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可算状態マルコフ連鎖における定常絶対確率の連続性について
SUFFICIENT CONDITIONS FOR CONTINUITY OF

STATIONARY ABSOLUTE PROBABILITIES IN
COUNTABLE STATE MARKOV CHAINS

和歌山大教育 門田 良信 (Yoshinobu Kadota)

1. Introduction

We consider a space $oi$ discrete time stationary Markov chains, which are abbreviated

as (MC’s’ henthforth, with a countable state space. In the earlier paper[8], Kadota

proposed recurrent conditions which establish a Laurent series expansions of the MC.

The present paper has two purposes, defining the similar type conditions on a space

of MC’s. The first purpose $i_{t)}\neg$ to examine the conditions by comparing with each other

or by finding counter examples. The second is to show that those conditions assure

continuity of cofficients of the Laurent series on a parameter space.

Our problems have been considered in the theory of Markov decision processes with

average and sensitive discount criteria. The Laurent series expansion were first obtained

in a complete sense by Miller and $\backslash ^{r}einott[10]$ and Veinott[12] in a finite state $spac\hat{c}$ .

When the state space is countable, the series does not exist in general. It requires some

recurrence conditions. Wijngaard[13] and Dietz and Nallaw[3] have obtained the series,

using a quasi-compact condition for transition probabilities. Kadota[7] has obtained

it, using a Do\‘eblin condition which is equivalent to the quasi-compactness. Zijm[14]

shows the existence and continuity of the first two terms of the serieses, in tha case that

all recurrent classes of the MC’s are aperiodic. Our conditions are so loose that those
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results are contained as special cases and they admit that each MC have countably

manv periodic recurrent classes. They supply a space of MC’s to the $cond\iota tons$ of

Dekker and Hordijk[2].

We now state our model. Let a state spase $S$ be a non-empty countable set. A MC

$1S$ denoted by $it^{)}s$ transition probabilities $\{p_{ij}; i,j\in S\}$ , where $p_{ij}$ is the conditional

probability that a system moves from $i\in S$ to $j\in S$ in a unit time. We assume

throughout the paper that $0\leqq p_{ij}\leqq 1$ for any $i,j\in S$ and that $\sum_{f\in s}p;;=1$ for

any $i\in S$ . Let $p_{i^{1}j}=p_{\dot{\iota}j}$ and $p_{ij}^{n}= \sum_{k\in S}p_{ik}p_{kj}^{n-1}$ for $i,j\in S$ and $n=1,2,$ $\ldots$ . We

denote by $P$ “ the Markov matrix whose (i,j)-component is given by $p_{jj}^{n}$ . If $n=0$, let

$P^{0}=I$ the unit matrix. Assoclated $w\iota thP^{n}$ . a transition probabilitv function is given

by $p^{n}(i, E)= \sum_{jE}p^{n}$ for any $i\in S$ and $E\subset S$ .

From the mean ergodic theorem of the MC, there exists $p_{ij}^{*}= \lim_{narrow\infty}(\sum_{k=1}^{n}$

$p_{ij}^{k})/n$ for any $i,$ $j\in S$ . Denote by $P^{\cdot}$ the matrix whose $(i, j)$-component is given

by $p_{1i}$ . Then we have $PP^{*}=PP=P^{*}=(P^{*})^{2}$ . Associated with $P’$ , let

$p^{*}(i, E)= \lim\inf_{narrow\infty}(\sum_{k=1}^{n}p^{k}(i, E))/n$ for any $i\in S$ and $E\subset S$ .

We need notation related to the ergodic theory of the MC’s. A MC separates $S$

into the subsets $R$ of recurrent states and $T$ of transient states. Then $R$ consists of

recurrent classes $\{E_{a}; a\in A\}$ . Each recurrent class $E_{a}$ is positive or null. A recurrent

class $E_{a}$ is divided into penodic classes ${}_{a}C_{1},{}_{a}C_{2},$ $\ldots,{}_{a}C_{d_{a}}$ . We call $d_{a}$ a period of $E_{a}$ .

If $d_{a}=1$ , we call $E_{a}$ aperiodic. A subset $E\subset S$ is called closed $1fp(i, E)=1$ for any

$i\in E$ . If $E$ is closed, we can consider a sub-MC $\{p_{\iota_{J}}, i, j\in E\}$ . Then we have $d_{a}$ -step

sub-MC’s $\{p_{\dot{\iota}j^{\alpha}}^{d} ; i, j\in {}_{a}C_{r}\}$ for $r=1,2..$ . . , $d_{a}$ . Since $\{p_{\iota j^{a}}^{d} ; i,j\in {}_{a}C_{r}\}$ is aperiodic, we
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have $\lim_{n}arrow\infty P_{ij}^{nd_{a}}=p_{ij^{Q}}^{d*}=p_{i}^{d_{Q}}$ for $i\in {}_{a}C_{r}$ . We define $p^{d_{a}}(i, E)$ from $p_{i}^{d_{j^{a}}}$

‘ by $\lim$ inf

similar to $p(i, E)$ . If $d=1.c.m.\{d_{a} ; a\in A\}$ exists, let $\{p_{j}^{d_{j}} ; i,j\in S\}$ be a d-step MC.

Note that $p^{d}{}^{t}(i, E)$ is also defined for $i\in S$ and $E\subset S$ and that $p^{d*}(i, E)=p^{d_{a}}(i, E)$

for any $i\in {}_{a}C_{\alpha}$ and $E\subset S$ .

Let $A=(a_{ij} ; i.j\in S)$ be a countable-dimensional matrix. Define the norm of $A$

by $||A||= \sup\{\sum_{j\in S}|a_{ij}|;i\in S\}$ . If 11 $A||<\infty,$ $A$ is called bounded. We denote

by $\sigma(S)$ the set of bounded matrices. Note that if $A,$ $B\in\sigma(S)$ , the matrix product

$AB\in\sigma(S)$ and that 11 AB $||\leqq\Vert A\Vert\Vert B||$ .

If $p^{*}(i, E)= \sum_{;\epsilon E}p_{ij}$ for any $E\subset S$ , then $P^{n}-P^{*}\in\sigma(S)$ . Denoting $S(i)_{n}^{+}=\{j\in$

$S;p(f)_{jj}^{n}\geqq p_{ij}^{*}\}$ , we have

II $P^{n}-P^{\cdot}||=2 \sup_{i\in S}\{p^{n}(i, S(i)_{n}^{+})-p^{r}(i, S(i)_{n}^{+})\}$.

For the sub-MC’s $\{p_{\iota j}, i,j\in R\},$ $\{p;_{j} ; i, j\in E_{a}\}$ and $\{p_{ij^{a}}^{d} ; i,j\in {}_{a}C_{\alpha}\}$ , we denote their

norms by 1I $\Vert_{R}$ , Il $\Vert_{a}$ and II $||_{a,\alpha}$ , respectively. For instance, $\Vert P^{nd_{a}}-P^{\cdot}||_{a,\alpha}=$

$\sup\{\sum_{i\epsilon {}_{a}C_{\alpha}}|p_{\iota j}^{nd_{a}}-p_{\iota j}|;i\in {}_{a}C_{\alpha}\}$. Note that $||A||_{a,\alpha}\leqq||A||_{a}\leqq||A||R\leqq||A||$ for

any $A\in\sigma(S)$ .

We sometimes denote $p^{n}(i, E)-p(\dot{s}, E)$ by $(p^{n}-p’)(i, E)$ for simplicity. For $A=$

$(a_{1f}),$ $B=(b_{ij})\in\sigma(S)$ , We often denote $\sum_{i\in s^{\urcorner}}a_{ij}b(j, E)$ by ab$(i, E)$ .

We are mainly concerned with a space of MC’s, denoting $\{P(f);f\in F\}$ with a

parameter $f$ in a non-empty set $F$ . The definitions and notation above are applied

to each $P(f)$ . Then, we should denote $P^{n},$
$p_{lj},$ $P,$ $R,$ $T,$ $E_{a},$ $A,{}_{a}C_{r},$ $d_{a},$ $p^{d_{a}}$ ,

$p^{d}$ , etc, for any $f\in F$ by $P(f)^{n},$ $p(f)_{ij}^{*},$ $P(f),$ $R(f),$ $T(f),$ $E_{a}(f),$ $A(f),{}_{a}C(f)_{r}$ ,

$d(f)_{a},$ $p(f)^{d_{d}},$ $p(f)^{d}$ , etc, respectively. But those notation is bothersome, then we
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often omit the notation $f$ . For instance, we denote $R(f)p(f)^{nd(j)_{a}}(i, E\cap E(f)_{a})$ by

$Rp(f)^{nd_{4}}(i, E\cap E_{a})$ .

2. Conditions and results.

In this section we set up our conditions and state our results. The proofs of them

are explalned in the next section.

Condition (A). (A-1) For a family of MC’s, there exist a positive integer $N$ , a

positive number 6 and a family of subsets $K(f)\subset S$ satisfying the following conditions.

(A-l-l) $p(f)^{N}(i, K(f))\geqq\delta>0$ for any $i\in S$ and $f\in F$ , where $N$ and $\delta$ are

constants independent of $i\in S$ and $f\in F$ .

(A-1-2) $K(f)\cap T(f)=\emptyset$ for any $f\in F$ .

(A-1-3) Each ${}_{a}C(f)_{\alpha}\cap K(f)$ consists of only one state for $a\in A,$ $\alpha=0,$ 1, )

$d_{a}-1$ and $f\in F$ .

(A-2) $\sup\{d(f)_{a}, a\in A(f), f\in F\}<\infty$ .

From (A-2) there is a least common multiplier of all $d(f)_{a}$ . We denote it by $d$.

According to Hordijk[6], we say a MC satisfies the Do\‘eblin condition, if there are an

integer $N\geqq 1$ , a number $S>0$ and a finite set $K$ such that $p^{N}(i, K)\geqq\delta$ for any $i\in S$ .

A family of MC’s satisfies simultaneous Do\‘eblin conditio$ns(simD)$ if evry MC satisfies

the Do\‘eblin condition and if $N,$ $\delta,$ $K$ are taken independent of $f\in F$ . Condition (A)

does not assume $P(f)$ satisfies Do\‘eblin condotion, since $K(f)$ is not necessarily finite.

Condition (B). (B-1) The same condition with (A-2).
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(B-2) There exist a positive integer $N$ and $\epsilon_{0}>0$ such that

$|p(f)^{Nd}(i, E)-p(f)^{d*}(i, E)| \leqq\frac{1}{2}(1-\epsilon_{0})$

for all $i\in S,$ $E\subset S$ and $f\in F$ .

Condition (C). There exists a constant $B>0$ such that

$| \sum_{k=1}^{n}\{p(f)^{k}(i, E)-p(f)^{*}(i, E)\}|\leqq B$

for all $i\in S,$ $E\subset S,$ $f\in F$ and $n=1_{\rangle}2,$ $\ldots$ .

Condition (D). There exists $\lim_{narrow\infty}(\sum_{k=1}^{n}p(f)^{k}(i, E))/n=p(f)(i, E)$

uniformly in $i\in S,$ $E\subset S$ , and in $f\in F$ .

It is shown that Condition (D) implies (A-2) and $\sum_{jS}p_{\dot{\iota}}=1$ for any $i\in S$ and

$f\in F$ . Next Theorem 1 gives the relations of Conditions (A) $\sim(D)$ . Corollary 2

gives equivalent conditions to (B). If $d=1$ , the (a-3) of Corollary 2 is reduced to to the

condition used by [14].

Theorem 1. Condition $(A)im$plies $(B),$ ($B\rangle$ implies $(C)$, and $(C)$ implies $(D)$ .

Corollary 2. Supposes Condition (B-l) holds. Then,

(a) following conditions are $eq$ uivalen $t$ .

(a-l) There are positive integers $1lf,$ $N$ an $d$ a positi $ve$ number $\epsilon_{0}$ satisfyin$g$ that

$\sup_{i\epsilon\tau}p(f)^{Af}(i, T(f))\leqq 1-\epsilon_{0}$ for all $f\in F$ and that $\Vert P(f)^{Nd}-P(f)^{d}$
‘

$||_{\alpha}\leqq$

$1-\epsilon_{0}$ for all $f\in F,$ $a\in A(f)$ an$d\alpha=0,1,$
$\ldots,$

$d_{a}-1$ .

(a-2) Condition (B-2).

(a-3) There exists $\lim_{narrow\infty}||P(f)^{nd}-P(f)^{d}$ ‘ $\Vert=0u$niformly in $f\in F$ .

(b) If (a) holds, there exists a positi$ve$ number $BS$tlch that $\sum_{n}^{\infty_{=0}}\Vert\sum_{r=0}^{d-1}p(f)^{r}$
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$(P(f)^{nd}-P(f))||\leqq C$ . $con$vergin$g$ uniformly in $f\in F$ .

We give a Laurent series expansion which is seen in [8]. Let any $f\in F$ be fixed.

Then, we omit the notation $f$ . For $0\leqq\beta<1$ , let

$H_{\beta}(i, E)= \sum_{n=0}^{\infty}(p^{n}(i, E)-p(i, E))\beta^{n}$ .

If Condition (C) holds, there exists $H(i, E)= \lim_{\betaarrow 1+}H_{\beta}(i, E)$ for any $i\in S$ and

$E\subset S$ . We denote $H_{ij}=H(i, \{j\})$ for $j\in S$ . Then it holds that $H(i, E)= \sum_{;\epsilon}{}_{E}H_{ij}$

for any $i\in S$ and $E\subset S$ and that $||H||\leqq 2B$ . Letting $\beta=1/(1+\rho)$ for $0<\beta<1$ ,

denote $\beta H_{\beta}$ by $H_{\rho}$ and $H$ by $H_{0}= \lim_{\rhoarrow 0+}H_{\rho}$ .

Theorem 3. Suppose $Condi$ tion $(C)$ holds.

(a) Let $\rho_{0}>0$ be $\rho_{0}||H||<1$ . Then,

$\sum_{n=0}^{\infty}\beta^{n+1}p^{n}(i, E)=\frac{\perp}{\rho}p(3, E)+\sum_{n=0}^{\infty}(-p)^{n}H^{n+1}(i,E)$ (1)

for any $i\in S$ and $E\subset S$ an$d0<\rho\leqq\rho_{0}$ .

$(b)$ For $0\leqq\rho<\infty_{2}H_{\rho}$ satisfies uniq $uly$ in $\sigma(S)$ that $(I-\beta P)H_{\rho}=H,(I-\beta P)$

$=\beta(I-\beta P^{\cdot})$ and that $PH_{p}=H_{\rho}P^{\cdot}=O$ , where $O$ is the zero matrix whose

components are all zero.

In order to show continuity of the coefficients on the right of (1), we assume $F$ is a

subset of a metric space (X, dist), where dist $(f, g)$ is a metric from $(f, g)\in XxX$ to

the set of real numbers. We study two kinds of continuity conditions for the transition

probabilities.

Condition(I). For any $i,$ $j\in S,$ $p(f)_{\iota j}$ is continious in $F\in F$ .

Condition(II). The Markov matrix $P(f)$ is continuous on $F$ with respect to the
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norm $||$ . $||$ . Namely, $\lim_{garrow f}$ Il $P(g)-P(f)||=0$ for any $f\in F$ .

It is clear that Condition (II) implies Condition (I). Really, Condition (II) asserts

uniform continuity of $p(f)(i, E)$ in $i\in S$ and $E\subset S$ .

Lemma 4. (a) $Su$ppose $Con$dition (I) holds. Then $p(f)^{n}(i, E)$ is $con$ tinuous uni-

formly in $E\subset S$ for any $i\in S$ and $n=1,2,$ $\ldots$ .

$(b)$ Suppose $Condi$tion (II) holds. Then $P(f)^{n}$ is continuous on $F$ with respect to

the norm.

Theorem 5. Suppose $Condi$ tion $(D)$ holds.

(a) If $\{P(f);f\in F\}$ satisfies $c_{011}di$tion (I), then $p(f)^{*}(i, E)$ is contin $uo$ us on $F$

uniformly in $E\subset S$ for any $i\in S$ .

$(b)$ If $\{P(f);f\in F\}$ satisfies $Con$dition (II), then $p(f)$ is contin $uo$ us on $Fwi$th

respect to the norm.

Theorem 6. Suppose Condition $(C)$ holds.

$(a)$ If $\{P(f);f\in F\}$ satisfies Condi tion (I), then $H(f)^{n}(i, E)$ is continuous on $F$

uniformly in E C $S$ for any $i\in S$ and $n=1.2,$ $\ldots$ .

$(b)$ ff $\{P(f);f\in F\}$ satisfies Condition (II), then $H(f)^{n}$ is continuous on $F$ with

respect tothe norm for $n=1,2,$ $\ldots$ .

Note that if Condition (C) and Condition (I) (or (II)) hold, then, any MC $P(f)$ has

the Laurnt series of which all the coefficients are continuous in the sense of (a) (or $(b)$ )

in Theorem 6 and 6.

3. Lemmas.

This section gives Lemmas and short comments for obtaining the results in section
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2.

Lemma 1 of [6], $wh_{1}ch$ shows equivalent conditions to $\sum_{i\epsilon s}p_{ij}=1$ for $i\in S$ , play a

fundamental role in our arguments. Next Lemma 7 gives an ergodic theorem. Lemma

8 considers properties of the norm.

Lemma 7. Suppose (A-2) and $\sum_{j\in S}p_{ij}=1$ for an.$vi\in S$ . Then,

$(a)$ $p(i, E)= \frac{1}{d}\sum_{r=0}^{d-1}p^{r}p^{d}(i, E)$ and

$(b)$ $\sum_{r=0}^{d-1}p^{r}(p^{nd}-p^{*})(i, E)=\sum_{r=0}^{d-1}p^{r}(p^{nd}-p^{d*})(\iota’, E)$ for an$yi\in S$ an$dE\subset S$ ,

Lemma 8. Suppose the $s$am$econ$ditions with Le$mma7$. Then, we have following

equalities and in$equ$alities.

$(a)$ $|| \sum_{r=0}^{d-1}P^{r}(P^{nd}-P^{*})||\leq d||P^{nd}-P^{d}||$ for $n=0,$ $l,$ $2,$
$\ldots$ .

$(b)$ $||P^{nd}-P^{d*}||_{a}= \max\{||P^{nd}-P^{d}||_{a,\alpha} ; \alpha=0,1, \ldots, d_{a}-1\}$ and

$||P^{nd}-P^{d}||R= \sup\{||P^{nd}-P^{d}||_{a)}a\in A\}$ .

$(c)$ For any $n>m\geq 1_{f}$ it holds that

$||P^{nd}-P^{d}|| \leq 4\sup_{\dot{|}\epsilon\tau}p^{md}(i, T)+\{\sup_{i\in T}(1-p^{md}(i, T))\}\Vert P^{(n-m)d}-P^{d*}||_{R}$ .

Next Lemma 9 is an application of Case (b) in Doob[4, p197] to the space of MC’s.

It can be proved in the same manner as that of [4]. (See also the proof of Theorem 2.4

in A. Federgruen, A. Hordijk and H. C. Tijms[5] and Lemma 2 of [8].)

Lemma 9. Suppose Condition $(A)$ holds. Then there exist a positive integer $N$

an$d\epsilon_{0}>0$ such that $||P(f)^{Nd}-P(f)^{d}||R\leq 1-\epsilon_{0}$ for any $f\in F$ . $d$enotes the norm

$||\cdot||$ taken on the restricted d-step $MC\{p_{j}^{d_{j}} ; i,j\in R\}$ .

Lemmas 7, 8, 9 are used in the proofs of Theorem 1, 3 and Corollary 2. We omit

the proof of Theorem 3, since it is lengthy. Theorem 5(a) is obtained using the ana-
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lytic theorem that if a sequence of continuous functions unlformly converges, the limit

function is continuous. To prove the continuity of $H(f)$ in Theorem 6(a), we need next

Lemma 10 which follows from Theorem 5.

Lemma 10. Suppose Condition $(C)$ holds. Then,

$H(i, E)= \lim_{Narrow\infty}\frac{1}{N+1}\sum_{n=0}^{N}\sum_{k=0}^{n}\{p^{k}(i, E)-p(i\rangle E)\}$.

The $con$ vergence is $uni$form $bo$ th in $i\in S$ an$d$ in E C $S$ .

The statements (b) in Theorem 5, 6 can be proved similar to (a) in them.

4. Examples.

Even when $S$ is finite, there exists a space of MC’s where $P(f)^{*}$ is discontinuous.

Among them the following Example 1, 2 have simple structure. Example 1 is seen in

Schweitzer[ll] and Example 2 is seen $\iota n$ Wijngaard[13] and Zijm[14].

Example 1. Let $S=\{1,2\}$ and $F=[0,1]x[0,1]$ , where $[0,1]$ is the closed interval

of real numbers. For any $f=(p, q)\in F$ , let $p(f)_{11}=1-p,$ $p(f)_{12}=p,$ $p(f)_{21}=q$ ,

$p(f)_{22}=1-q$ .

For $0=(0,0)\in F,$ $P(0)=P(0)=I$ and $H(O)=O$ the zero-matrix. If $p+q>0$ , the

MC makes one recurrent class for each $j\in F$ . Note that any subset $K(f)\subset S$ does not

satisfy both Condition (A-1-2) and (A-l-l). If $p+q>0$ , we have $p(f)_{\iota 1}^{\tau}=q/(p+q)$

and $p(f)_{\dot{\iota}2}=p/(p+q)$ for $i=1,2$ . It is clear that $\lim_{narrow\infty}P(f_{n})$ $\neq P(0)$ for

any sequence $\{f_{n}\}$ converging to $0\in F$ . On the other-hand, it always holds that

11 $\sum_{k=0}^{n}(P(f)^{k}-P(f))||\leqq B(f)$ for any $f\in F$ , when $S$ is finite. We have $H(f)_{11}=$

$-H(f)_{12}=p/(p+q)^{2}$ and $H(f)_{21}=-H(f)_{22}=-q/(p+q)^{2}$ . Let $h=(p_{n}, q_{n})$
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be a sequence converging $0$ satisfying $p_{n}\geqq q_{n}$ . Then we have $\lim_{narrow\infty}H(f_{n})_{11}=$

$- \lim_{narrow\infty}H(f_{n})_{12}=\infty$ , which contradicts to Condition (C).

Example 2. Let $S=\{1_{7}2_{t}3\}$ and $F=[0, (-1+\sqrt{5})/2)]$ , the closed interval. For

any $f=p\in F$ . let $p(f)_{11}=1-p-p^{2},$ $p(f)_{12}=p,$ $p(f)_{13}=p^{2},$ $p(f)_{22}=p(f)_{33}=1$

and $p(f)_{21}=p(f)_{23}=p(f)_{31}=p(f)_{32}=0$ .

If $f=p=0,$ $P(0)=P(O)^{*}=I$ and $H(O)=0$ . If $f=p\neq 0$ , the states 2, 3

make recurrent classes respectively and the state 1 is a transient. Note that any subset

$K(f)\subset S$ does not satisfies both Condition (A-1-3) and (A-l-l). When $f=p\neq 0$ , we

have $p(f)_{12}^{*}=1/(1+p),$ $p(f)i_{3}=p/(1+p)$ and $p(f)_{22}^{*}=p(f)_{33}=1$ and other $p(f)_{ij}$ are

all zero. We have $H(f)_{11}=1/p(1+p),$ $H(f)_{12}=-1/p(1+p)^{2},$ $H(f)_{13}=-1/(1+p)^{2}$

and other components are all zero. Then $\lim_{parrow 0}H(f)_{11}=-\lim_{parrow 0}H(f)_{12}=\infty$ ,

which contradicts to Condition (C).
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