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A BRIEF REPORT ON THE ZEROS OF A CLASS OF
GENERALISED DIRICHLET SERIES

BY

K. RAMACHANDRA

§ 1. INTRODUCTION. This is a brief expository article on the zeros of a
class of generalised Dirichlet series. The theory is due to R. Balasubramanian
and myself developed individually and jointly in several papers. The reason
for developing the theory is as follows. In [13]‘G.H. Hardy proved that (we

will always write s = o + 1t),

=3 (5[ L)+ >0 )

n=1

has infinity of zeros with o = 3. Hence the same is true trivially of the series

(1=2)¢(s) = Y _(=1)""'n™* (0> 0). (2)

This cannot be generalised in a neat way. For example (using the functional
equation of ((s)) it is easy to see that there are lots of real constants a for
which ((s) — a has no zeros at all with o = 3. Also the analogue of Hardy’s
result to zeta-functions of algebraic number fields is not known. (However we
know the analogue for the zeta-functions of ideal classes, and also for their
real linear combinations. of any quadratic field. See K. Chandrasekharan
and Raghavan Narasimhan [11] for these results and the earlier results of E.
Hecke). It is even more difficult to prove the analogue of the result (due to
A. Selberg [23], N. Levinson [14] and J.B. Conrey [12]) that the number of
zeros of ((s) in (¢ = 3,0 <t <T)is> T log T. In fact it is not even known
whether the zeta-function of an algebraic number field has infinity of zeros

in | o — 3 |< 6 for every fixed § > 0.



§ 2. SOME METHODS. So we considered the zeros of the function F(s) =
Zan/\;’ (where 1 = A} < Ap < ,% < At1 — A < C,C > 1 being a

n=1
positive constant and {a,} is any sequence of complex numbers. We assume
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further that F'(s) has abscissa of absolute convergence o = 1 and that it has -

“an analytié continuation in (o > % — 69,7 <t < 2T) and there maximum
of | F(s) | does not exceed T4, A and & being any fixed positive constants.
Under these conditions we proved that (for 7' = T, — c0)F(s) has >, T'~¢
zeros, € > 0 being any arbitrary constant. The method may be called the
mean square lower bound method. We would like to call it method number 1.
For this method see the zeros I*® and II1'%l. (In the text we abbreviate “on
the zeros of a class of generalised Dirichlet series” to “zeros” while referring
to papers I to XIV. Also for some convenience we refer to the papers “on
the zeros of (’(s) — a” and “on the zeros of {(s) — a” respectively as “zeros
XII” and “zeros XIII”). The method 1 depends upon Borel-Caratheodory

theorem and Hadamard’s three circles theorem and in a sense it is originally

due to J.E. Littlewood. Method number 2 (developed in zeros II1'®) is the

density argument method. This gives the lower bound > T Ezp(—(log T)*)

for all T > To(e, 80, A), under the restrictions z! Z | an |*> 7€ for all
z<n<2z )
z > zo(€),an = O(n®) and further A, = n. Method number 3 (developed

in zeros 111 and V) can be called the mean square and the mean fourth
power method. This can be described as follows. Let é be a constant satisfying
0 < 8§ < g and let

-/ | F(= = 6+it) [* dt > o? and—-f | F(==8+14t) *dt < v* (3)
T Jr 2 T Jr 2

where 1 exceeds a positive constant power of T". Then it is easy to see that on
a “well-spaced” set S of points in [T, 2T with real part § — § (the cardinality
of S being > T) we have | F(3 — 6 +1t) |>> 1. (This gives > T zeros in
(¢ > 3 —26,T <t <2T) by Borel-Caratheodory theorem and Hadamard’s

three circles theorem). But by combining this fact with an extension (see
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zeros 11IM) of a lemma of E.C. Titchmarsh (see Theorem 9.14 of [21]) to
F(s) it is possible to obtain the lower bound > T log T, which is trivially

optimal. Moreover if
1T '
../ | F(+it) [P dt <, T (Ve > 0) (4)
T Jr 2

it follows (by an easy extension of a lemma of J.E. Littlewood) that the
number of zeros of F(s) in (¢ > 3 + 6,7 <t < 2T) is O(T). Thus F(s)
has > T log T zeros in (] o0 — 1 |< 6T < t < 2T). Example F(s) =

Z((——l)”‘le:cp(w/log n)n~*). Method number 4 can be called the mean first

n=1

power and the mean second power method. Here we prove

2T
%/ |F(£—5+zt)[dt>>¢and—/ ——-6+zt)|2dt<<t (5)
T

1 being the same as before. The method of deducing that F'(s) has > T log T
zeros in (| o — 3 |< 6T < t < 2T) is the same as before (we still re-
quire (4)). But the first inequality in (5) is possible in more general sit-

uations than those which prove (3) and (4). For example we can take

)+ Zx(n n)} being any sequence of complex numbers
with Z\f O(1). We can relax this last condxtlon to Z\/ = O(z1~ 0)
n<z n<z

and x(n) = O(1). But in this case we can only prove that the number of ze-
ros of F(s) in (0 > 3 =26, T <t < 2T) is > T log T(loglog T)~*. Thus
in order to prove the same lower bound for the number of zeros of F(s) in
(| 0 —31<26,T <t <2T) we have to assume (4) (see zeros III1H, TV, V7]
and VIB). Method number 5 is quite general and can be called the log F(s)
method. In this method we first obtain (under the assumption that certain
regions are zero-free) an upper bound for | F(s) | . Next under

the conditions = Z | an |*> Exp( G log = “) where

loglog z
n<z .



C;1 > 0 is a constant and z > zg, the method.enables us to prove (by contra-
diction to the bound for | F'(s) |) that in (a >3- loglog 7T <t < ‘7T> F(s)
has > T'~¢ zeros provided D = D(g,C1, A) (see zeros VIIH®). The condi-
tional upper bound for | F(s) | depends on an extension of some ideas of J.E.
Littlewood and A. Selberg, due to myself and A. Sankaranarayanan (see [19]
and [20]). Method number 6 can be called the Euler product method. This in
brief depends on the assumptions A, = n and that F(s) has an Euler product
and so very restrictive. (However it is applicable to zeta and L-functions of
algebraic number fields). But it gives powerful results without the use of
Functional equation for F(s ) (see zeros IXU). For some other results with
§ = 8(T) — 0 see zeros VIII™ where the Euler product is not used). Method
number T can be called the kth power method (see zeros X1, X1l and XIII¥).

The method consists of a clever (conditional) lower bound for

T+H
——/ sN* |2 dt,0< k<1,

It is applicable to the study of zeros in (¢ > 3 — §,T < t < 2T) when
§ = §(T) — 0 more rapidly than Cy(loglog T)™! and also in (¢ > } +
8, T <t < 2T) where § > 0 is a constant. The results are sometimes very

general. It gives for example that given any € > 0 there exists a 6 > 0

such that the number of zeros of F(s) = Z ((=1)*'ezp(y/Tog n)n~*) in

(623+6T <t <T+T%)is > T° for T > T,(€). Method number 3 can
be called the Titchmarsh phenomenon method. This method depends upon
Euler product and hence very special (but it is applicable to ¢ and L-functions
of algebraic number fields). It gives for example that given any ¢ > 0 and
any § > 0(e < &,6 < &) there are > T zeros of ((s) — a (a, a non-zero
complex constant) in (a >1-6T <t <T+T° for T > Ty(e,8,a) (see
zeros XIIIP). For further details of these eight methods we refer the reader
to the concerned papers. (Two general reference books are (i) the famous

book [21] of E.C. Titchmarsh revised and edited by D.R. Heath-Brown and
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- the book [22] by E.C. Titchmarsh which is also a famous classic). It requires

a much longer article to give more details.

§ 3. A RECENT RESULT. Recently R. Balasubramanian and myself

have proved (see zeros XIV[!%) some very nice results on the zeros of G(s) =

Z(anbn/\; *) which are further developments of the results proved in

n=1

(zeros T, TVI, VI7 and TVE). Here a, should not be confused with the
sequence occuring in the beginning of § 2. From now on {a,} is any bounded
sequence of compler numbers satisfying some further conditions. We begin
by mentioning some special cases. Let {a,} be any sequence of real numbers
with | o, |< 107° (we have not tried to get optimal constants in place of
10-%). Then for all § with 0 < § < 55 we have the following results.

= 1
#{zeros of Z(n +a,) " in (o - 3 I8, T <t<2TN}>»sT log T

n=1

and

t{zeros of 3 (~1)" eV H(ntan)~*in ( a——% 1< 6,T <t<2T)} > TlogT.
n=1

Here in the first result by the infinite sum we mean the analytic continuation

ino > 0.
. The more general result deals with the case A, = f(n) + a, for n >

ng, f(z) being twice continuously differentiable and is further subject to
(i) f(z) ~z asz — o0
(i1) f'(x) lies between two positive constants for z > zq, and
(iii) (f'(z))? — f(z)f"(z) lies between two positive coﬁstants for z > wy.
The sequence {b,} is subject to | b, |< g(n) where

(i) g(n)n" is monotonic increasing for V 5 > 0 and n > ngy(7n),
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(ii) g(n)n~" is monotonic decreasing for V7 > 0 and n > ng(n), and

(iiij for all X > X, we have Z | bag1 — bn [ g(X).
X<n<2X :
The sequence {a,} is again somewhat general. (It is subject to the analytic
continuation of G(s) in (¢ > 3 — &,T <t < 2T) and | G(s) |< T# and
some further conditions). We can take for example Z a, =z + O(1) and

n<z
f(n) = nora, = (=1)"! and f(n) subJect to the general condition. In

these two cases the conditions mentioned in the parenthesis are alreadv sat-
isfied. We can prove that the numbber of zeros in (| o — 3 [< 6, T < t < 27)
is >s 1" log T. We can also manage with some other conditions which are

less restrictive. For example Zan =7+ O(z%) with a constant § < } and
n<z
f(n n. In this case we can prove that the number of zeros of G(s) in

) =
(0 >3—6T <t <2T)is >s T log T(loglog T)~*. But only when § = ¢,
an albltrary positive constant we can prove that the number of zeros of G(s)
in (0> 3467 <t<27T)is O(T). In all these cases the bound for | an |
will depend upon constants other than . There are yet another set of re-

sults (on the zeros of a class of generalised Dirichlet series - XV, to appear)

for example those which deal with zeros of Zd(n)(n + a,)7* and those of

n=1

mif'ﬂj{‘gﬁuw—

=0 optimal w e

_S_ ds(n)(n + ay)~*, which are &pH
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