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SUFFICIENT CONDITIONS FOR CONTINUITY OF
STATIONARY ABSOLUTE PROBABILITIES IN
COUNTABLE STATE MARKOV CHAINS

iﬂ%&% Ne RiE (Yoshinobu Kadota)

1. Introduction

We consider a space of discrete time stationary Markov chains, which are abbreviated
as “MC’s” henthforth, with a countable state space. In the earlier paper[8], Kadota
proposed recurrent conditions which establish a Laurent series expansions of the MC.
The present paper has two pﬁrposes, defining the similar type conditions on a space
of MC’s. The first purpose i1s to examine the conditions by comparing with each other
or by finding counter examples. The second is to show that those conditions assure
continuity of cofficients of the Laurent series on a parameter space.

Our problems have been considered in the theory of Markov decision processes with
average and sensiti;le discount criteria. The Laurent series expansion were first obtained
in a complete sense by Miller and Veinott[10] and Veinott[12] in a finite state space.
When the state épace is countable, the series does not exist in general. It requires some
recurrence conditions. Wijngaard[13] and Dietz and Nallaw[3] have obtained the series,
using a quasi-compact condition for transition probabilities. Kadota[7] has obtained
it, using a Doéblin condition which is equivalent to the quasi-compactness. Zijm[14]
shows the existence and continuity of the first two terms of the serieses, in tha case that

all recurrent classes of the MC’s are aperiodic. Our conditions are so loose that those
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results are contained as special cases and they admit that each MC have countably
many periodic recurrent classes. They supply a space of MC’s to the conditons of
Dekker and Hordijk[2].

We now state our model. Let a state spase S be a non-empty countable set. A MC
is denoted by it’s transition probabilities {p;;;4,j € S}, where p;; is the conditional
probability that a system moves from : € S to 57 € § in a unmit time. We assume
throughout the paper that 0 £ p;; £ 1 for any ¢,j € § and that 3- o pi; = 1 for
any ¢ € S. Let p}; = pij and pf; = Zkesp;kpz;'l fori,j € Sandn = 1,2,.... We
denote by P" the Markov matrix whose (i,j)-component is given by pj;. If n =0, let
P° = I the unit matrix. Associated with P", a transition probability function is given
by p" (i, E) = Z;‘EE pl; forany i € Sand EC §.

From the mean ergodic theorem of the MC, there exists p;; = limpsoo(Y =g
pf!- )/n for any ¢, j € S. Denote by P* the matrix whose (i, j)-component is given
by p!;. Then we have PP* = P*P = P* = (P*)’. Associated with P*, let
p*(i,E) = liminfp—oeo(Y 3=, P* (s, E))/n for any i € S and E C S.

We need notation related to the ergodic theory of the MC’s. A MC separates S
into the subsets R of recurrent states and T of transient states. Then R consists of
recurrent classes {F,;a € A}. Each recurrent class E, is positive or null. A recurrent
class E, is divided into periodic classes Cy,4Cs,...,oCq,. We call dg a peri>od of E,.
If d; = 1, we call E, aperiodic. A subset E C S is called closed if p(i, E) = 1 for any
1 € E. If E is closed, we can consider a sub-MC {p,,;¢,7 € E}. Then we have d,-step

sub-MC'’s {p:-l;;i,j €qCr}forr=12,...,d,. Since {p:i]-“; i,j € «Cy} is aperiodic, we
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have limp, pf‘jd“ = pff* = pf“‘ for i € ,C,. We define p?+*(i, E) from pf;' by lim inf
similar to p*(¢, E). f d = L.c.m.{d, ; a € A} exists, let {p;’)»;z’,j € S} be a d-step MC.
Note that p?*(i, E) is also defined for i € § and E C S and that pd‘(z',E) = b"‘*"(i,E)
forany 1 € ,Co and E C S.

Let A = (a,j;4,5 € S) be a countable-dimensional matrix. Define the norm of A
by || 4 |=sup{Y,;es | @ij ;i € S}. H || A ||< o0, A4 is called bounded. We denote
by o(S) the set of bounded matrices. Note that if A, B € ¢(S), the matrix product
AB € o(S) and that || AB ||S|| A |lll B |I-

If p*(+,E) = 3 ;cppi; forany E C S, then P* — P* € o(S). Denoting S(i)F = {j €
S; p(f)i; 2 pi;}, we have

I P™ = P" ||= 2sup{p™ (i, SG)T) — p* (5, S}
For the sub-MC’s {p;j;¢,7 € R}, {pij;¢,] € E,} and‘{pfj“;i,j € :Cqo}, we denote their
norms by || - g, || - fla and || - [l¢,a, respectively. For instance, || P"4: — P* ||, o=
sup{Tye.c. | P = £33 € Ca}. Note that || 4 aag]l A <]l 4 [r<]| 4 | for
any A € o(S5).

We sometimes denote p*(¢, E) — p*(¢, E) by (p® — p*)(3, E) for simplicity. For A =
(a;5), B = (b;j) € o(S), We often denote Ejes a;;b(4, E) by ab(s, E).

We are mainly concerned with a space of MC's, denoting {P(f);f € F} with a
parameter f in a non-empty set F. The definitions and notation above are applied
to each P(f). Then, we should denote P", p, P*, R, T,VE.,, A, .C,, dg, p**,

p™*, ete, for any f € F by P(f)", p(f)f, P(f)*, R(f), T(f), Ea(f), Alf), «C(f)r,

d(f)a, p(f)4=*, p(f)?*, etc, respectively. But those notation is bothersome, then we
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often omit the notation f. For instance, we denote R(f)p(f)"d(f)" (:, ENE(f)) by

rP(f)% (4, E N E,).

2. Conditions and results.

In this section we set up our conditions and state our results. The proofs of them
are explained in the next section.

Condition (A). (A-1) For a family of MC'’s, there exist a positive integer N, a
positive number 6 and a family of subsets K(f) C S satisfying the following conditions.

(A-1-1) p(AN(,K(f)) 2 6§ > 0 for any ¢ € S and f € F, where N and § are
constants independent of : € S and f € F.

(A-1-2) K(f/yNT(f)=0 forany f € F.

(A-1-3) Each ,C(f)o N K(f) consists of only one state for a € A, a=0, 1,...,
d; —1and fE€F.

(A-2) sup{d(f)s; a € A(f), f € F} < 0.

From (A-2) there is a least common multiplier of all d(f),. We denote it by d.
According to Hordijk[6], we say a MC satisfies the Doceblin cond:’tibn, if there are an
integer N 2 1, a number § > 0 and a finite set K such that p¥(;, K) 2 § forany i € S.
A family of MC'’s satisfies simultaneous Doéblin conditions (sim D) if evry MC satisfies
the Doéblin condition and if N, §, K are taken independent of f € F. Condition (A)
does not assume P(f) satisfies Doeblin condotion, since K (f) is not necessarily finite.

Condition (B). (B-1) The same condition with (A-2).
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(B-2) There exist a positive integer N and €o > 0 such that

| LYY, B) = p()* (5, B) IS (1 o)

forall:€ S, ECSand fEF.
Condition (C). There exists a constant B > 0 such that
| kz{p(f)*(i,E) ~p(/)E}ISB
=1
foralli:€e S,ECS,f€Fandn=12,....
Condition (D). There exists limy—oo(Y 51 P(F)*(5, E))/n = p(£)* (i, E)
uniformly in ¢ €S, ECS, andin f € F.
It is shown that Condition (D) implies (A-2) and 3.5 p; = 1 for any ¢ € § and
f € F. Next Theorem 1 gives the relations of Conditions (A} ~ (D). Corollary 2
gives equivalent conditions to (B). If d=1, the (a-3) of Corollary 2 is reduced to to the
condition used by [14].
Theorem 1. Condition (A} implies (B), (B) implies (C), and (C) implies (D).
Corollary 2. S‘upposes Condition (B-1) holds. Then,
(a) following conditions are equivalent.
(a-1) There are positive integers M, N and a positive number ¢, satisfying that
supier P(AM(i, T(f)) € 1 - o for all f € F and that || P(F)¥ = P(f)* ||S
l—¢oforall feF,a€ A(f)and a=0,1,...,d, — 1.
(a-2) Condition (B-2).
(a-3) There exists lim,_, o || P(f)*¢ — P(f)¢* ||= 0 uniformly in f € F.

(b) If (a) holds, there exists a positive number B such that ) .., || Ef;é p(f)
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(P(f)* — P(£)*) ||€ C, converging uniformly in f € F.
We give a Laurent series expansion which is seen in [8]. Let any ‘f € F be fixed.

Then, we omit the notation f. For 0 £ 8 < 1, let
Hy(i,E) = Z(p”(i,E) —p*(s, E))B".
n=0

If Condition (C) holds, there exists H(3, E) = limg—,14 Hg(s, E) for any ¢« € S and
E C S. We denote H;; = H(i,{j}) for j € S. Then it holds that H(s, E) = ziEEHif
for any i € S and E C S and that | H ||S 2B. Letting 3 = 1/(1+ p) for 0 < 8 < 1,
denote 3Hg by H, and H by Hg = lim,_.o4 H,.

Theorem 3. Suppose Condition (C) holds.

(a) Let pg > 0 be po || H ||< 1. Then,

Z an+1pn(Z-1E) - %)p*(Z,E) + Z(_p)an-Fl(z',E) (1)

n=0 n=0

foranyi€ Sand EC S and 0 < p £ pq.

(b) For 0 £ p < oo, H, satisfies uniquly in o(S) that (I — SP)H, = H,(I — 3P)
= B(I — BP*) and that P*H, = H,P* = O, where O is the zero matrix whose
components are all zero.

In order to show continuity of the coefficients on the right of (1), we assume F is a
subset of a metric space ( X, dist ), where dist(f, g) is a metric from (f, g)€ X x X to
the set of real numbers. We study two kinds of continuity conditions for the transition
probabilities.

Condition(I). For any ¢, j € S, p(f);, is continious in F € F.

Condition(II). The Markov matrix P(f) is continuous on F with respect to the
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norm || . ||. Namely, limg—¢ || P(g) — P(f) ||= 0 for any f € F.

It is clear that Condition (II) implies Condition (I). Really, Condition (.II) asserts
uniform continuity of p(f)(¢, E)ins € S and E C §.

Lemma 4. (a} Suppose Condition (I} holds. Then p(f)"(s, E) is continuous uni-
formly in EC S forany+€ Sandn=1,2,....

(b) Suppose Condition (II) holds. Then P(f)" is continuous on F with respect to
the norm.

Theorem 5. Suppose Condition (D) holds.

(a) If {P(f);f € F} satisfies Condition (I}, then p(f)*(3, E) is continuous on F
uniformly in E C S for any 1 € S.

(b) If {P(f); f € F} satisfies Condition (II), then p(f)* is continuous on F with
respect to the norm.

Theorem 6. Suppose Condition (C) holds.

(a) If {P(f), f € F} satisfies Condition (I), then H(f)"(:,E) is continuous on F
uniformly in E C S foranyi1 € Sandn=1,2,....

(b) K {P(f); f € F} satisfies Condition (II)}, then H(f)* is continuous on F with
respect tothe norm forn=1,2,....

Note that if Condition (C) and Condition (I) (or (II)) hold, then, any MC P(f) has
the Laurnt series of which all the coefficients are continuous in the sense of (a) (or (b))

in Theorem 5 and 6.

3. Lemmas.

This section gives Lemmas and short comments for obtaining the results in section
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Lemma 1 of [8], which shows equivalent conditions to Zjespi‘j =1for: € S, play a
fundamental role in our arguments. Next Lemma 7 gives an ergodic theorem. Lemma
8 considers properties of the norm.

Lemma 7. Suppose (A-2) and 3 csp; = 1 for any i € S. Then,

(a) p*(G,E)=%TiZop p™(i,E)  and

(b) EiZep (" =p*)i,E) = LiZo P (p"! = p™ )(i, E) forany i € S and E C S,

Lemma 8. Suppose the same conditions with Lemma 7. Then, we have following
equalities and inequalities.

(a) iz Pr(Prd—PY)|<d|| P4 —P%* | forn=0,1,2,....

(b) || P*¢ — P ||a= max{|| P"? — P** ||sa;a=0,1,...,ds —1} and

| P4 = P ||r= sup{|| P"! = P* ||s;a € A}.
(c) For any n > m > 1, it holds that
| P — P4 ||< 45upp™4(i, T) + fsup(1 — p™(i, T))} | P*=m4 — Pé* |
€T i€T

Next Lemma 9 is an application of Case (b) in Doob[4, p197] to the space of MC's.
It can be proved in the same manner as that of [4]. (See also the proof of Theorem 2.4
in A. Federgruen, A. Hordijk and H. C. Tijms[5] and Lemma 2 of [8])

Lemma 9. Suppose Condition (A) holds. Then there exist a positive integer N
and eg > 0 such that || P(f)N¢ — P(f)* ||r< 1 —¢o for any f € F. denotes the norm
| - ]| taken on the restricted d-step MC {pfj ;i,j € R}.

Lemmas 7, 8, 9 are used in the proofs of Theorem 1, 3 and Corollary 2. We omit

the proof of Theorem 3, since it is lengthy. Theorem 5(a) is obtained using the ana-
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lytic theorem that if a sequence of continuous functions uniformly converges, the limit
function is continuous. To prove the continuity of H{f) in Theorem 6(a), we need next
Lemma 10 which follows from Theorem 5.

Lemma 10. Suppose Condition (C) holds. Then, .

N n )
HG,E) = lim —— Y Y {#*(i, E) = p*(i, E)}.
N+1

N—=oo
n=0k=0

The convergence is uniform both ini € S andin E C §S.

The statements (b) in Theorem 5, 6 can be proved similar to (a) in them.

4. Examples.

* 1s discontinuous.

Even when S is finite, there exists a space of MC’s where P(f)
Among them the following Example 1, 2 have simple structure. Example 1 is seen in
Schweitzer[11] and Example 2 is seen in Wijngaard[13] and Zijm[14].

Example 1. Let § = {1,2} and F = [0, 1] x [0, 1], where [0, 1] is the closed interval
of real numbers. For any f = (p,q) € F, let p(f)11 =1 —=p, p(f)12 =p, p(f)21 = ¢,
p(flz=1-g¢ |
For 0= (0,0) € F, P(O) = P(0)* = I and H(0) = O the zero-matrix. If p+ ¢ > 0, the
MC makes one recurrent class for each f € F. Note that any subset K(f) C S does not
satisfy both Condition (A-1-2) and (A-1-1). If p+ ¢ > 0, we have p(f)};, = q/(p + q)
-and () = p/l(p+q) for i = 1,2, It is clear that lim,— P(fn)* # P(0)* for
any sequence {f,} converging to 0 € F. On the other-hand, it always holds that

| Sico(P(FH)E = P(f)*) I€ B(f) for any f € F, when S is finite. We have H(f);; =

—H(f)1z = p/(p+ q)* and H(f)s1 = —H(f)2az = —q¢/(p + q)°>. Let fu = (pn,qn)
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be a sequence converging O satisfying p. 2 gn. Then we have limpo H(fn )11 =
— limy, oo H(fy )12 = 00, which contradicts to Condition (C).

Example 2. Let § = {1,2,3} and F = [0, (-1 +V5)/2)], the closed interval. For
any f=p€F, let p(flu=1-p—p° p(fha =p, p(fh1s =p* p(flo2 =p(flas = 1
and p(f)21 = p(f)2s = p(f)31 = p(fls2 = 0.

If f=p=0 PO)=P0) =1and HO) =0. If f =p# 0, the states 2, 3
make recurrent classes respecﬁively and the state 1 is a transient. Note that any subset

K (f) C § does not satisfies both Condition (A-1-3) and (A-1-1). When f =p # 0, we

have p(f)3, = 1/(14p), p(f)15 = p/(1+p) and p(f )3, = p(f)3; = 1 and otherp(f);; are
all zero. We have H(f)1; = 1/p(1 +p), H(f)12 = =1/p(1+p)>, H(f s = —1/(1 + p)°
and other components are all zero. Then lim,—o H(f)11 = — limpmo H(f)12 = 00,

which contradicts to Condition (C).
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