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A BRIEF REPORT ON THE ZEROS OF A CLASS OF

GENERALISED DIRICHLET SERIES

BY

K. RAMACHANDRA

\S 1. INTRODUCTION. This is a brief expository article on the zeros of a
class of generalised Dirichlet series. The theory is due to R. Balasubramanian
and myself developed individually and jointly in several papers. The reason
for developing the theory is as follows. In [13] G.H. Hardy proved that (we
will always write $s=\sigma+it$ ),

( $(s)= \sum_{\tau\iota=1}^{\infty}(\frac{1}{n^{\delta}}-l^{n+1}\frac{du}{u^{s}})+\frac{1}{s-1}(\sigma>0)$ (1)

has infinity of zeros with $\sigma=\frac{1}{2}$ . Hence the same is true trivially of the series

$(1-2^{1-s})((s)= \sum_{n=1}^{\infty}(-1)^{n-1}n^{-s}(\sigma>0)$ . (2)

This cannot be generalised in a neat way. For example (using the functional
equation of $((s))$ it is easy to see that there are lots of real constants a for
which $\zeta(s)-a$ has no zeros at all with $\sigma=\frac{1}{2}$ . Also the analogue of Hardy’s
result to zeta-functions of algebraic number fields is not known. (However we
know the analogue for the zeta-functions of ideal classes. and also for their
real linear combinations, of any quadratic field. See K. $Chandrase1\backslash ^{r}ha1^{\cdot}an$

and Raghavan $-\backslash ^{T}arasim1\iota an[11]$ for these results and the earlier results of E.
$Hec1_{\backslash ’}e)$ . It is even more $dilY\iota cult$ to prove the analogue of the result (due to
A. Selberg [23], $\wedge\backslash T$ . Levinson [14] and J.B. Conrey [12]) that the number of
zeros of $\zeta(s)$ in $( \sigma=\frac{1}{2},0\leq t\leq T)is\gg TlogT$ . In fact it is not even known
whether the zeta-function of an algebraic number field has infinity of zeros
in $| \sigma-\frac{1}{2}|<\delta$ for every fixed $\delta>0$ .
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\S 2. SOME METHODS. So we considered the zeros of the function $F(s)=$

$\sum_{n=1}^{\infty}a_{n}\lambda_{n}^{-s}$ (where $1= \lambda_{1}<\lambda_{2}<\cdots\frac{1}{c}\leq\lambda_{n+1}-\lambda_{n}\leq C,$ $C>1$ being a

positive constant and $\{a_{n}\}$ is any sequence of complex numbers. We assume
further that $F(s)$ has abscissa of absolute convergence $\sigma=1$ and that it has
an analytic continuation in $( \sigma\geq\frac{1}{2}-\delta_{0}, T\leq t\leq 2T)$ and there maximum
of $|F(s)|$ does not exceed $T^{A},$ $A$ and $\delta_{0}$ being any fixed positive constants.
Under these conditions we proved that (for $T=T_{\nu}arrow\infty$ ) $F(s)has\gg_{\epsilon}T^{1-\epsilon}$

zeros, $\epsilon>0$ being any arbitrary constant. The method may be called the
mean square lower bound method. We would like to call it method number 1.
For this method see the zeros $I^{[15]}$ and $II^{[16]}$ . (In the text we abbreviate “on
the zeros of a class of generalised Dirichlet series” to ${}^{t}zeros$“ while referring
to papers I to XIV. Also for some convenience we refer to the papers “on
the zeros of $(’(s)-a’$ and (on the zeros of $\zeta(s)-a$ ’ respectively as ’‘zeros
XII” and “zeros XIII”). The method 1 depends upon Borel-Caratheodory
theorem and Hadamard’s three circles theorem and in a sense it is originally
due to J.E. Littlewood. $\wedge^{/t’Iethod}$ number 2 (developed in zeros $II^{[16]}$ ) is the
density argument method. This gives the lower bound $>TExp(-(logT)^{e})$

for all $T\geq T_{0}(\epsilon, \delta_{0}, A)$ , under the restrictions
$x^{-1} \sum_{x\leq n\leq 2x}|a_{n}|^{2}>x^{-\epsilon}$

for all

$x\geq x_{0}(\epsilon),$ $a_{n}=O(n^{\epsilon})$ and further $\lambda_{n}=n$ . Method number 3 (developed
in zeros $III^{[1]}$ and $IV^{[2]}$ ) can be called the mean square and the mean fourth
power method. This can be described as follows. Let $\delta$ be a constant satisfying
$0<\delta<\delta_{0}$ and let

$\frac{1}{T}\int_{T}^{2T}|F(\frac{1}{2}-\delta+it)|^{2}dt\gg\psi^{2}$ and $\frac{1}{T}\int_{T}^{2T}|F(\underline{\frac{1}{)}}-\delta+it)|^{4}dt\ll\iota_{-}^{4}$ (3)

where $\psi$ exceedsa positive constant power of T. Then it is easv to see that on
a “well-spaced” set $S$ of points in $[T, 2T]$ with real part $\frac{1}{2}-\delta$ (the cardinality
of $S$ being $\gg T$ ) we have $|F( \frac{1}{2}-\delta+it)|\gg\psi$ . (This gives $\gg T$ zeros in
$( \sigma\geq\frac{1}{2}-2\delta, T\leq t\leq 2T)$ by Borel-Caratheodory theorem and Hadamard’s
three circles theorem). But by combining this fact with an extension (see
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zeros $III^{[1]}$ ) of a lemma of E.C. Titchmarsh (see Theorem 9.14 of [21]) to
$F(s)$ it is possible to obtain the lovver bound $\gg TlogT$ , which is trivially
optimal. Moreover if

$\frac{1}{T}\int_{T}^{2T}|F(\frac{1}{2}+it)|^{2}dt\ll_{\epsilon}T^{\mathcal{E}}(\forall\epsilon>0)$ (4)

it follows (by an easy extension of a lemma of J.E. Littlewood) that the
number of zeros of $F(s)$ in $( \sigma\geq\frac{1}{2}+\delta, T\leq t<2T)$ is $O(T)$ . Thus $F(s)$

has $\gg TlogT$ zeros in $(| \sigma-\frac{1}{2}|\leq\delta, T\leq t\leq 2T)$ . Example $F(s)=$

$\sum_{n=1}^{\infty}((-1)^{n-1}exp(\sqrt{logn})n^{-\epsilon})$ . Method number 4 can be called the mean first
power and the mean second power method. Here we prove

$\frac{1}{T}\int_{T}^{2T}|F(\frac{1}{2}-\delta+it)|dt\gg\psi$ and $\frac{1}{T}\int_{T}^{2T}|F(\frac{1}{2}-\delta+it)|^{2}dt\ll\iota^{2}$ , (5)

$\psi$ being the same as before. The method of deducing that $F(s)has\gg TlogT$

zeros in $(| \sigma-\frac{1}{2}|\leq\delta, T\leq t\leq 2T)$ is the same as before (we still re-
quire (4)). But the first inequality in (5) is possible in more general sit-
uations than those which prove (3) and (4). For example we can take

$F(s)=((s)+ \sum_{n=1}^{\infty}\chi(n)n^{-s},$
$\{\chi(n)\}being_{-}$any sequence of complex numbers

with
$\sum_{n\leq x}\chi(n)=O(1)$

. We can relax this last condition to
$\sum_{n\leq x}\chi(n)=O(x^{\frac{1}{2}-\delta_{0}})$

and $\chi(\uparrow z)=O(1)$ . But in this case we can only prove that the number of ze-
ros of $F(s)$ in $( \sigma\geq\frac{1}{2}-2\delta, T\leq t\leq 2T)$ is $\gg Tlog$ T $($ loglog $T)^{-1}$ . Thus
in order to prove the same lower bound for the number of zeros of $F(s)$ in
$(| \sigma-\frac{1}{2}|\leq 2\delta, T\leq t\leq 2T)$ we have to assume (4) (see zeros $III^{[1]}$ . $IV^{[2]},$ $V^{[17]}$

and $VI^{[3]}$ ). $1]’[ethod$ number 5 is quite general and can be called the $logF(s)$

method. In this method we first obtain (under the assumption that certain
regions are zero-free) an upper bound for $|F(s)$ . Next under
the conditions $\frac{1}{x}\sum_{n\leq x}|a_{n}|^{2}\geq Exp(-\frac{C_{1}logx}{loglogx})$ where
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$C_{1}>0$ is a constant and $x\geq x_{0}$ , the method enables us to prove (by contra-
diction to the bound for $|F(s)|)$ that in $( \sigma\geq\frac{1}{2}-\frac{D}{loglogT},$ $T\leq t\leq 2T)F(s)$

has $\gg T^{1-\epsilon}$ zeros provided $D=D(\epsilon, C_{1}’, A)$ (see zeros $VII^{[18]}$ ). The condi-
tional upper bound for $|F(s)|$ depends on an extension of some ideas of J.E.
Littlewood and A. Selberg, due to myself and A. $Sankaranara_{\vee}vanan$ (see [19]
and [20]). $i?Iethod$ number 6 can be called the Euler product method. This in
brief depends on the assumptions $\lambda_{n}=n$ and that $F(s)$ has an Euler product
and so very restrictive. (However it is applicable to zeta and L-functions of
algebraic number fields). But it gives powerful results without the use of
Functional equation for $F(s)$ (see zeros $IX^{[5]}$ . For some other results with
$\delta=\delta(T)arrow 0$ see zeros $VIII^{[4]}$ where the Euler product is not used). $\wedge tIethod$

number 7 can be called the $kth$ power method (see zeros $X^{[6]},$ $XI^{[7]}$ and $XII^{[8]}$ ).
The method consists of a clever (conditional) lower bound for

$\frac{1}{T}\int_{T}^{T+H}|(F(s))^{k}|^{2}dt,$ $0<k<1$ .

It is applicable to the study of zeros in $( \sigma\geq\frac{1}{2}-\delta, T\leq t\leq 2T)$ when
$\delta=\delta(T)arrow 0$ more rapidly than $C_{1}($ loglog $T)^{-1}$ and also in $( \sigma\geq\frac{1}{2}+$

$\delta,T\leq t\leq 2T)$ where $\delta>0$ is a constant. The results are sometimes very
general. It gives for example that given any $\epsilon>0$ there exists a $\delta>0$

such that the number of zeros of $F(s)= \sum_{n=1}^{\infty}((-1)^{n-1}exp(\mapsto ognn^{-s})$ in

$( \sigma\geq\frac{1}{2}+5, T\leq t\leq T+T^{\epsilon})$ is $\gg T^{\epsilon}$ for $T\geq T_{o}(\epsilon)$ . Method number 8 can
be called the Titchmarsh phenomenon method. This method depends upon
Euler product and hence very special (but it is applicable to (and L-functions
of algebraic number fields). It gives for example that given any $\epsilon>0$ and
any $\delta>0(\epsilon<\frac{1}{10}, \delta<\frac{1}{10})$ there $are\gg T^{e}$ zeros of $\zeta(s)-a(a$ , a non-zero
complex constant) in $(\sigma\geq 1-\delta, T\leq t\leq T+T^{\epsilon})$ for $T\geq T_{0}(\epsilon, \delta, a)$ (see
zeros $XIII^{[9]}$ ). For further details of these eight methods we refer the reader
to the concerned papers. (Two general reference books are (i) the famous
book [21] of E.C. Titchmarsh revised and edited by D.R. Heath-Brown and
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the book [22] by E.C. Titchmarsh which is also a famous classic). It requires
a much longer article to give more details.

\S 3. A RECENT RESULT. Recently R. Balasubramanian and myself
have proved (see zeros $XIV^{[10]}$ ) some very nice results on the zeros of $G(s)=$

$\sum_{n=1}^{\infty}(a_{n}b_{n}\lambda_{\tau\iota}^{-s})$ which are further developments of the results proved in

(zeros $III^{[1]},$ $IV^{[2]},$ $V^{[17]}$ and $IV^{[3]}$ ). Here $a_{n}$ should not be confused with the
sequence occuring in the beginning of \S 2. From now on $\{a_{n}\}$ is any bounded
sequence of complex numbers satisfying some further conditions. We begin
by mentioning some special cases. Let $\{\alpha_{n}\}$ be any sequence of real numbers
with $|\alpha_{n}|\leq 10^{-5}$ (we have not tried to get optimal constants in place of
$10^{-5})$ . Then for all $\delta$ with $0< \delta<\frac{1}{10}$ we have the following results.

$\frac{}{7\Gamma}$ { $zeros$ of $\sum_{n=1}^{\infty}(n+\alpha_{n})^{-s}$ in $(| \sigma-\frac{1}{2}|\leq\delta,$ $T\leq t\leq 2T)$ } $\gg\delta TlogT$

and

$\#$ {$zeros$ of $\sum_{n=1}^{\infty}(-1)^{n-1}e^{\sqrt{logn}}(n+\alpha_{n})^{-f}$ in $(| \alpha-\frac{1}{2}|\leq\delta,$ $T\leq t\leq 2T)$ } $\gg_{\delta}TlogT$ .

Here in the first result by the infinite sum we mean the analytic continuation
in $\sigma>0$ .

The more general result deals with the case $\lambda_{n}=f(n)+\alpha_{n}$ for $n\geq$

$n_{0},$ $f(x)$ being twice continuously differentiable and is further subject to

(i) $f(x)\sim x$ as $xarrow\infty$

(ii) $f’(x)$ lies between two positive constants for $x\geq x_{0}$ , and

(iii) $(f’(x))^{2}-f(x)f’’(x)$ lies between two positive constants for $x\geq x_{0}$ .

The sequence $\{b_{n}\}$ is subject to 1 $b_{n}|_{\wedge}^{\vee}g(n)$ where

(i) $g(n)n^{\eta}$ is monotonic increasing for $\forall\eta>0$ and $n\geq n_{0}(\eta)$ ,
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(ii) $g(n)n^{-\eta}$ is monotonic decreasing for $\forall\eta>0$ and $n\geq n_{0}(\eta)$ , and

(iii) for all $X\geq X_{0}$ we have
$\sum_{X\leq n\leq 2X}|b_{n+1}-b_{n}|\ll g(X)$ .

The sequence $\{a_{n}\}$ is again somewhat general. (It is subject to the analytic
continuation of $G(s)$ in $( \sigma\geq\frac{1}{2}-\delta_{0}, T\leq t\leq 2T)$ and $|G(s)|<T^{A}$ and
some further conditions). We can take for example

$\sum_{n\leq x}a_{n}=x+O(1)$
and

$f(n)=n$ or $a_{n}=(-1)^{n-1}$ and $f(n)$ subject to the general condition. In
these two cases the conditions mentioned in the parenthesis are alreadv sat-
isfied. Ll$r_{e}$ can prove that the numbber of zeros in $(| \sigma-\frac{1}{2}|\leq\delta, T\leq t\leq 2T)$

is $\gg 5TlogT$ . We can also manage with some other conditions which are
less restrictive. For example

$\sum_{n\leq x}a_{n}=x+O(x^{\theta})$
with a constant $\theta<\frac{1}{2}$ and

$f(n)=n$ . In this case we can prove that the number of zeros of $G(s)$ in
$( \sigma\geq\frac{1}{2}-\delta, T\leq t\leq 2T)$ is $\gg 5Tlog$ T $($ loglog $T)^{-1}$ . But only when $\theta=\epsilon$ ,
an arbitrary positive constant we can prove that the number of zeros of $G(s)$

in $( \sigma\geq\frac{1}{2}+\delta, T\leq t\leq 2T)$ is $O(T)$ . In all these cases the bound for $|\alpha_{n}|$

will depend upon constants other than $\delta$ . There are yet another set of re-
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