathcal{D}\}$ , where $S$ is the eikonal of the Huygens field $r$ , and $\mathcal{D}=F_{p}(\cdot, \cdot, -S_{x}/S_{z})$

is its slope field, i.e. we can reconstruct the rays $r(\cdot, c)$ of the Huygens field $r$ by solving
suitable initial value problems for the system

(2.22) $\dot{x}=\mathcal{D}(x, z)$ . $\dot{z}=W(x, z,\mathcal{D}(x, z))$ .

Thus we have two equivalent pictures of geometrical optics based on Huygens’s principle,
one described by Lie’s system (2.8) and Vessiot’s equation (2.18), the other by Herglotz’s
equations (2.20) and by the characteristic equations (2.21). Both pictures are related
by the Legendre transformation $\mathcal{L}_{F}$ or by its inverse $\mathcal{L}_{W}$ . We call the description based
on (2.8) and (2.18) the Huygens-Lie picture, while the description based on (2.20) and
(2.21) is denoted as Herglotz picture.
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3. The fourfold picture of the calculus of variations.

From either one of these to pictures we can pass to another description of geometrical
optics, that of Hamilton and of Euler-Lagrange respectively. The commuting diagram
(1.19) tells us how we have to proceed. For instance, let us start from picture I, the
Huygens-Lie description. We subject any Lie-or Huygens flow to H\"older’s transforma-
tion $\mathcal{H}_{F}$ , and replace $\theta$ by the new variable $z$ using the equation

$\dot{z}=\Phi(x, z,p)$

of (2.8); assumption (A1) yields $\dot{z}\neq 0$ on every flow line whence the substitution can be
performed without any difficulty. Then Lie’s equations are transformed into Hamilton’s
equations

(3.1) $x’=H_{y}(x, z, y)$ , $y’=-H_{x}(x, z, y)$ ,

$’= \frac{d}{dz}$ i.e. Lie flows are transformed into Hamilton flows. Moreover, it is easy to
see that Huygens flows and Huygens fields correspond to Mayer flows and Mayer fields
respectively, and the eikonal $S$ of a Huygens field is just the eikonal of the corresponding
Mayer field, and vice versa. We also see that Vessiot’s equation (2.18) is just transformed
into the Hamilton-Jacobi equation

(3.2) $S_{z}+H(x, z, S_{x})=0$ .

Finally, applying $\mathcal{L}_{H}$ to (3.1) and (3.2), or $\mathcal{H}_{W}$ to (2.20) and (2.21), we obtain Euler’s
equations

(3.3) $x’=v$ , $\frac{d}{dz}L_{v}-L_{x}=0$

and the Carath\’eodory equations

(3.4) $S_{x}=L_{v}(x, z, \mathcal{P})$ , $S_{z}=-\Lambda(x, z, \mathcal{P})$

for the Mayer field with the eikonal $S$ and the slope $\mathcal{P}$ $:=H_{y}(\cdot, \cdot, S_{x})$ . The field $f(z, c)=$
$(\mathcal{X}(z, c),$ $z$ ) is then obtained from $\mathcal{P}$ by means of the equations

(3.5) $\mathcal{X}’=\mathcal{P}(\mathcal{X}, z)$ .

This leads to four equivalent descriptions of the variational problem

(3.6) $\int L(x(z), z, x’(z))dzarrow\min$ (or : stationary),

and in particular to the equivalence of the principles of Fermat and Huygens.
A detailed account of the material of this lecture will appear in the papers [2], [3] and

in the forthcoming treatise [1].
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