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Primal-Dual Proximal Point Algorithm for Multicommodity

Network Flow Problems

茨木 智 (京大工) 福島雅夫 (京大工) 茨木俊秀 (京大工)

1. Introduction

The multicommodity network flow problem is an important class of network optimization problems,

in which arcs are shared by several commodities and the flow of each commodity must be conserved

at every node. The applications can be found in such diverse areas as data communication systems,

transportation systems of crops, goods or vehicles and production lines of resources and products.

Let $G=(\mathcal{N}, A)$ be a directed graph, where $\mathcal{N}=\{1,2, \ldots, m\}$ is the node set and $\mathcal{A}=$

$\{1, 2, \ldots, n\}$ is the arc set. We consider a multicommodity network flow problem on $G$ having $K$

distinct commodities. To formulate the problem, we introduce some notations.

$x_{kj}\in R$ : the flow of commodity $k$ on arc $j$ ,

$x_{k}=(x_{k1}, x_{k2}, \ldots, x_{kn})^{T}\in R^{n}$ : the vector of flows of commodity $k$ ,

$x=(x_{1}, x_{2}, \ldots, x_{n})\in R^{\eta.K}$ : the vector of flows for all commodities,

$y_{j}\in R$ : the total flow on arc $j$ , i.e. $y_{j}= \sum_{k=1}^{K}x_{kj}$ ,

$y=$ $(y_{1}, y_{2}, \ldots , y_{n})^{T}\in R^{n}$ : the vector of total flow,

$f_{k}$ : $R^{n}arrow(-\infty, +\infty$ ]: the cost function associated with flow of commodity $k$ ,

$g:R^{n}arrow(-\infty, +\infty]$ : the cost function associated with total flow,

$E\in R^{m\cross n}$ : the node-arc incidence matrix of graph $G$ ,

$b_{ki}\in R$ : the requirement for commodity $k$ at node $i$ ,
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$b_{k}=(b_{k1}, b_{k2}, \ldots, b_{km})^{T}\in R^{m}$ : the vector of requirements for commodity $k$ .

Node $i$ is called a supply point for conunodity $k$ if $b_{ki}>0$ , a demand point for commodity $k$

if $b_{ki}<0$ , and a transshipment point for commodity $k$ if $b_{ki}=0$ . We assume that, for each

commodity $k$ , the total demand equals the total supply, i.e. $\sum_{i=1}^{m}b_{ki}=0$ . We also assume that the

cost functions $f_{k}$ and $g$ are closed proper convex.

Now we formulate the multicommodity network flow problem as follows:

$P$ : minimize $\sum_{k=1}^{K}f_{k}(x_{k})+g(y)$

subject to $Ex_{k}=b_{k},$ $k=1,2,$ $\ldots,$
$K$ , (1.1)

$y= \sum_{k=1}^{K}x_{k}$ . (1.2)

Constraints (1.1) are the flow conservation equations for individual commodities, whereas (1.2) are

coupling constraints that link together the flows of all commodities. In particular, the latter con-

straints hamper straightforward decomposition of problem $P$ into single commodity subproblems.

It is important to note also that problem $P$ explicitly contains equality constraints only. In-

equality constraints such as arc capacity constraints may be regarded as a part of the cost functions

$f_{k}$ and $g$ , as shown by the following two important examples of multicommodity network flow prob-

lems. In these examples, we assume that the functions $f_{k}$ and $g$ are separable, i.e.

$f_{k}(x_{k})= \sum_{j=1}^{\eta}f_{kj}(x_{kj})$ , for all $k=1,2,$ $\ldots$ , $K$ (1.3)

and

$g(y)= \sum_{j=1}^{n}g_{j}(y_{j})$ . (1.4)

This situation is often seen in practical applications and belongs to the important class of prob-

lems. In particular, when problem $P$ has this assumption, the proposed algorithmcan be applied

effectively. We consider the case that the cost function of $P$ is separable in Section 3.

Example 1 (Linear multicommodity network flow problem [1, 2, 18, 19, 23]):

Let
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$f_{kj}(x_{kj})=\{\begin{array}{l}a_{kj^{X}kj}if0\leq x_{kj}\leq c_{kj}+\infty otherwise\end{array}$

for all $k=1,2,$ $\ldots,$ $K,j=1,2,$ $\ldots,$
$n$ , and

$g_{j}(y_{j})=\{\begin{array}{l}0if0\leq y_{j}\leq d_{j}+\infty otherwise\end{array}$

for all $j=1,2,$ $\ldots,$
$n$ . Then problem $P$ is rewritten as

minimize $\sum_{k=1}^{K}\sum_{j=1}^{\eta}a_{kj}x_{kj}$

subject to $Ex_{k}=b_{k},$ $k=1,2,$ $\ldots,$
$K$ ,

$\sum_{k=1}^{K}x_{kj}\leq d_{j},$ $j=1,2,$ $\ldots,$
$n$ ,

$0\leq x_{kj}\leq c_{kj},$ $k=1,2,$ $\ldots$ , $K,$ $j=1,2,$ $\ldots$ , $n$ .

In this problem, $c_{kj}$ is the capacity for the flow of commodity $k$ on arc $j$ , while $d_{j}$ is the capacity

for the total flow on arc $j$ .

Example 2 (Traffic assignment problem [10, 11, 14]):

Let

$f_{kj}(x_{kj})=\{\begin{array}{l}0if0\leq x_{kj}\leq c_{kj}+\infty otherwise\end{array}$

for all $k=1,2,$ $\ldots,$ $K,j=1,2,$ $\ldots,$
$n$ . Let the functions $g_{j}$ be given by

$g_{j}(y_{j})= \int_{0}^{y_{J}}\tilde{g}_{j}(t)dt$ ,

where $\tilde{g}_{j}$ : $Rarrow[0, +\infty$ ) is an arc travel cost function which is nonnegative, increasing and convex.

Then the traffic assignment problem may be formulated as

minimize $\sum_{j=1}^{n}g_{j}(y_{j})$

subject to $Ex_{k}=b_{k},$ $k=1,2,$ $\ldots,$
$K$ ,

$yj= \sum_{k=1}^{PK}x_{kj},$ $j=1,2,$ $\ldots,$
$n$ ,

$0\leq x_{kj}\leq c_{kj},$ $k=1,2,$ $\ldots$ , $K,$ $j=1,2,$ $\ldots,$
$n$ .
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In this problem, it is often assumed that $c_{kj}=+\infty$ for all $k$ and $i$ , in which case the Kuhn-Tucker

conditions for the problem represent the well-known user optimal principle in a congested traffic

network [9].

There are alarge number of references on the nonlinear multicommodi ty network flow problems,

among others, the traffic assignment problem. For example, linear approximation methods $[5, 8]$ ,

Frank-Wolfe method $[10, 22]$ and gradient projection method [3] belong to the class of algorithms

which directly exploit the advantage of the network structure. On the other hand, algorithms based

on the dual approach have also been studied extensively in conjunction with various optimization

techniques, e.g. a subgradient method [11], descent methods $[12, 14]$ and relaxation methods [4,

24, 30]. Note that all the above mentioned methods except [14] are concerned with the Lagrangian

dual problem obtained by relaxing both coupling constraints and flow conservation equations,

while the method of [14] utilizes another Lagrangian dual which is defined by relaxing coupling

constraints only.

The purpose of this paper is to present a primal-dual proximal point algorithm for the convex

multicommodity network flow problem P. The proximal point algorithm and its variants have been

extensively studied in the literature [6, 7, 16, 26, 27, 29]. In particular, the primal-dual proximal

point algorithm is considered in [16, 26, 29]. The algorithm proposed in this paper is closely related

the one presented by the authors in [16], which is tailored to solve linearly constrained convex

programming problems. The method of [16], however, is concerned with the ordinary Lagrangian

dual problem obtained by relaxing all linear constraints, while the method to be proposed in

this paper deals with the Lagrangian function formed by relaxing the coupling constraints (1.2)

only. Note that the dual optimality is attained when the primal feasibility is satisfied, i.e. the

relaxed constraints of the primal problem are satisfied. Note also that since we cannot proceed

the iteration of the algorithm infinitely, a solution obtained in practice is usually an approximate

one that satisfies a certain termination criterion. Concerning this point, the proposed method has
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a remarkable feature. Namely, an approximate solution obtained by the proposed method, which

may not satisfy the coupling constraints (1.2), necessarily satisfies the flow conservation equations

(1.1) for all commodities. This property turns out to be very useful in practical applications.

2. Primal-Dual Proximal Point Algorithm

Let $\hat{f}_{k}$ : $R^{\eta}arrow(-\infty, +\infty$ ] be the function defined by

$\hat{f}_{k}(x_{k})=\{\begin{array}{l}f_{k}(x_{k})+\infty\end{array}$
$ifEx_{k}=b_{k}otherwise$

.
(2.1)

Then problem $P$ is reformulated as

minimize $\sum_{k=1}^{K}\hat{f}_{k}(x_{k})+g(y)$

subject to $y= \sum_{k=1}^{K}x_{k}$ .

For this problem, let $p$ denote the vector of Lagrange multipliers and define the Lagrangian $L$ :

$R^{nK}\cross R^{n}\cross R^{n}arrow(-\infty, +\infty]$ by

$L(x, y,p)= \sum_{k=1}^{K}\hat{f}_{k}(x_{k})+g(y)-\langle p,\sum_{k=1}^{K}x_{k}-y$ }, (2.2)

where { $\cdot,$

$\cdot\rangle$ denotes the inner product.

Now we may define the dual of problem $P$ as follows:

$D$ : maximize $\psi(p)$ ,

where the dual objective function $\psi$ is given by

$\psi(p)=\inf_{x\in R^{nK},y\in R^{n}}L(x, y,p)$ .

For $(\overline{x},\overline{y})$ to solve $P$ and $\overline{p}$ to solve $D$ , it is necessary and sufficient that the following Kuhn-

Tucker conditions hold:

$\overline{p}\in\partial\hat{f}_{k}(\overline{x}_{k})$ , $k=1,2,$ $\ldots,$
$K$ ,
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$-\overline{p}\in\partial g(\overline{y})$ ,

$\overline{y}=\sum_{k=1}^{K}\overline{x}_{k}$ ,

where $\partial\hat{f}_{k}$ and $\partial g$ denote the subdifferential operators of $\hat{f}_{k}$ and $g$ , respectively. These conditions

imply that $(\overline{x},\overline{y},\overline{p})$ is a saddle point of the Lagrangian $L$ . When problem $P$ has an optimal

solution (hi, $\overline{y}$ ), the existence of a multiplier vector $\overline{p}$ satisfying the above Kuhn-Tucker conditions

is guaranteed, provided that $P$ is strongly consistent, i.e., there is at least one feasible solution in

the relative interior of the effective domain of the objective function [25, p. 300].

The primal-dual proximal point algorithm [16, 26, 29] is an iterative method that generates

a sequence of points converging to a Kuhn-Tucker point of the problem. Each iteration consists

of finding an (approximate) saddle point of a convex-concave function, which is obtained by aug-

menting the Lagrangian by quadratic terms of both primal and dual variables. For problem $P$, the

. augmented Lagrangian $L^{\langle\mu)}$ : $R^{nK}\cross R^{n}\cross R^{n}arrow(-\infty, +\infty$ ] at the $\mu$-th iteration is given by

$L^{\langle\mu)}(x, y,p)=L(x,y,p)+ \frac{1}{2\gamma^{\langle\mu)}}|x-x^{\langle\mu)}|^{2}+\frac{1}{2\gamma^{(\mu)}}|y-y^{\langle\mu)}|^{2}-\frac{1}{2\gamma^{\langle\mu)}}|p-p^{\langle\mu)}|^{2}$, (2.3)

where $\gamma^{\langle\mu)}$ is a positive constant and $|\cdot|$ denotes the Eudidean norm. Note that $L^{\langle\mu)}$ is strongly

convex and strongly concave with modulus $\frac{1}{\gamma^{\langle\mu)}}$ in $(x, y)$ and in $p$ , respectively.

There are two strategies to find an approximate saddle point of $L^{(\mu)}$ : One is that we first

maximize $L^{\langle\mu)}$ in $p$ and then approximately minimize the resulting function of $(x, y)[26,29]$ , i.e.

$(x^{\langle\mu+1)}, y^{\langle\mu+1)},p^{\langle\mu+1)}) \approx\arg\min_{x\in R^{n1K},y\in R^{n}}\{_{p}\max_{\in R^{n}}L^{\langle\mu)}(x, y,p)\}$ , (2.4)

and the other we first minimize $L^{\langle\mu)}$ in $(x, y)$ and then approximately maximize the resulting

function of $p[16]$ , i.e.

$(x^{\langle\mu+1)}, y^{\{\mu+1)},p^{\langle\mu+1)}) \approx\arg_{p}\max_{\in R^{n}}\{\min_{x\in R^{nK},y\in R^{\eta}}L^{\langle\mu)}(x, y,p)\}$ . (2.5)

In the proposed algorithm, we adopt the latter strategy to find an approximate saddle point of

$L^{(\mu)}$ . The difference between the two strategies will be darified in the following.

In order to explain (2.5) in more detail, we define
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$(x(p), y(p))=\arg_{x\in R^{nK},y\in R^{n}}IninL^{\langle\mu)}(x, y,p)$ (2.6)

and

$\psi^{\langle\mu)}(p)$ $=$ $L^{\{\mu)}(x(p), y(p),p)$

$=$
$x\in.RnIKy\in R^{n}ff\coprod nL^{\langle\mu)}(x, y,p)$

. (2.7)

Note that $(x(p), y(p))$ is the exact minimizer of $L^{(\mu)}$ with $p$ fixed, which uniquely exists because

of the strong convexity of $L^{\{\mu)}$ in $(x, y)$ . In this paper, we assume that such exact minimizer can

actually be computed. Then, by the definition (2.1) of $\hat{f}_{k}$ , the flow conservation equation for each

commodity is always satisfied by $(x(p), y(p))$ . Note also that $\psi^{\langle\mu)}$ is a closed concave function [25,

Th. 12.1]. Since $(x(p), y(p))$ is uniquely obtained, so the function $\psi^{\langle\mu)}$ is continuously differentiable

[21, \S 8.5 Cor. 1] and its $gradi$ ent is given by

$\nabla\psi^{\langle\mu)}(p)=y(p)-\sum_{k=1}^{K}x_{k}(p)-\frac{1}{\gamma^{(\mu)}}(p-p^{\langle\mu)})$. (2.8)

Using (2.6) and (2.7), the formula (2.5) can be written as

$p^{\langle\mu+1)} \approx\arg\max_{p\in R^{n}}\psi^{\langle\mu)}(p)$ (2.9)

and

$(x^{\langle\mu+1)},$ $y^{(\mu+1)})=(x(p^{\langle\mu+1)}),$ $y(p^{(\mu+1)}))$ . (2.10)

The above maximization of $\psi^{\{\mu)}$ in (2.9) is a nonlinear unconstrained smooth optimization problem,

which may usually be solved iteratively. Since the function $\psi^{(\mu)}$ is continuously differentiable, we

can use a gradient-based algorithm like a quasi-Newton method. The gradient $\nabla\psi^{(\mu)}(p)$ is obtained

as a by-product when we compute the value of $\psi^{\langle\mu)}(p)$ . This implies that $(x(p), y(p))$ of (2.6) is

calculated for every $p$ in the course of iterations to maximize $\psi^{\langle\mu)}$ . For the iterations to maximize

$\psi^{(\mu)}$ , we may adopt one of the following two termination criteria:

$| \nabla\psi^{(\mu)}(p^{(\mu+1)})|\leq\frac{\epsilon^{(\mu)}}{\gamma^{\langle\mu)}}$ (2.11)
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where $\epsilon^{\langle\mu)}$ are positive constants such that $\sum_{\mu=0}^{\infty}\epsilon^{\langle\mu)}<\infty$ , and

$| \nabla\psi^{\langle\mu)}(p^{(\mu+1)})|\leq\frac{\delta^{(\mu)}}{\gamma^{\langle\mu)}}|(x(p^{(\mu+1)}), y(p^{(\mu+1)}),p^{\langle\mu+1)})-(x^{\langle\mu)}, y^{\langle\mu)},p^{(\mu)})|$, (2.12)

where $\delta^{\langle\mu)}$ are positive constants such that $\sum_{\mu=0}^{\infty}\delta^{\langle\mu)}<\infty$ . Note that checking these criteria requires

evaluating $(x^{(\mu+1)}, y^{\langle\mu+1)})$ , because we need to know the values of $x^{\langle\mu+1)}$ and $y^{\langle\mu+1)}$ when we

evaluate $\nabla\psi^{\langle\mu)}(p^{\{\mu+1)})$ (see (2.8)).

By transferring the results in $[16, 26]$ to the context of the algorithm based on the formula

(2.5), or equivalently $(2.9)-(2.10)$ , we may obtain the following convergence theorem. Recall that

the mapping $T^{-1}$ is said to be Lipschitz continuous at the origin with modulus $\alpha\geq 0$ , if $T^{-1}(0)$ is

single-valued and there exists $\tau>0$ such that $|z-T^{-1}(0)|\leq a|w|$ for all $z\in T^{-1}(w)$ and $|w|\leq\tau$

[26].

Theorem. Suppose that problem $P$ is strongly consistent and has at least one optimal solution.

$(a)$ If the algorithm is executed under criterion (2.11) with a sequence $\{\gamma^{\langle\mu)}\}$ bounded away from

zero, then the sequence $\{(x^{(\mu)}, y^{\langle\mu)},p^{\{\mu)})\}$ genervrted by (2.5) is bounded and converges to $(\overline{x},\overline{y},\overline{p})$ ,

where hi and $\overline{y}$ are optimal for problem $P$ and $\overline{p}$ is optimal for problem $D$ .

$(b)$ Let $\prime I_{L}^{1}$ : $R^{nK}\cross R^{\eta}\cross R^{n}arrow R^{nK}\cross R^{n}\cross R^{\eta}$ be multifunction (point-to-set mapping) given by

$T_{L}(x, y,p)$ $=$ $\{(u, v, w)|u_{k}\in\partial_{x_{k}}L(x, y,p),\forall k, v\in\partial_{y}L(x, y,p), w\in-\partial_{p}L(x, y,p)\}$

$=$ $\{(u, v, w)|u_{k}\in\partial f_{k}(x_{k})-p,\forall k,$ $v\in\partial g(y)-p,$ $w= \sum_{k=1}^{K}x_{k}-y\}$ .

Assume that $T_{L}^{-1}$ is Lipschitz continuous at the origin with modulus or $\geq 0$ . If the algorithm is

executed under criterion (2.12) with a sequence $\{\gamma^{(\mu)}\}$ nondecreasing, then the sequence $\{(x^{(\mu)},$ $y^{\langle\mu)}$ ,

$p^{(\mu)})\}$ is bounded and converges to $(\overline{x},\overline{y},\overline{p})$ , where (hi, y) and $\overline{p}$ are the unique optimal solutions for

$P$ and $D$, respectively. In addition, there exists an integer $\overline{\mu}$ such that

$|(x^{(\mu+1)}, y^{(\mu+1)},p^{\langle\mu+1)})-(\overline{x},\overline{y},\overline{p})|\leq\theta^{(\mu)}|(x^{(\mu)}, y^{(\mu)}, p^{\langle\mu)})-(\overline{x},\overline{y},\overline{p})|$ , $\forall\mu\geq\overline{\mu}$ ,

where



189

$\theta^{(\mu)}=\cdot\{\alpha(\alpha^{2}+\gamma^{(\mu)})^{-1/2}+\delta^{(\mu)}\}(1-\delta^{\langle\mu)})^{-1}$ .

3. Algorithm for Separable Problems

In this section, we assume that the cost function of problem $P$ is separable, that is, the functions

$f_{k}$ and $g$ in problem $P$ are given by

$f_{k}(x_{k})= \sum_{j=1}^{n}f_{kj}(x_{kj})$ , for all $k=1,2,$ $\ldots$ , $K$ (3.1)

and

$g(y)= \sum_{j=1}^{n}g_{j}(y_{j})$ , (3.2)

respectively. (See (1.3) and (1.4).) We assume that the functions $f_{kj}$ and $g_{j}$ are closed proper

convex.

We specify the detail of the proposed algorithm, which exploits the special structure of the

problem. From the separability of $f_{k}$ and $g$ , it follows that the function $L^{(\mu)}$ in (2.3) is separable

in $x_{k}$ and $y_{j}$ when $p$ is fixed. Therefore, the minimization of $L^{\langle\mu)}$ appearing in (2.6) is carried out

separately with respect to $x_{k}$ and $y_{j}$ . Specifically, $(x(p), y(p))$ in (2.6) is evaluated as follows:

$x_{k}(p)= \arg n\dot{u}nx_{k}\in R^{n}\{\sum_{j=1}^{n}\{f_{kj}(x_{kj})+\frac{1}{2\gamma^{(\mu)}}(x_{kj}-x_{kj}^{(\mu)})^{2}-p_{\dot{7}}x_{kj}\}|Ex_{k}=b_{k}\}$ , (3.3)

for all $k=1,2,$ $\ldots,$
$K$ , and

$y_{1}(p_{j})= \arg\min_{y_{J}\in R}\{g_{j}(y_{j})+\frac{1}{2\gamma^{(\mu)}}(y_{j}-y_{j^{\mu}}^{()})^{2}+p_{j}y_{j}\}$ , (3.4)

for all $j=1,2,$ $\ldots,$
$n$ .

In (3.3), the computation of $x_{k}(p)$ amounts to solving a single commodity network flow problem

whose objective function is separable and strongly convex. In practice, a variety of methods are

available to solve such problems [13, 15, 20, 28]. In (3.4), the computation of $y_{j}(p_{j})$ becomes

a univariate minimization problem with a strongly convex objective function. The minimizer

$y_{j}(p_{j})$ may often be expressed in a closed form, or it can at least be computed accurately enough



190

by using an appropriate one-dimensional optimization technique such as binary section method,

golden section method and quasi-Newton method.

Recall that the maximization in (2.9) is a differentiable unconstrained optimization problem

whose objective function $\psi^{\{\mu)}(p)$ and its gradient $\nabla\psi^{\langle\mu)}(p)$ may be computed from $x(p)$ and $y(p)$ ,

which are obtained by the minimization on the right-hand side of (3.3) and (3.4). Since the

latter minimization problems are in general solved iteratively, the proposed algorithm may have a

triple-loop structure. Namely, the outmost loop is the iteration of the primal-dual proximal point

algorithm, the middle one is the iteration of maximizing $\psi^{(\mu)}$ to compute $p^{\{\mu+1)}$ by (2.9), and the

inmost one is the iteration to compute $x(p)$ and $y(p)$ .
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