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THREE TYPES OF MINIMAX THEOREMS FOR
VECTOR-VALUED FUNCTIONS*

弘前大学理学部 \dagger 田中 環 (Tamaki Tanaka )\ddagger

Abstract. Given a real-valued function, it is well-known that the function possesses
a saddle point if and only if the minimax value and the maximin value of the function
are coincident.

If the function is a vector-valued function, how does the situation change? That is,
if we give reasonable definitions for mminimax and maximin of a vector-valued function,
what minimax equation or inequation holds? Also, if we give a suitable definition
for saddle points of the vector-valued function, under what conditions do there exist
such saddle points? Moreover, what relationship holds among such minimax values
and maximin values and saddle values?

In this paper, we will give interesting answers to such open questions and will
show three types of minimax theorems for vector-valued functions.

Key Words. Minimax theorems, multicriteria games, multiobjective programming,
multiple criteria decision making, vector optimization, Browder’s coincidence theo-
rem, ordered vector spaces, pointed convex cones.

1. Introduction and Preliminaries
In recent years, vector optimization theory has been widely developed, and the study of
multicriteria games has accordingly come up again by many researchers; e.g., see [5] and
[10]. The particular questions are minimax problems for vector-valued functions.

Recently, we can find some papers which give interesting answers to such open questions;
see [3], [7], [8], [9], [21], [25], [26], [27], [29], and [30]. The research, in particular, of [21]
formed an occasion for studies in this area to make development. However, the research is
limited to a separated function of the type $f(x, y)=x+y$. A more general approach is done
in [3], [8], and [9]. The research of [3] discusses minimax inequalities for a vector-valued
function which maps in an ordered Banach space. On the other hand, the researches of [8]
and [9] are given in more general setting, i.e., the image space of functions is a (ordered)
locally convex Hausdorff topological vector space. Also, we have separately researched such
minimax problems in general setting and proved minimax theorems, existence theorems
for saddle points, and saddle point theorems in [25], [26], [27], [29], and [30]; all of such
researches are contained in the author’s doctoral thesis [32].
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The research of [25] generalizes the results given in [21] to more general cases, where
a vector-valued function $f$ is allowed to be of the type $f(x, y)=u(x)+v(y)$ and where
existence theorems for saddle points of a vector-valued function are proved. The image
space of functions in the research, however, is limited to a finite-dimensional space $R^{n}$ .
The researches of [26], [27], and [29] are done either in real Hausdorff topological vector
spaces or in real Hausdorff locally convex topological vector spaces, which are allowed to
be infinite-dimensional. The research of [29] gives two minimax theorems for a vector-
valued function and generalizes the results given in [26] and [27] to more general cases,
where a vector-valued function is allowed to be one satisfying any of four convex-concave
conditions. Also, in [26] and [27] we proved various existence theorems for saddle points
of a vector-valued function. These minimax results come to the recent paper [30], which
generalizes the results given in [27] and [29].

The aim of this paper is to present some of the most general versions of the author’s
results related to minimax problems for vector-valued functions. For this end we shall
introduce new concepts of convexity and continuity of vector-valued functions, which are
weaker than ordinary ones. One is the generalized quasiconvexity called “natural quasi
C-convex” ; the other is the continuity called “demicontinuous”. Almost all the results in
this paper are based on [31] and [32]. Only Minimax Theorem II is new and one of
most general cases in the author’s results.

Now, we give the preliminary terminology used throughout the paper. To begin with, the
main spaces with mathematical structures on which our results work are a real topological
vector space (t.v. $s$ . for short) or a real locally convex space (l.c. $s$ . for short) as a domain of
functions and an ordered real topological vector space (ordered t.v. $s$ . for short) as a range
space of functions. We assume that the topologies are Hausdorff; one of the reasons why
we work on a Hausdorff l.c. $s$ . is the purpose of applying Browder’s coincidence theorem;
see [2] and [23]. (The coincidence theorem is a cyclical version of Fan-Glicksberg type’s
fixed-point theorems; see [6] and [11].)

If $C$ is a convex cone of a real vector space $S$ , the relation $\leq c$ defined below is a (partial)
vector ordering of $S$ : for $x,$ $y\in S$

$x\leq cy\Leftrightarrow y-x\in C$ . (1)

Conversely, let $S$ be a real ordered vector space with a vector ordering $\leq$ , and let $C$ $:=$

$\{x\in S|0\leq x\}$ . Then $C$ is a convex cone of $S$ , and its ordering $\leq c$ is coincident with $\leq$ ;
see page 2 in [17]. Thus, there is a one-to-one correspondence between vector orderings of
a real ordered vector space $S$ and convex cones in $S$ , and hence we assume that such real
ordered vector space [resp. ordered t.v. $s.$ ] has a convex cone $C$ and that the ordering is
defined by (1).

Throughout this paper, let $Z$ be an ordered t.v. $s$ . with a convex cone $C$ . The convex cone
$C$ is assumed to be pointed, i.e., $C\cap(-C)=\{0\}$ , and hence the ordering is antisymmetric
and $C\ni 0$ . Also, the convex cone $C$ is assumed to be solid, i.e., its (topological) interior
intC is nonempty, and hence $C^{0}$ $:=$ (intC) $U\{0\}$ is a pointed convex cone and induces
another (antisymmetric) vector ordering $\leq c^{0}$ weaker than $\leq c$ in $Z$ . With respect to each
of the orderings $\leq c$ and $\leq c^{0}$ we shall define minimal elements and maximal elements of
a subset $A$ of $Z$ . As the concept, we will adopt (cone extreme point,” the concept of
which was proposed by P.L.Yu in [33].

An element $z_{0}$ of a subset $A$ of $Z$ is said to be a C-minimal point of $A$ if $\{z\in A|z\leq cz_{0}$ ,
$z\neq z_{0}\}=\emptyset$ , and a C-maximal point of $A$ if $\{z\in A|z_{0}\leq cz, z\neq z_{0}\}=\emptyset$ ; which are
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equivalent to $A\cap(z_{0}-C)=\{z_{0}\}$ and $A\cap(z_{0}+C)=\{z_{0}\}$ , respectively. We denote
the set of such all C-minimal [resp. C-maximal] points of $A$ by $MinA$ [resp. $MaxA$].
Also, $C^{0}$-minimal and $C^{0}$-maximal points of $A$ are defined similarly, and denoted by
${\rm Min}_{w}A$ and ${\rm Max}_{w}A$ , respectively. These $C^{0}$-minimality and $C^{0}$-maximality are weaker
concepts than C-minimality and C-maximality, respectively: it should be remarked that
$Mi_{lL}4\subset{\rm Min}_{w}A\subset A$ and $MaxA\subset{\rm Max}_{w}A\subset A$ .

2. Minimax and Maximin of a Vector-Valued Function
Let $A$ be a nonempty subset of an ordered t.v. $s$ . $Z$ with a (solid) pointed convex cone $C$ .
We say that the set $A$ has the (domination property” (e.g., see page 697 in [19] and
page 53 in [20]) if

$MinA\neq\emptyset$ [resp. $MaxA\neq\emptyset$], (2)

and

$A\subset MinA+C$ [resp. $A\subset MaxA-C$]. (3)

In particular, to produce conditions ensuring the condition (2) is one of the most important
questions of vector optimization theory; e.g., see [12], [14], [18], [19], and [24]. In this paper,
we need the following lemmas; see [30] and [32]:

Lemma 2.1. Let $Z$ be an ordered t.v. $s$ . with a (solid) pointed convex cone $C$ , and $A$

a subset of $Z$ . If the convex cone $C$ of $Z$ satisfies the condition

$c1C+(C\backslash \{0\})\subset C$ (4)

and if $A$ is nonempty and compact, then $MinA\neq\emptyset,$ $A\subset MinA+C$ and $MaxA\neq\emptyset$ ,
$A\subset MaxA-C$ .

Lemma 2.2. Let $Z$ be an ordered t.v. $s$ . with a solid pointed convex cone $C$ , and $A$

a subset of $Z$ . If $A$ is nonempty and compact, then ${\rm Min}_{w}A\neq\emptyset,$ $A\subset{\rm Min}_{w}A+C^{0}$ and
${\rm Max}_{w}A\neq\emptyset,$ $A\subset{\rm Max}_{w}A-C^{0}$ . Moreover, ${\rm Min}_{w}A$ and ${\rm Max}_{w}A$ are compact sets.

Next, we will give reasonable definitions for minimax values and maximin values of a
vector-valued function. Let $f$ : $X\cross Yarrow Z$ be a vector-valued function on a product
$X\cross Y$ . We call the following subsets of $Z$

${\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
,

${\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$
(5)

the set of all minimax values of $f$ and the set of all maximin values of $f$ , respectively.
Let $S_{1}$ and $S_{2}$ be two topological spaces, respectively. A mapping $F$ from $S_{1}$ into $S_{2}$ is

said to be upper semicontinuous at $x\in S_{1}$ , if for any open neighborhood $V$ of $F(x)$ ,
there exists a neighborhood $U$ of $x$ such that $F(y)\subset V$ for all $y\in U$ . We say that $F$ is
upper semicontinuous (u.s. $c$ . for short) if it is so at every $x\in S_{1}$ ; see Definition 1 in page
41 of [1]. If $S$ is a compact set in $S_{1}$ and $F$ is an u.s. $c$ . compact-valued mapping from $S$

into $S_{2}$ , then the image $F(S)$ under $F$ of $S$ is compact; see Proposition 3 in page 42 of [1].
Based on this fact, we have the following theorem:
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Theorem 2.1. Let $X$ and $Y$ be nonempty compact sets in two topological spaces,
respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex cone $C$ . If a vector-valued
function $f$ : $X\cross Yarrow Z$ is continuous, and if $C$ satisfies the condition (4), then

$[{\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C\supset{\rm Max}_{w}f(x’, Y)\neq\emptyset$ , (6)

$[{\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]-C\supset{\rm Min}_{w}f(X, y’)\neq\emptyset$ (7)

for each $x’\in X$ and $y’\in Y$ .

Proof. From Lemma 2.2, it follows that ${\rm Max}_{w}f(x’, Y)\neq\emptyset$ and ${\rm Min}_{w}f(X, y’)\neq\emptyset$

for each $x’\in X$ and $y’\in Y$ . Also, they are compact sets by Lemma 2.2, and hence the
set-valued mappings $x-{\rm Max}_{w}f(x, Y)$ and $y{\rm Min}_{w}f(X, y)$ are compact-valued.

Next, to prove the upper semicontinuity of the mappings, we consider their graphs. In
the same way as in the proof of Theorem 2.1 in [21], we can verify that the graphs are
closed in $X\cross f(X, Y)$ and $Y\cross f(X, Y)$ , respectively. Since both the mappings map into
the compact set $f(X, Y)$ , they are u.s. $c$ . by Corollary 1 in page 42 of [1]. Hence their
images are compact. Thus, the results (6) and (7) follow from Lemma 2.1. I

This theorem yields a saddle point theorem located in Section 4 of a vector-valued
function as its corollary.

3. Existence of Generalized Saddle Points
Under the previous notation given in Section 1, we will give reasonable definitions for saddle
point and saddle value of a vector-valued function. The origin of such generalization for
saddle point goes to [21] and [22]. Let $Z$ be an ordered t.v. $s$ . with a solid pointed convex
cone $C$ and $f$ : $X\cross Yarrow Z$ a vector-valued function, respectively.

Definition 3.1. (i) A point $(x_{0}, y_{0})$ is said to be a C-saddle point of $f$ with respect
to $X\cross Y$ , if $f(x_{0}, y_{0})\in Maxf(x_{0}, Y)\cap Minf(X, y_{0})$ ;

(ii) A point $(x_{0}, y_{0})$ is said to be a weak C-saddle point of $f$ with respect to $X\cross Y$ ,
if $f(x_{0}, y_{0})\in{\rm Max}_{w}f(x_{0}, Y)\cap{\rm Min}_{w}f(X, y_{0})$ .

For the convenience, we denote the set of all C-saddle points [resp. weak C-saddle points]
of $f$ by $SP(f)$ [resp. $SP_{w}(f)$ ] and the set of all C-saddle values [resp. weak C-saddle values]
of $f$ by $SV(f)$ [resp. $SV_{w}(f)$ ].

We note that any C-saddle point of $f$ is a weak C-saddle point of $f$ obviously. Also, in
the case $C^{0}=C$ , the two concepts are coincident.

Now, we give the definition of C-semicontinuous; see Definition 2.4 in [4].

Definition 3.2. Let $X$ be a topological space and $Z$ an ordered t.v. $s$ . with a pointed
convex cone $C$ . A vector-valued function $f$ : $Xarrow Z$ is said to be C-semicontinuous if
$f^{-1}$ ( $z$ –c1C) is closed in $X$ for each $z\in Z$ .

First of all, we state the first existence theorem for generalized saddle points.
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Theorem 3.1. (See Theorem 3.2.1 in [32].) Let $X$ and $Y$ be nonempty compact sets
in two topological spaces, respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex
cone $C$ . If a vector-valued function $f$ : $X\cross Yarrow Z$ is of the type

$f(x, y)=u(x)+v(y)$

where $u$ and $v$ are C-semicontinuous, then $f$ has at least one weak C-saddle point. More-
over, if $C$ satisfies the condition (4), then $f$ has at least one C-saddle point.

Second, to present the second existence theorem for generalized saddle points, we will
introduce the notion of “semi-saddle point” for a pair of functionals, which is also known
as (Nash equilibrium point” for a two-person nonzero-sum game in game theory.

Definition 3.3. Let two (real-valued) functionals $g_{1}$ and $g_{2}$ be defined on $X\cross Y$ .
(i) A point $(x_{0}, y_{0})$ is said to be a semi-saddle point of $(g_{1}, g_{2})$ with respect to $X\cross Y$ ,

if $g_{1}(x_{0}, y_{0})\leq g_{1}(x, y_{0})$ for any $x\in X$ and $g_{2}(x_{0}, y_{0})\geq g_{2}(x_{0}, y)$ for any $y\in Y$ ;
(ii) A point $(x_{0}, y_{0})$ is said to be a strict semi-saddle point of $(g_{1}, g_{2})$ with respect

to $X\cross Y$ , if $g_{1}(x_{0}, y_{0})<g_{1}(x, y_{0})$ for any $x\in X,$ $x\neq x_{0}$ and $g_{2}(x_{0}, y_{0})>g_{2}(x_{0}, y)$ for any
$y\in Y,$ $y\neq y_{0}$ .

If $g_{1}=g_{2}$ , then a semi- [resp. strict semi-] saddle point $(x_{0}, y_{0})$ of $(g_{1}, g_{2})$ is an ordinary
saddle [resp. strict saddle] point of $g_{1}$ .

Now, we formulate the relationship between C-saddle points [resp. weak C-saddle points]
and strict semi-saddle points [resp. semi-saddle points]. To this end we review Jahn’s
definition (cf. Definition 2.1 in [16]).

Definition 3.4. Let $A$ be a nonempty subset of $Z$ , and $z_{0}$ a vector of $A$ .
(i) A functional $\varphi$ : $Aarrow R$ is called monotonically increasing with respect to the

lower [resp. upper] section on $A$ at $z_{0}$ if $\varphi(z)\leq\varphi(z_{0})$ for any $z\in(\{z_{0}\}-C)\cap A$ [resp.
$\varphi(z)\geq\varphi(z_{0})$ for any $z\in(\{z_{0}\}+C)\cap A$];

(ii) A functional $\varphi$ : $Aarrow R$ is called strictly monoton\’ically increasing with respect
to the lower [resp. upper] section on $A$ at $z_{0}$ if $\varphi(z)<\varphi(z_{0})$ for any $z\in(\{z_{0}\}-intC)\cap A$

[resp. $\varphi(z)>\varphi(z_{0})$ for any $z\in(\{z_{0}\}+intC)\cap A$].

Remark 3.1. Since we assume that intC $\neq\emptyset$ , there exists a nonzero continuous
linear functional $\varphi$ such that $\varphi(x)\geq 0$ for all $x\in C$ ; see page 18 of [15]. We denote the
set of all such continuous linear functionals on $Z$ by $C^{*}$ . Also, each functional $\varphi\in C^{*}$

[resp. $\varphi\in C^{*}\backslash \{0\}$ ] is monotonically [resp. strictly monotonically] increasing with respect
to both the lower section and the upper section on $Z$ at any point of $Z$ ; see Corollary
2.3 in [16]. Hence, there exists at least one nonzero continuous linear functional which is
monotonically and strictly monotonically increasing with respect to both the lower section
and the upper section on $Z$ at any point of $Z$ .

Lemma 3.1. (See Theorem 2.4 in [27].) Let $f$ : $X\cross Yarrow Z$ be a vector-valued function
on $X\cross Y,$ $\varphi_{1}$ and $\varphi_{2}$ functionals from $f(X, Y)$ into $R$ , and a point $(x_{0}, y_{0})\in X\cross Y$ given.

(i) Suppose that the functionals $\varphi_{1}$ and $\varphi_{2}$ are monotonically increasing with respect to
both the lower section and the upper section on $f(X, Y)$ at $f(x_{0}, y_{0})$ , respectively.
If the point $(x_{0}, y_{0})$ is a strict semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ , then $(x_{0}, y_{0})$ is a
C-saddle point of $f$ ;
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(ii) Suppose that the functionals $\varphi_{1}$ and $\varphi_{2}$ are strictly monotonically increasing with
respect to both the lower section and the upper section on $f(X, Y)$ at $f(x_{0}, y_{0})$ ,
respectively. If the point $(x_{0}, y_{0})$ is a semi-saddle point of $(\varphi_{1}of, \varphi_{2}of)$ , then $(x_{0}, y_{0})$

is a weak C-saddle point of $f$ .

In order to establish a general type of existence theorems for generalized saddle points,
we introduce new concepts of convexity and continuity of vector-valued functions.

Definition 3.5. Let $X$ be a convex set in a real vector space and $Z$ an ordered t.v. $s$ .
with a (solid) pointed convex cone $C$ . A vector-valued function $f$ : $Xarrow Z$ is said to be
natura$l$ quasi C-convex on $X$ if

$f(\lambda x_{1}+(1-\lambda)x_{2})\in co\{f(x_{1}), f(x_{2})\}-C$ (8)

for every $x_{1},$ $x_{2}\in X$ and $\lambda\in[0,1]$ , where $coA$ denotes the convex hull of the set $A$ .
The condition (8) is equivalent to the following condition: there exists $\mu\in[0,1]$ such
that $f(\lambda x_{1}+(1-\lambda)x_{2})\leq c\mu f(x_{1})+(1-\mu)f(x_{2}).Also$, it is said to be natural quasi
C-concave on $Xif-f$ is natural quasi C-convex on $X$ .

Remark 3.2. In [28] and [30], we mentioned the relationship among various types
of the convexity generalized to vector-valued functions: we note, in particular, that every
C-convex function is natural quasi C-convex, and that every properly quasi C-convex
function is natural quasi C-convex. (Let $X$ be a convex set in a real vector space. A
vector-valued function $f$ : $Xarrow Z$ is said to be (i) C-convex on $X$ if $f(\lambda x_{1}+(1-\lambda)x_{2})\leq c$

$\lambda f(x_{1})+(1-\lambda)f(x_{2})$ for every $x_{1},$ $x_{2}\in X$ and $\lambda\in[0,1]$ ; (ii) properly quasi C-convex on $X$

if either $f(\lambda x_{1}+(1-\lambda)x_{2})\leq cf(x_{1})$ or $f(\lambda x_{1}+(1-\lambda)x_{2})\leq cf(x_{2})$ for every $x_{1},$ $x_{2}\in X$

and $\lambda\in[0,1].$ )

Lemma 3.2. Let $X$ be a convex set in a real vector space and $Z$ an ordered t.v. $s$ . with
a (solid) pointed convex cone $C$ , and we denote the set of all continuous linear functionals
on $Z$ by $Z^{*}$ . If a mapping $f$ : $Xarrow Z$ is natural quasi C-convex on $X$ then for each $\varphi\in Z^{*}$ ,
the composite mapping $\varphi of$ is a (ordinary) quasi convex function.

Definition 3.6. Let $X$ be a topological space and $Z$ another topological space. A
mapping $f$ : $Xarrow Z$ is said to be demicontinuous on $X$ if $f^{-1}(M)$ $:=\{x\in X|f(x)\in M\}$

is closed in $X$ for each closed half-space $M\subset Z$ .

Remark 3.3. Also, every continuous mapping is demicontinuous obviously.

Lemma 3.3. Let $X$ be a topological space and $Z$ a t.v. $s$ . If a mapping $f$ : $Xarrow Z$ is
demicontinuous on $X$ , then for each $\varphi\in Z^{*}$ , the composite mapping $\varphi of$ is continuous.

Then, we have the second existence theorem of weak C-saddle points, which generalizes
Lemma 3.3 in [29] and Theorem 3.1 in [30], and the proof is based on Hartung’s minimax
theorem; see [13].

Theorem 3.2. Let $X$ and $Y$ be nonempty compact convex sets in two t.v. $s$ . $s$ , re-
spectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex cone $C$ . If a vector-valued
function $f$ : $X\cross Yarrow Z$ satisfies that
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(i) $x-f(x, y)$ is demicontinuous and natural quasi C-convex on $X$ for every $y\in Y$ ;

(ii) $y f(x, y)$ is demicontinuous and natural quasi C-concave on $Y$ for every $x\in X$ ,

then the vector-valued function $f$ has at least one weak C-saddle point.

Proof. Since the pointed convex cone $C$ is solid, it follows from Remark 3.1 that there
exist nonzero functionals $\varphi_{1},$

$\varphi_{2}\in C^{*}\backslash \{0\}$ (possibly $\varphi_{1}=\varphi_{2}$ ). With these functionals we
associate the following sets:

$A_{\alpha}(x;\varphi)$ $:=\{y\in Y|\varphi(f(x, y))\geq\alpha\}$ , (9)

$B_{\beta}(y;\varphi)$ $:=\{x\in X|\varphi(f(x, y))\leq\beta\}$ , (10)

for each $x\in X,$ $y\in Y$ , and $\alpha,$ $\beta\in R$ . By Lemmas 3.2 and 3.3, the sets above are
closed convex subsets in compact convex sets, respectively. Thus, the proof follows from
Theorem 1 in [13] and (ii) of Lemma 3.1. I

Consequently, the following corollary is proved immediately by Remark 3.2 and the
theorem above.

Corollary 3.1. (Lemma 3.3 in [29].) Let $X$ and $Y$ be nonempty compact convex sets
in two t.v. $s$ . $s$ , respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex cone $C$ . If
a vector-valued function $f$ : $X\cross Yarrow Z$ satisfies one of the following conditions:

(i) $X f(x, y)$ is continuous and properly quasi C-convex on $X$ for every $y\in Y$ ,
$y f(x, y)$ is continuous and properly quasi C-concave on $Y$ for every $x\in X$ ;

(ii) $x-f(x, y)$ is continuous and properly quasi C-convex on $X$ for every $y\in Y$ ,
$y f(x, y)$ is continuous and C-concave on $Y$ for every $x\in X$ ;

(iii) $x\simarrow f(x, y)$ is continuous and C-convex on $X$ for every $y\in Y$ ,
$y f(x, y)$ is continuous and properly quasi C-concave on $Y$ for every $x\in X$ ;

(iv) $x\mapsto f(x, y)$ is continuous and C-convex on $X$ for every $y\in Y$ ,
$y\mapsto f(x, y)$ is continuous and C-concave on $Y$ for every $x\in X$ ;

then the vector-valued function $f$ has at least one weak C-saddle point.

At last, we shall give the third existence theorem for generalized saddle points.

Theorem 3.3. (See Theorem 4.1 in [25] and Theorem 3.1 in [26].) Let $X$ and $Y$ be
nonempty compact convex sets in two l.c. $s$ . $s$ , respectively, and $Z$ an ordered t.v. $s$ . with a
solid pointed convex cone $C$ . If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and
if the following sets

$T(y):=\{x\in X|f(x, y)\in{\rm Min}_{w}f(X, y)\}$ , (11)

$U(x):=\{y\in Y|f(x, y)\in{\rm Max}_{w}f(x, Y)\}$ (12)

are convex for every $y\in Y$ and $x\in X$ , respectively, then the vector-valued function $f$ has
at least one weak C-saddle point.
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4. Minimax Theorems for Vector-Valued Functions
In a few of the author’s papers, we have proposed some minimax theorems for vector-valued
functions. In this section, we shall present some of most general versions of such minimax
theorems. To this end, we need the following saddle point theorem of a vector-valued
function, which is a corollary of Theorem 2.1.

Theorem 4.1. (Saddle Point Theorem) Let $X$ and $Y$ be nonempty compact sets
in two topological spaces, respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex
cone $C$ . If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and if $C$ satisfies the
condition (4), then

$[{\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C\supset SV_{w}(f)$,

$[{\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]-C\supset SV_{w}(f)$ .

Hence, if $f$ has a weak C-saddle point $(x_{0}, y_{0})\in X\cross Y$ , then there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
and

$z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq cf(x_{0}, y_{0})$ and $f(x_{0}, y_{0})\leq c^{z_{2}}$ .

Theorem 4.2. (Minimax Theorem I) Let $X$ and $Y$ be nonempty compact sets in
two topological spaces, respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex
cone $C$ . If a vector-valued function $f$ : $X\cross Yarrow Z$ is of the type $f(x, y)=u(x)+v(y)$
where $u$ and $v$ are continuous and if $C$ satisfies the condition (4), then

${\rm Max} \bigcup_{y\in Y}{\rm Min}_{w}f(X, y)\subset[{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)]+C$

and

${\rm Min} \bigcup_{x\in X}{\rm Max}_{w}f(x, Y)\subset[{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)]$ 一 $C$ ,

and then there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
and

$z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq c^{z_{2}}$ .

Proof. In the same way as in the proof of Theorem 3.2 in [25], we can get the proof
$byl$

using Theorem 4.1.

Theorem 4.3. (Minimax Theorem II) Let $X$ and $Y$ be nonempty compact convex
sets in two t.v. $s$ . $s$ , respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex cone
$C$ . If a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and satisfies:
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(i) $xrightarrow f(x, y)$ is natural quasi C-convex on $X$ for every $y\in Y$ ;

(ii) $y-\rangle$ $f(x, y)$ is natural quasi C-concave on $Y$ for every $x\in X$ ,

and if $C$ satisfies the condition (4), then there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
and

$z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq cz_{2}$ .

Proof. The proof follows immediately from Theorems 3.2 and 4.1. 1
Theorem 4.4. (Minimax Theorem III) Let $X$ and $Y$ be nonempty compact convex

sets in two l.c. $s$ . $s$ , respectively, and $Z$ an ordered t.v. $s$ . with a solid pointed convex cone
$C$ . Assume that a vector-valued function $f$ : $X\cross Yarrow Z$ is continuous and that $C$ satisfies
the condition (4). If the sets of (11) and (12) are convex for every $y\in Y$ and $x\in X$ ,
respectively, then there exist

$z_{1} \in{\rm Min}\bigcup_{x\in X}{\rm Max}_{w}f(x, Y)$
and

$z_{2} \in{\rm Max}\bigcup_{y\in Y}{\rm Min}_{w}f(X, y)$

such that $z_{1}\leq cz_{2}$ .

Proof. The proof follows immediately from Theorem 3.3 and Theorem 4.1. 1
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