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ABSTRACT
This paper describes a boundary element analysis of electromagnetic fields with
helical symmetry. A two dimensional integral equation for the scalar Helmholtz-
type equation is derived using a spatial symmetry in the general curvilinear
coordinates. An integral equation with helical symmetry is obtained from the
above integral equation using twisted coordinates. The boundary element method
is applied to the analyses of potential fields in a helical column, electromagnetic
fields in a twisted waveguide and magnetohydrodynamic equilibria in a helical
vessel.

INTRODUCTION
In computational analysis of field problems, spatial symmetries such as
translational and axial symmetry often allow us to make considerable reduction
of computer memories and computing times. For this reason, a number of
numerical schemes have been studied especially for fields with translational and
axial symmetries. On the other hand, we also find helical symmetry in many
engineering devices such as stellarator-type nuclear fusion machines [1], twisted
waveguides [2], optical fibers [3] and helical antennas [4]. For the analysis of the
electromagnetic fields in those devices, it is convenient to employ the twisted
coordinates (X, $Y,$ $Z$) in which the axes $X$ and $Y$ rotate with the rotation of cross
section [2]. Figure 1 illustrates a straight helical system of a helical pitch $h$ and
the twisted coordinates (X, $Y,$ $Z$), in which the fields can be described in two
dimension when one can assume some dependence of physical quantities on the
axis $Z$ , usually $exp(- j\beta Z)$ . (When $\beta=0$ , the system is called helically symmetric
system.)

In this paper, we submit a boundary element method for electromagnetic
phenomena with helical symmetry. The main purpose of this paper is to show the
validity and usefulness of the boundary element analysis of helical
electromagnetic field problems.

The remainder of this paper is organized as follows. We first derive a two
dimensional boundary integral equation (BIE) from a Helmholtz-type differential
equation in the general curvilinear coordinates. Next, from the above equation,
we introduce a BIE described in the twisted coordinates for the analysis of
electromagnetic problems with helical symmetry. Moreover, the present method
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Fig. 1 Straight helical system

is applied to the analyses of potential fields in a helical column, electromagnetic
fields in a twisted waveguide and magnetohydrodynamic (MHD) equilibria in a
helical vessel.

FORMULATION

Two dimensional BIE in the general curvilinear coordinates
Let us consider the Helmholtz-type equation

$\frac{1}{\sqrt{g}}\frac{\partial}{\partial u^{i}}(g^{ij_{\sqrt{g}}}K\frac{\partial\Psi}{\partial u^{j}})+k^{2}\Psi$

$\equiv L\Psi+h^{2}\Psi=F$ , (1)

in the coordinates $(u^{1}, u^{2}, u^{3})$ , where $g^{ij}$ denotes the contravariant metric tensor,
$g=1/detg^{ij},$ $K=K(u^{1}, u^{2})$ and $F=f(u^{1}, u^{2}, \Psi)$ . Note that, in eq. (1), the operator $L$

corresponds to the Laplacian $\nabla^{2}$ when the function $K$ is unity. We here assume
that $\Psi=\varphi(u^{1}, u^{2})exp(- j\beta u^{3})$ and $F=f(u^{1}, u^{2}, \Psi)exp(- jI\}u^{3})$.

Multiplying eq. (1) by the fundamental solution $\Psi^{*}=\varphi^{*}(u^{1}, u^{2})exp(j\beta u^{3})$ which
satisfies

$\frac{1}{\sqrt{g}}\sum_{i=1}^{2}\sum_{j=1}^{2}\frac{\partial}{\partial u^{i}}(g^{ij_{\sqrt{g}}}K\frac{\partial\varphi^{*}}{\partial u^{j}})+\frac{4r\iota}{\sqrt{g}}6(u^{1}-u_{0}^{1})6(u^{2}-u_{0}^{2})$

$\equiv L_{t}\varphi^{*}+\frac{4\pi}{\sqrt{g}}8(u^{1}-u^{1_{0}})6(u^{2}-u^{2_{0}})=0$ , (2)

and integrating over a region $V$, enclosed by a boundary $\partial V$, with a period of $2\pi/\beta$

in $u^{3}$ direction, yields

$C_{0} \varphi_{0}\int du^{3}=\int_{\partial 1^{\gamma}}K\Psi^{*}\frac{\partial\Psi}{\partial n}dS-\int_{\partial V}K\Psi\frac{\partial\Psi^{*}}{\partial r\iota}dS+\int 17[\Psi(L-L_{t}+k^{2})-F]\Psi^{*}dV$, (3)
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where $\partial/\partial n=n\cdot\nabla,$ $n$ denotes the unit vector in the normal direction of the surface
$\partial V$ and $C_{0}$ is the geometric factor related to the Cauchy principal value of the
boundary integrals and if the boundary $\partial V$ is smooth, then $C_{0}=2n$ . Moreover, the
surface element $dS$ and operator $\partial/\partial n$ in eq. (3) can be expressed as

$dS=IN$ I $dsdu^{3}$ , (4)

$\frac{\partial}{\partial n}=\frac{N}{|N|}\cdot e^{i}\frac{\partial}{\partial u^{i}}$ , (5)

where
$N\equiv(\frac{du^{1}}{ds}e_{1}+\frac{du^{2}}{ds}e_{2})\cross e_{3}$ , (6)

and $ds$ denotes the differential line element on the intersection $C$ between surface
of $u^{3}=constant$ and $\partial V$, and $e_{i}$ and $e^{i}$ are the unitary and reciprocal unitary
vectors, respectively.

From eqs. (3) $-(6)$ , we can derive the two dimensional BIE as follows:

$C_{0} \varphi_{0}=\oint_{c^{K\varphi^{*}qPds-f_{C}^{K\varphi Q}}}(\varphi^{*})ds+\int_{\Omega}[\varphi R(\varphi^{*})-[\varphi^{*\sqrt{g}}]du^{1}du^{2}$ , (7)

(8)

$Q \equiv\sqrt{g}[-\frac{du^{1}}{ds}(g^{12}\frac{\partial}{\partial u^{1}}+g^{22}\frac{\partial}{\partial u^{2}}+j\beta g^{\mathfrak{B}})+\frac{du^{2}}{ds}(g^{11}\frac{\partial}{\partial u^{1}}+g^{12}\frac{\partial}{\partial u^{2}}+j\beta g^{13})]$, (9)

$R \equiv j\beta[\sqrt{g}K(g^{13}\frac{\partial}{\partial u^{1}}+g^{\mathfrak{B}}\frac{\partial}{\partial u^{2}})+(\frac{\partial}{\partial u^{1}}g^{13}+\frac{\partial}{\partial u^{2}}g^{\mathfrak{B}})\sqrt{g}K]+\sqrt{g}(k^{2}-\beta^{2}g^{33}K)$, (10)

and $q\equiv\partial\Psi/\partial n$ . When we specify the system, that is, determine the metric tensor
$g^{ij}$ , we can readily obtain the two dimensional BIE for the system from eq. (7).

BIE with helical svmnetrv
For the analysis of straight helical systems, we introduce the twisted coordinates
(X, $Y,$ $Z$) $[2]$

$X=xcos(hz)+ysin(hz)$ ,
$Y=ycos(hz)-xsin(hz)$ ,
$Z=z$ , (11)

where $(x, y, z)$ are the Cartesian coordinates. Figure 2 illustrates the relation
between the twisted and Cartesian coordinates. In a straight helical system, as
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Fig. 2. Twisted Coordinates (X, $Y,$ $Z$)

shown in Fig. 1, physical quantities may be dependent on $Z$ in the form $exp(- j\beta Z)$ .
Hence we can apply the formulation in the previous section to these systems.

The metric tensor for the twisted coordinates $g^{ij}$ is given by

$[g^{\ddot{v}}]=\{\begin{array}{lll}1+h^{2}Y^{2} - h^{2}XY hY- h^{2}XY 1+h^{2}X^{2} - hXhY - hX 1\end{array}\}$

, (12)

and $g$ is proved to be unity.
Substituting eq. (12) into eq. (1), it can be shown that the Helmholtz-type

differential equation of our interest takes the following form in the twisted
coordinates

$(1+h^{2} Y^{2})K\frac{\partial^{2_{\psi}}}{\partial X^{2}}-2h^{2}XYK\frac{\partial^{2_{\psi}}}{\partial X\partial Y}+(1+h^{2}X^{2})K\frac{\partial^{2_{\psi}}}{\partial Y^{2}}$

$-[K(2j \beta hY+h^{2}X)-(1+h^{2}Y^{2}-j\beta hY)\frac{\partial K}{\partial X}+h^{2}XY\frac{\partial K}{\partial Y}]\frac{\partial\varphi}{\partial X}$

$+[K(2j \beta hx-h^{2}Y)+(1+h^{2}X^{2}+JP^{hX)\frac{\partial K}{\partial Y}-h^{2}XY\frac{\partial K}{\partial X}}]\frac{\partial\varphi}{\partial Y}+(k^{2}-K\beta^{2})\varphi=f\cdot$ (13)

Moreover, the boundary integral equation to be numerically solved can be derived
from eqs. (7)$-(10)$ and (12) as follows:
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$c_{0^{\varphi_{0}=}}f_{c^{K\varphi^{*}q[1+h^{2}(XX’+YY’)^{2}]^{y2}ds}}$

(14)

$- \oint_{C}K_{\Psi}[X’\{h^{2}XY\frac{\partial}{\partial X}-(1+h^{2}X^{2})\frac{\partial}{\partial Y}+j\beta hX\}$

$+ Y’\{-h^{2}XY\frac{\partial}{\partial Y}+(1+h^{2}Y^{2})\frac{\partial}{\partial X}+j\beta hY\}]\varphi^{*}ds$

$+ \int_{\Omega}[j\beta h_{\Psi}\{2K(Y\frac{\partial}{\partial X}-X\frac{\partial}{\partial Y})+Y\frac{\partial K}{\partial X}-X\frac{\partial K}{\partial Y}\}+\varphi(k^{2}-p^{2}\varpi-;]\varphi^{*}dXdY$.

NUMERICAL RESULTS
Helicallv svmmetric potential problem $(K=1, k= ==0)$

We solve a helically symmetric potential problem in a helical column with a
rectangular cross-section shown in Fig.3. In this case, since the equation to be
solved is reduced to the Laplace equation, the functions $K,$ $f$ and constant $k$ in eq.
(14) are taken to be 1.0, 0.0 (constant) and 0.0, respectively. Moreover, the
constant $\beta$ is set to 0.0 because of the helical synmetry.

The fundamental solution $\varphi^{\#}$ for this case is given by

$\varphi^{*}=-2logr_{>}+4\sum_{m=1}^{\infty}I_{m}(mhr_{<})K_{m}(mhr_{>})cos[m(\zeta-]$ , (15)

where $I_{m}$ and $K_{m}$ are the modified Bessel functions of the 1st and 2nd kind and
$r_{>} \equiv\max(r, r_{0})$ and $r_{<} \equiv\min(r, r_{0})$ . It can be shown that the representation (15) is
equivalent to the integral form [1, 6, 7]

$\varphi^{*}=\int_{-\infty}^{\infty}[\frac{1}{R}-\frac{1}{\{a^{2}+(z-z_{0})^{2}\}^{1/2}}]dz_{0}$ , (16)

where the integration is performed along the source on the helix $r=r_{0},$ $\zeta=\zeta_{0}$ and
the distance $R$ between the source and a field point $(r, \Theta, z)$ is defined by
$R\equiv\{r^{2}+r_{0^{2}}- 2rr_{0}cos(\Theta-\Theta_{0})+(z- z_{0})^{2}\}^{1/2}$ . Here, note that $\Theta_{0}$ is the function of $z_{0}$ , i.e.,
$6_{0}=\zeta_{0}+hz_{0}$ . In addition, the second term of the integrand in eq. (16) is the
additional term which makes the integration converge and $a$ is an arbitrary
constant. A helical source and feld point are illustrated in Fig. 4. Although we
can clearly understand the physical meaning of the representation (16), the
numerical evaluation of the integration is considerably expensive. Namely, we
have to subdivide the integral domain into very small elements especially when
field points are near the source because the function $1/R$ vibrates with a large
amplitude in such situations. For this reason, we calculate the value of $\varphi^{*}$ by
representation (15) in this paper. An effective scheme for evaluation ofthe infinite
series in eq. (15) is discussed in detail in the references $[8, 9]$ .
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$z$ Helical source

Fig. 3. Potential problem Fig. 4. Helical source

To numerically solve the integral equation (14), we subdivide the contour in
Fig. 3 into 80 linear portions and use linear and constant interpolations for the
potential $\varphi$ and flux $q$ , respectively.

The solutions by boundary element method for $h=0.3,0.5$ are summarized in
Table 1, which also shows the $2nd$-order perturbed solutions and finite element
solutions [9]. From these results, it can be seen that the boundary element
solution is in good agreement with the $2nd$-order perturbed solution and the finite
element solution for $h=0.3$ . However, there are significant discrepancies between
the numerical solutions and the $2nd$-order perturbed solution for $h=0.5$ . This may
be caused by an insufficient convergence of the perturbation.

The present method can also be applied to open boundary potential problems
with helical symmetry [10].

Electromagnetic fields in a twisted wave uide $(K=1.f=0)$

We next apply the present method to the analysis of electromagnetic fields in a
twisted waveguide with a rectangular cross section shown in Fig. 5. The
governing equation of the electromagnetic field in this waveguide is expressed by
the scalar Helmholtz equation in an approximation [2]. Hence, in this case, the
functions $K$ and [are taken to be 1.0 and 0.0, and the constants $k$ and $\beta$ correspond
to the wave number and phase constant, respectively. Moreover, the function $\varphi$

corresponds to the amplitude of the magnetic Hertzian vector $\varphi e^{Z}$ which satisfies
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$E^{X}= \frac{\partial\varphi}{\partial Y}$ $E^{Y}=- \frac{\partial\varphi}{\partial X}$ , $E^{Z}=0$ , (17)

$H=\frac{j}{\omega\mu}[h^{2}\varphi e^{Z}+V(\frac{\partial\varphi}{\partial z})]$ , (18)

where $\mathfrak{c}_{1}$) is the angular frequency, $p$ the permeability, $E^{X},$ $E^{Y}$ and $E^{Z}$ the
contravariant components of the electric field, $H$ the magnetic field, and $e^{Z}$ the
third covariant basis vector of the twisted coordinates. Moreover, approximate
boundary conditions for the rectangular guide ofwidth $a$ and height $b$ are

$\mathscr{J}_{=}$
$\frac{\partial\varphi}{\partial Y}=0$ , at $Y=\pm b/2$ ,

$E^{Y}=- \frac{\partial\varphi}{\partial X}=0$ , at $X=\pm a/2$ . (19)

The dispersion relation for this waveguide can be obtained by solvihg the proper
equation (13) for given phase constants. In this paper, the phase constant $\beta$ is set
to zero for simplicity. (Hence, the eigenvalue $k_{i}$ corresponds to the cut-off wave
number for i-th mode).

On the other hand, we have two ways to solve the scalar Helmholtz equation by
BEM; the method with the fundamental solution to (a) the scalar Helmholtz
equation, and (b) the Laplace equation. Ifwe use method (a), we have to calculate
the eigenvalues by a determinant search method and, in general, it is expensive to
carry out. In method (b), which is sometimes called the hybrid BEM [11], the term
$k^{2_{\psi}}$ is treated as an inhomogeneous term and the unknown values $\varphi_{i}$ are at both
domain and boundary. The method (b) allows us to effectively find eigenvalues
because BIE (14) is reduced to a linear proper equation. For this reason, we here
employ the method (b).

The resultant eigenvalues $k$ for the lowest mode are summarized in table 2. The
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Fig. 5 Cross section of a twisted waveguide

solutions by the perturbation method [2] and FEM [12] are also shown in this
table. The discrepancies between the wave numbers by BEM and those by FEM
are seemed to be negligible. On the other hand, there are significant differences
between the wave number by perturbation method and that by other two methods
for $h=0.9$ and $b=0.8$ .

A more rigorous analysis of the twisted waveguide is reported in ref. [13].

MHD equilibria in a straight helical vessel $(k=\beta=0)$

The MHD equilibria are described by

$J\cross B=\nabla p,$ $\nabla\cross B=1_{0}^{\lambda}J,$
$\nabla\cdot B=0$ , (20)

where $J$ is the current density, $B$ the magnetic field, $p$ the plasma pressure and $1^{1_{0}}$

the permeability of the free space. If an equilibrium configuration has a helical
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symmetry $(\beta=0)$ , eq. (20) can be written in terms of the stream function $\varphi$ and
current potential $g(\varphi)$ in the following form $[1, 14]$ ,

$\nabla\cdot(K\nabla\varphi)=\frac{-2K^{2}}{h}g(\varphi)-Kg(\varphi)g’(\varphi)-1_{0}^{1}p’(\varphi)$ , (21)

where $K\equiv h^{2}/(1+h^{2}r^{2})$ and the functions $\varphi$ and $g(\varphi)$ are defined by

$B_{r}=- \frac{h}{r}\frac{\partial\varphi}{\partial\zeta}$ , $B_{9}-hrB_{z}=h \frac{\partial\varphi}{\partial r}$ , $hrB_{9}+B_{z}=hg(\varphi)$ . (22)

The MHD equilibrium can be obtained by solving (21) for given functions $p(\varphi)$ and
$g(w)$ . The principal solution $\varphi^{*}$ for this case is given by [1]

$\varphi^{*}=-\frac{2}{h^{2}}(logr_{>}+\frac{1}{2}h^{2}r_{>}^{2})$

$-4rr_{0} \sum_{m=1}^{\infty}I_{m}’(mhr_{<})K_{m}’(mhr_{>})cos[m(\zeta-\zeta_{0})]$ (23)

The BIE for eq. (21) can be readily obtained by setting the constants $k$ and $\beta$ to
zero in eq. (14), which can be solved without iterations when the inhomogeneous
terms in eq. (21) are independent from the function $\varphi$ , i.e., $\Gamma=f(X, Y)$ (vacuum

fields). Figure 6 shows the magnetic surfaces (contours of $\varphi$) obtained by BEM [5]

for vacuum fields in a conducting vessel with a circular cross section with a shift $S$

from the origin. When the inhomogeneous terms in eq. (21) are the functions of $\varphi$ ,
BIE (14) must be solved using appropriate iterative techniques $[15, 16]$ .

Numerical model $h=4.0$ $h=0.2$

Fig. 6 MHD equilibrium configuration $(S=0.5)$
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SUMMARY
In this paper, the two dimensional integral equations have been introduced from
the scalar Helmholtz-type equation in the general curvilinear coordinates and the
twisted coordinates. The boundary element method for helical symmetry has been
applied to the analyses of potential fields in a helical column, electromagnetic
fields in a twisted waveguide and MHD equilibria in a helical vessel. We conclude
that BEM is not only useful to analyze electromagnetic fields with translational
and axial symmetries but also with helical symmetry.
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