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1 Introduction

The purpose of the present paper is to explain how an idea of a new his-

togram density estimator comes about to the readers who are not familiar

with density estimation. Specifically we try to explain why certain decisions

were made in the course of our research and why we thought they were justi-

fied. To serve this purpose we restrict the technical aspect of the material to

the minimum and we shall resort to heuristics if necessary. Before we get into

the particular density estimator we propose, we first would like our readers

to familiarlize themselves with what density estimation is trying to do and

why it was developed.

Suppose that we have a set of observed data points $X_{1},$
$\ldots,$

$X_{n}$ assumed

to be a random sample from an unknown probability density function $f(x)$ .
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Density estimation concerns with the construction of an estimator of the

density from the observed data, without assuming the data are drawn from

one of a known parametnc family of distributions.

Historically there had been two separate developments that were to merge

in Rosenblatt(1956) to create density estimation as a new branch of statis-

tics. One was the sequence of investigations by Grenander and Rosen-

blatt $(1953,1956)$ to estimate locally the continuous part of the spectral den-

sity function for weakly stationary sequence of random variables. The other

was the effort by Fix and Hodges(1951) to free discriminant analysis from

rigid distributional assumptions for independent data. How the two devel-

opments merged and the kernel density estimator was born was recollected

in Rosenblatt(1991).

Next we would like to summarize relative strengths and weaknesses for the

two most important density estimators, the kernel estimator and histogram.

The kernel estimator is considered to be mathematically more appealing

since its expected discrepancy to the underlying density converges at the

rate of $O(n^{-4/5})$ , faster than that of the histogram, which converges at the

rate of $O(n^{-2/3})$ . The kernel estimator, however, often neglects boundary

restrictions because it is based on smoothing. Accordingly it is rarely used

in analyzing, let. alone in presenting, survival data for which the data are

restricted to be nonnegative and compactly supported. The histogram is

by far the oldest and most widely used density estimator. Constructing the

histogram, however, requires not only a cell width $|C|$ , which is essential, but

the leftmost cutpoint $a$ . The choice of the latter can have a quite effect, a

nuisance.
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In this paper, we are concerned with the particular class of histogram

density estimator. We would like to remind the reader that this is simply

because the we were interested in applying the estimator to survival data for

which boundary restrictions are facts of life. We do not think the histogram

is always superior to the kernel estimator, but we do not believe the converse

to be the case either.

As a preparation for presenting our histogram, we would like to define

some basic terms and notations. We would like to use the term histogram or

empirical histogram $f_{n}^{o}(x)$ for our density estimator that has more than or

equal to one cell whose widths may vary. Each cell has width and height as

seen in the picture below. Also cell heights may not have to be determined

by the number of data that fall in the cell. In other words, we $\dot{r}$egard our

histogram as a mixture of uniforms whose heights may be determined by

some other algorithm.

cutpoint
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2 Motivation

2.1 Closeness to the underlying density

First we would like our histogram to be close to the underlying density. In

order to evaluate overall closeness to the underlying density, however, we

need measures of discrepancy between $f_{n^{o}}(x)$ and $f(x)$ .
Let $;(x)$ be the histogram with constant cell width. Historically mean

integrated square error(MISE)

MISE$( \hat{f}, f)=E\int\{\hat{f}(x)-f(x)\}^{2}dx$

was widely used in the previous work. Scott(1979) obtains theoretically op-

timal constant cell width $|C|$ that asymptotically minimizes MISE$(\hat{f}, f)$ .
Rudemo (1982) proposed a data-based method of choosing the leftmost cut-

point and cell width $(a, |C|)$ called least-squares cross-vahdation(LSCV) by

minimizing a criterion whose expected value is MISE$( \hat{f}, f)-\int f(x)^{2}dx$ .
Stone(1984) showed Rudemo’s estimators of $(a, |C|)$ is asymptotically close

to $\min MISE(f,f)$ . Kogure(1987) extended Rudemo’s estimators of $(a, |C|)$

to a variable cell histogram.

We take different strategy. Instead of comparing $f_{n^{o}}(x)$ directly with $f(x)$ ,

we introduce a concept of the k-cell theoretical histogram $g^{o}(x)$ that belongs

to a class of k-cell histogram-type densities $g(x)$ which is defined on the same

domain as $f(x)$ , and that minimizes Hellinger distance(HD)

$HD(g, f)= \int\{g(x)^{1/2}-f(x)^{1/2}\}^{2}dx$ .

Using the concept of the theoretical histogram $g^{o}(x))$ we can define a
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Figure 1: A finite mixture of uniforms. The theoretical histogram coincides

with the underlying density.

histogram $f_{n}^{o}(x)$ to be close to its underlying density $f(x)$ when $f_{n^{o}}(x)arrow$

$g^{o}(x)$ as the number of sample increases. We give two examples of theoretical

histogram.

EXAMPLE 1. An underlying density itself is a finite mixture of uniforms

$f(x)=3/2\{.0\leq x\leq.5\}+1/2\{.5\leq x\leq 1.0\}$ .

It is shown in Figure 1. The theoretical histogram coincides with the under-

lying density.

EXAMPLE 2. A quadratic underlying density

$f(x)=3x^{2}/7\{1.0\leq x\leq 2.0\}$ .
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Figure 2: A quadratic underlying density and its theoretical histogram.

For $g^{o}$ with two cells let the mid-cutpoint be $x$ where 1 $<x<2$ . The

resulting Hellinger distance $\propto[(x+1)^{2}(x-1)+(2+x)^{2}(2-x)]$ has its

maximum at $x=3/2$ . Thus the two cells have equal width. In general for $g^{o}$

with $k$ cells, any two neighboring cells have the same width, and so all cells

are of the same width. Therefore the theoretical histogram with five cells has

the constant cell width as shown in Figure 2.

If the problem of determining how much smoothing should be done is
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important as it has been in density estimation, then the problem of choosing

a proper measure of discrepancy must be important as well. The integarated

square error(ISE) has generally been regarded as the standard measure of the

discrepancy because it was advocated first, is mathematically tractable, and

because the mean square error has been familiar to us. Since we decided to

choose non-standard Hellinger distance over the more conventional ISE, the

readers are entitled to have an explanation why we should do so.

Let us note first that the HD is asymptotically close to the weighted

integrated square error(WISE)

$\int\frac{\{f_{n}^{o}(x)-f(x)\}^{2}}{f(x)}dx$ ,

in the sense that

$\int\{f_{n}^{o}(x)^{1/2}-f(x)^{1/2}\}^{2}dx\approx\frac{1}{4}\int\frac{\{f_{n^{o}}(x)-f(x)\}^{2}}{f(x)}dx$.

Assuming $f_{n}^{o}(x)$ is sufficiently close to $f(x)$ , we can see this from

$\{f_{n}^{o}(x)^{1/2}-f(x)^{1/2}\}^{2}=f_{n^{O}}(x)+f(x)-2\{1+\frac{f_{n^{o}}(x)-f(x)}{f(x)}.\}^{1/2}f(x)$

$\approx$ $f_{n}^{o}(x)+f(x)-2[1+ \frac{1}{2}\{\frac{f_{n^{\circ}}(x)-f(x)}{f(x)}\}-\frac{1}{8}\{\frac{f_{n^{o}}(x)-f(x)}{f(x)}\}^{2}]f(x)$

$=$ $\frac{1}{4}\frac{\{f_{\tau i}^{o}(x)-f(x)\}^{2}}{f(x)}$

We shall give four reasons, in decreasing order of significance in our judgment,

why we think the WISE is preferable to the ISE. The first and most important

reason is derived from the following analogy. If the variances in error terms

vary with observations in least-squares estimation, we know the residual sum
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of squares to be minimized must be adjusted by multiplying the inverse of

its heteroscedastic, and thereby non-identity, variance-covariance matrix to

obtain the best linear unbiased estimator. We think the same principle should

be applied to in density estimation. The argument suggests that we use as

our measure of the discrepancy

$\int\frac{\{f_{n}^{o}(x)-f(x)\}^{2}}{V(f_{n^{o}}(x))}dx$ . (1)

We know, for the kernel estimator $f_{kernel}(x)$ with the constant window

width, its variance is

$V(f_{kernel}(x))\approx\frac{f(x)}{nh}\int K(t)^{2}dt$ ,

where $K(t)$ is the kernel function, $h$ the size of the window width, $n$ the

sample size. Similarly, for the histogram $f_{histo}(x)-$ with the constant cell

width, its variance is
$V(f_{histo}(x))\approx\frac{f(x)}{nh}-$ ,

where $h$ is the size of the cell width. If we assume the size of the smoothing

parameter such as the window or cell width does not vary much with $x$ , then

the variance $V(f_{n^{o}}(x))$ in (1), whether its $f_{n^{o}}(x)$ is the histogram or kernel

estimator, is proportional to $f(x)$ .
In other words, the WISE properly discounts the contributions from high

density regions where the variabilities are also high by giving there the weight

of $1/f(x)$ . The other distance-based measure of discrepancy such as the

ISE, neglecting this essential operation, gives an equal weight to the regions

regardless of the variabilities there.
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The couclusion above is also supported by the following. Let $|I|$ be the

width of support of the density. Scott(1979) showed the optimal cell size for

the histogram that asymptotically minimizes the MISE to be

$[ \frac{6}{\int f^{(1)}(x)^{2}dx}]^{1/3}n^{-1/3}$ , (2)

while Kanazawa(1993a) showed the optimal cell size that asymptotically min-

imizes mean Hellinger distance(MHD) to be

$[ \frac{12\cdot|I|}{\int\{f^{(1)}(x)^{2}/f(x)\}dx}]^{1/3}n^{-1/3}$. (3)

Rosenblatt(1956) showed the optimal window width for the kernel estimator

with kernel $K(t)$ that asymptotically minimizes the MISE to be

$[ \frac{\int K(t)^{2}dt}{\{\int t^{2}K(t)dt\}^{2}}]^{1/5}\{\int f^{(2)}(x)^{2}dx\}^{-1/5}n^{-1/5}$ , (4)

while Kanazawa (1993b) showed the optimal window width that asymptoti-

cally minimizes the MHD to be

$(4 \cdot|I|)^{1/5}[\frac{\int I\zeta(t)^{2}dt}{\{\int t^{2}If(t)dt\}^{2}}]^{1/5}\{\int\frac{f^{(2)}(x)^{2}}{f(x)}dx\}^{-1/5}n^{-1/5}$ . (5)

Those based on the MISE use raw derivatives, $f^{(1)}$ and $f^{(2)}$ , while those

based on the MHD use derivatives adjusted by the variance of the density

estimators, $f^{(1)}/f^{1/2}$ and $f^{(2)}/f^{1/2}$ . This illustrates that the MHD tries to

stabilize variance at a single point before it integrates out over the support,

while the MISE does not.

The second reason is that Kullback-Leibler loss also measures the WISE

asymptotically in the sense that

$\int f(x)\log\frac{f(x)}{f_{n^{o}}(x)}dx\approx\frac{1}{2}\int\frac{\{f_{n}^{o}(x)-f(x)\}^{2}}{f(x)}dx$.
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We can see this by using Taylor’s expansion to Kullback-Leibler loss,

$\log\frac{f_{n^{O}}(x)}{f(x)}=\log\{1+\frac{f_{n}^{o}(x)-f(x)}{f(x)}\}\approx\frac{f_{n^{o}}(x)-f(x)}{f(x)}-\frac{1}{2}\{\frac{f_{n^{o}}(x)-f(x)}{f(x)}\}^{2}$ .

Hence the HD is an essential link between distance-based and information-

theoretic measures of discrepancy.

The third reason is that the HD, through its asymptotic equivalence with

the KLL, has an well established and completely data-based method for

choosing the size of histogram cells in Akaike’s information criterion. The fact

that the AIC is essentially a model selection rule based on KLL is evidenced

by the Akaike’s own writing in Akaike(1973):

...this [AIC] is equivalent to maximizing an information theo-

retic quantity which is given by the definition

$E \log\frac{f(x|\hat{\theta})}{f(x|\theta)}=E\int f(x|\theta)\log\frac{f(x|\hat{\theta})}{f(x|\theta)}dx$.

The integral in the right-hand side of the above equation gives the

Kullback-Leibler’s mean information for discrimination between
$f(x|\hat{\theta})$ and $f(x|\theta)\ldots$ .

The AIC must be equivalent to the $KLL$ asymptotically under appropriate

conditions on the density. The fact that the AIC is completely data-based

and does not depend on the unknown density being estimated can be seen

in the following specification of it by Taylor(1987) for the histogram;

AIC $=J-\log[\Pi_{i=1}\neq of$
cells

$\{\nu_{i}/(nh)\}^{\nu;}]$

where $t/$; equal the number of data points in the i-th cell, $h$ the (constant)

bin width, and $J$ the total number of histogram cells.
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Fourth we would like to have tail-sensitive histogram because we are inter-

ested in applying the density estimator to survival data for which boundary

restrictions cannot be avoided as we already stated. When one compares the

MISE-optimal cell width in (2) with the MHD-optimal (3) for the histogram

or the MISE-optimal window width in (4) with the MHD-optimal (5) for the

kernel density estimator, one cannot fail to notice that those based on the

MISE neglect the $|I|$ , while those based on the MHD do not. This implies

the MISE concentrates its focus on the center of distribution so much that

it does not even care how wide its tail can be.

2.2 Handling of observations on cutpoints

Secondly we would like our histogram to be free of awkward problem often

associated with constructing the histogram, the problem concerns with its

handling of observations on cutpoints. When observations fall on the cut-

points, one needs to either move cutpoints or somehow classify observations

on the cutpoints. We usually take the latter path and the histogram cells

are chosen closed on the left and open on the right. For the kiIid of data

we are interested in applying our histogram to, any density estimators are

likely to be unacceptable if they give any weight to the region outside of its

support. These two considerations led us to choose the leftmost cutpoint at

$X_{(1)}$ , rightmost at $X_{(n)}$ and to choose the other cutpoints from order statistics

$X_{(2)},$ $\ldots$ , $x_{(n-1)}$ . This requirement makes our variable-cell histogram to be

an uncensored Kaplan-Meier estimator whose number of jumps is reduced.
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3 Heuristic derivation

To derive a variable cell histogram with these properties, we shall proceed

as follows: (1) Compute a k-cell ”theoretical histogram $g^{o}’$ that minimizes

the Hellinger distance $HD(g, f)= \int_{I}[g(x)^{1/2}-f(x)^{1/2}]^{2}dx$ to a density $f$

over a class of k-cell histogram-type density $g$ that stays constant within a

cell; (2) Derive a histogram $f_{n^{o}}$ based on the sample that estimates $g^{o}$ . The

theoretical histogram $g^{o}$ depends on $f$ but not on the sample.

We shall describe the two steps heuristically but with more details. First

we note the height $h_{j}$

$h_{j}=[ \frac{\int_{I_{j}}f(x)^{1/2}dx}{|I_{j}|}]^{2}/\sum_{j=1}^{k}\frac{[\int_{I_{j}}f(x)^{1/2}dx]^{2}}{|I_{j}|}$, $x\in I_{j}$

of the j-th cell $I_{j}$ of a class of k-cell histogram-type density $g$

$\mathcal{L}(k)=\{g$ : $g(x)= \sum_{i=1}^{k}h_{j}\{x\in I_{j}\},\sum_{i=1}^{k}h_{j}|I_{j}|=1,$ $h_{j}\geq 0\}$ ,

where $|I_{j}|$ is the width of the j-th cell, minimizes the Hellinger distance to

the density

$HD(g, f)= \sum_{j=1}^{k}\int_{I_{j}}[h_{j}^{1/2}-f(x)^{1/2}]^{2}dx$ .

This may be done by the method of Lagrange multipliers. The resulting

Hellinger distance $HD(g, f)$ is

$HD(g, f)=2-2[ \sum_{j=1}^{k}\frac{[\int_{I_{j}}f(x)^{1/2}dx]^{2}}{|I_{j}|}]^{1/2}$

Let $H$ and $H^{(1)}=1/f$ be the inverse of the distribution function $F$ of the

unknown density $f$ and its first derivative respectively. If we denote the
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endpoints of $F(I_{j})$ by $[p_{j},p_{j+1}]$ , elementary calculation shows that

$P$ (瓦 $p$ )
$= \frac{\pi}{4}\sum_{j=1}^{k}\frac{[\int_{p^{p_{j^{j+1}}}}H^{(1)}(u)^{1/2}du]^{2}}{\int_{p_{j}^{p_{j+1}}}H^{(1)}(u)du}=\frac{\pi}{4}\sum_{j=1}^{k}\frac{[\int_{I_{j}}f(x)^{1/2}dx]^{2}}{|I_{i}|}$.

Let $K=k+1$ be the number of cutpoints of the histogram-type density

$g$ . If the set of K-cutpoints $p^{o}=$ $(p_{1}^{o}, \ldots , p_{h’}^{o})$ maximizes $P(H, p)$ , then it

minimizes $HD(g, f)$ . For this set of cutpoints $p^{o}$ , we obtain a set of k-heights
$h^{o}=$ $(h^{o}, \ldots , h_{k}^{o})$ by substituting $p^{o}$ in a formula of $h_{j}$ above. Thus a pair

$(p^{o}, h^{o})$ determines the theoretical histogram $g^{o}$ .

Secondly, to find the histogram $f_{n^{o}}$ that best estimates $g^{o}$ , we shall proceed

as follows: (1) Construct sample-based analogs $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ and

$h_{nj}$ of $P(H, p)$ and $h_{j}$ respectively; (2) Find the set of cutpoints that maxi-

mizes $C$ ($X_{(1)},$ $\ldots$ , $X_{(n-1)},$ $n$ ) $;(3)$ Compute $h_{nj}$ for the set of cutpoints. We

expect the histogram $f_{n}^{o}$ constructed this way to converge to the theoretical

histogram $g^{o}$ . Now we need a sample-based analog $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ of

$P(H, p)$ . Define the i-th spacing as $T_{i}=X_{(i+1)}-X_{(i)},$ $i=1,$ $\ldots,$
$n-2$ , where

$X_{(i)}$ is an i-th order statistic of an independent and identically distributed

sample $X_{1},$ $\ldots,X_{n-1}$ of size $n-1$ . The inverse of the probability integral

transformation gives $X_{(i)}=H(U_{(i)})$ where $U_{t\dot{\triangleleft})}$ is the i-th order statistic from

an independent and identically distributed sample of size $n-1$ from the uni-

form $[0,1]$ . Let $e_{1},$ $\ldots$ , $e_{n}$ be independent exponentials with mean 1 and set

$s_{n}=\Sigma_{i=1}^{n}e_{i}$ . From the well-known relation between the uniform spacings

and standardized exponentials $e;/s_{n}$ , we have

$T_{i} \approx(U_{(i+1)}-U_{(i)})H^{(1)}(i/n)=\frac{e_{i}}{s_{n}}H^{(1)}(i/n)$ .
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Then for a criterion $C(X_{(1)},$ $\ldots,X_{(n-1)},n)$ below, we obtain the following:

$C(X_{(1)},$
$\ldots,$

$X_{(n-1)},$
$n)=n^{-1}\sum_{j=1}^{k}\frac{[\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}^{1/2}]^{2}}{\Sigma_{i=n_{j}}^{-1+n_{j+1}}T:}$

$\approx\sum_{j=1}^{k}\frac{[n^{-1}\Sigma_{i=n_{j}}^{-1+n_{j+1}}e_{i^{1/2}}H^{(1)}(i/n)^{1/2}]^{2}}{n^{-1}\Sigma_{i=n_{j}}^{-1+n_{j+1}}e:H^{(1)}(i/n)}\approx P(H, p)$ .

We can construct a sample-based analog $h_{nj}$ of $h_{j}$ similarly.

We summarize the procedure to construct a variable k-cell histogram $f_{n^{o}}$ :

Step 1. Find a set of K-cutpoints $(X_{(n_{1}^{o})}, \ldots, X_{(n_{I\backslash ’}^{o})})$ that maximizes

$C(X_{(1)},$ $\ldots,X_{(n-1)},$
$n)=n^{-1}\sum_{j=1}^{k}\frac{[\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}^{1/2}]^{2}}{\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}}$ . (6)

Step 2. Compute the optimal height $h_{nj}^{o}$ from the cutpoints in Step 1 by

We note the criterion requires a class of k-cell empirical histograms $f_{n}$ with

the j-th cell $I_{nj}$

$\mathcal{L}_{n}(k)=\{f_{n}$ : $f_{n}(x)= \sum_{j=1}^{k}h_{nj}\{x\in I_{nj}\},\sum_{j=1}^{k}h_{nj}|I_{nj}|=1$ ,尻$j\geq 0\}$ ,

from which our histogram $f_{n^{o}}$ is chosen to have:
1 variable cell widths for the cutpoints are chosen from $X_{(1)},$

$\ldots,$ $X_{(n-1)}$ ;

1 a domain $[X_{(1)}, X_{(n-1)}]$ .
The intuition behind the choice of criterion (6) is that the information on

the density is reflected in the spacings in such a way that regions with narrow

spacings tends to have high density, while ones with wide spacings tends

to have low density. Maximizing $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ is computationally

simple through the dynamic programming algorithm.
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4 Algorithm

We explain the dynamic programming algorithm to find the K-cutpoints

that maximize the $C$ ($X_{(1)},$ $\ldots$ , $X_{(n-1)},$ $n$ ) through the example. Suppose

that we want to choose four cutpoints from $X_{(1)},$
$\ldots,$

$X_{(6)}$ . The leftmost and

rightInost cutpoints are $X_{(n_{1}^{\circ})}=X_{(1)}$ and $X_{(n_{li}^{\circ})}=X_{(6)}$ . Then:

Stage 3. Selection of the best 4

4 X(1) X(2) X(3) X(4) X(5) X(6)

$P$ [ $—$ Best 3 $—$ ] $[$ $]$ 1

$T$ [ $——$ Best 3 $——$] $[$ $]$ 2

$S$ [ $———$ Best 3 $———$] $[$ $]$ 3

Stage 2. Selection of the best 3

3 X(1) X(2) X(3) X(4) X(5)

$P$ [-Best 2-] $[$ $]$ 1

$T$ [-Best 2-] $[$ $]$ 2

$S$ [ $—$ Best 2 $—$] $[$ $]$ 2

[-Best 2-] $[$ $]$ 3

[ $—$ Best 2 $—$] $[$ $]$ 3

[ $——$ Best 2 $——$] $[$ $]$ 3

Stage 1. Selection of the best 2

2 X(1) X(2) X(3) X(4)

$P$ [-Best 2-] 1, 2 ’3
$T$ [ $—$ Best 2 $—$ ] 2,3

$S$ [ $——$ Best 2 $——$] 3
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Since the best 2 and 3 are already computed at Stage 1 and 2, we only have

to compute the increment in $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ brought in by adding

one cutpoint at Stage 2 and 3.

Direct enumeration roughly requires $Kn!/K!(n-K)!$ calculations, while

the dynamic programming roughly needs $Kn^{2}/2$ . Hence the ratio of the

former to the latter is roughly $2(n-2)!/K!(n-K)!$ . For $K=5$ and 10,

these are roughly $2n^{3}/5!$ and $2n^{8}/10!$ , quite a saving.

5 Consistency with the number of cells fixed

The density $f$ has to be “smooth” to substantiate the heuristic argument

that $C$ ( $X_{(1)},$ $\ldots$ , $X_{(n-1)},$ $n$ ) and $P(H, p)$ are close. Also the theoretical his-

togram $g^{o}$ has to be unique to establish the histogram $f_{n}^{o}$ converges to $g^{o}$ .
In Kanazawa $(1988a,b)$ we showed $f_{n}^{o}$ with the known number $k$ of cells con-

verges in probability to $g^{o}$ under the smoothness conditions Al through A3

on $f$ and the uniqueness condition Bl on $g^{o}$ :

THEOREM 1.

Let the following conditions and Cl be satisfied:

Al $\Gamma^{l}$ is twice continuously differentiable except for finite points;

A2 $\int is1$) $oundcd$ away $f\iota\cdot 0\iota n0$ and $\infty$ ;

A3 $f’$ is bounded away from $\infty$ ;

Bl A unique choice of cells $I_{j},j=1,$
$\ldots,$

$k$ that maximize

$P(H, p)=\sum_{j=1}^{k}\frac{[\int_{I_{j}}f(x)^{1/2}dx]^{2}}{|I_{j}|}$ .
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Define

$C(X_{(1)},$ $\ldots,X_{(n-1)},$
$n)=n^{-1}\sum_{j=1}^{k}\frac{[\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}^{1/2}]^{2}}{\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}}$.

Then:

(1) For any set of indices $n=(n_{1}, \ldots, n_{K})$ of K-cutpoints $(X_{(n_{1})}, \ldots , X_{(n_{K})})$

$\max_{1=n_{1}<n_{2}<\ldots<n_{K}=n-1}|C(X_{(1)},$ $\ldots,X_{(n-1)},$ $n)-P(H,n/n)|=O_{p}(n^{-1/2})$

(2) The set of indices $n^{o}=(n_{1}^{o}, \ldots, n_{h’}^{o})$ of the K-cutpoints $(X_{(n_{1}^{o})}, \ldots, X_{(n_{\mathring{K}})})$

that maximizes $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ converges to the K-cutpoints $p^{o}=$

$(p_{1)}^{o}\ldots,p_{K}^{o})$ that maximizes $P(H, p)$ in the sense that $n^{o}/narrow p^{o}$ in proba-

bility as $narrow\infty$ .

PROOF

The idea of the proof is already covered in section 3.

Densities $f(x)$ in EXAMPLE 1 and 2 on page 5 satisfy these conditions.

For a uniform density on the interval $I$ of compact support, a theoretical

histogram with $k>1$ cells does not exist because any choice of cells that

covers the interval produce an identical $P(H, p)$ . This violates Bl.

6 The optimal number of cells

For a density whose theoretical histogram $g^{o}$ has a “correct”and finite number

of cells as in EXAMPLE 1, consistency of $f_{n}^{o}$ with the known number of

cells to $g^{o}$ in Kanazawa $(1988a,b)$ in principle warrants the validity of the

procedure, though the problem remains regarding how we actually identify
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the true number of cells for the density. For smoother densities such as the

one in EXAMPLE 2, however, there is no “correct”number of cells and we

are forced to determine the number of cells. As a global measure of error

between a class $\mathcal{L}_{n}(k)$ of k-cell histograms $f_{n}$ whose cutpoints are chosen

from the order statistics $X_{(1)},$ $\ldots$ , $X_{(n-1)}$ and the unknown density $f$ , we use

the mean Hellinger distance between $f_{n}$ and $f$

$MHD(f_{n}, f)=E[ \int_{I}(f_{n}(x)^{1/2}-f(x)^{1/2})^{2}dx]$ ,

where $E$ denotes the expectation with respect to the sample $X_{1},$
$\ldots,$

$X_{n-1}$ .
We note that the mean Hellinger distance to $f$ is defined for $f_{n}$ , and not

for $f_{n^{o}}$ , the k-cell histogram obtained by maximizing $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$ .

In Kanazawa (1992a) we showed $f_{n^{o}}$ the mean Hellinger distance between $f_{n}$

and $f$ is minimized if we take the number of cells to be $k=O(n^{1/3})$ under

an additional smoothness condition A4 on the density and a constraint Cl

that prevents a small number of cells from dominating the other cells on the

histogram as follows:

A4 $f^{u}$ exists and is bounded away from $\infty$ ;

Cl For all $\triangle_{j}N=(n_{J+1}-n_{j})/n$ where $j=1,$ $\ldots,$
$k$ and some constants $C_{o}$

and $C^{o}$

$0< \frac{C_{o}}{k}\leq\triangle_{j}N\leq\frac{c\circ}{k}<1$ .

We note that the cutpoints of $f_{n}$ in Cl do not involve maximizing the crite-

rion (6) and are denoted by $(X_{(n_{1})}, \ldots , X_{(n_{K})})$ , while those of $f_{n^{o}}$ obtained by

maximizing (6) are denoted by $(X_{(n_{1}^{\circ})}, \ldots, X_{(n_{\mathring{K}})})$ . We present the theorem

in terms of $H^{)}s$ .
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THEOREM 2

Let the following conditions and Cl be satisfied:

Al’ $H(u)$ is three times continuously differentiable except for finite points.

A2’ $0<m_{1}\leq H^{(1)}(u)\leq M_{1}<\infty$ , $0\leq u\leq 1$ .
A3’ $|H^{(2)}(u)|\leq M_{2}<\infty$ , $0\leq u\leq 1$ .
A4’ $|H^{(3)}(u)|\leq M_{3}<\infty$ , $0\leq u\leq 1$ .
As $narrow\infty$ the number of cells $\hat{k}$ that minimize the mean Hellinger distance

between $f_{n}$ and $f,$ $MHD(f_{n}, f)$ , satisfies:

$\frac{\hat{k}}{n^{1/3}}arrow[\frac{\pi}{24(4-\pi)}]^{1/3}\int_{0}^{1}\backslash [\frac{H^{(2)}(u)}{H^{(1)}(u)}]^{2/3}du$ .

As $narrow\infty$ the minimal $MHD(f_{n}, f)$ satisfies:

$\min MHD(f_{n}, f)n^{2/3}arrow[\frac{3(4-\pi)}{8\pi}]^{2/3}\int_{0}^{1}[\frac{H^{(2)}(u)}{H^{(1)}(u)}]^{2/3}du$ .

PROOF

After a long and tedious computations, it can be shown that

$MHD(f_{n}, f)=constant-O(k^{-2})+O(k/n)$

Balance the second term against the third term. 口

For the quadratic density in EXAMPLE 2, $\hat{k}/n^{1/3}$ and $\min MHD(f_{n}, f)n^{2/3}$

converges to 0.64 and 0.26 respectively.
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7Consistency with the number of cells in-

creasing

If we are to construct a consistent data-based method by extending step 1

and 2, $g^{o}$ must remain as the target of $f_{n}^{o}$ even if we increase the number of

variable cells at $O(n^{1/3})$ . From the second statement of THEOREM 2 we know

the minimal MHD decreases at $O_{p}(n^{-2/3})$ and thus the $HD(g^{o}, f)$ decreases

as fast. If we show the maximal difference between $C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$ $n)$

and $P(H, n/n)$ with all the specifications of K-cutpoints considered, are

$o_{p}(n^{-2/3})$ , then $g^{o}$ remains as the target of $f_{n^{o}}$ . The maximal difference is

still $O_{p}(n^{-2/3})$ after appropriate random variables and constants indepen-

dent of cutpoint-specification are subtracted. A constraint that requires the

neighboring cell widths of $f_{n}^{o}$ to vary slowly on step 1, along with that on the

cell widths of $g^{o}$ , make it $o_{p}(n^{-2/3})$ . Then in Kanazawa we shall show the

$f_{n}^{o}$ converges to $g^{o}$ in the sense that the maximal absolute difference between

any corresponding cutpoints of $f_{n^{o}}$ and of $g^{o}$ converges to $0$ in probability.

THEOREM 3

Let Al through A4, Bl’, and Cl’ be satisfied.

Bl’ There is a unique choice of $p^{o}=$ $(p_{1}^{o}, \ldots , p_{K}^{o})$ that maximize

$P(H, p)=\frac{\pi}{4}\sum_{j=1}^{k}\frac{[\int_{p^{p_{j^{j+1}}}}H^{(1)}(u)^{1/2}du]^{2}}{\int_{p^{p_{j^{j+1}}}}H^{(1)}(u)du}$

subject to the constraint

$0<C_{o}n^{-1/3}\leq\Delta^{oo}p_{j}=p_{j+1}-p_{j}^{o}\leq C^{o}n^{-1/3}<1$ .
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Cl’ A unique choice of K-cutpoints $(X_{(n_{1}^{o})}, \ldots,X_{(n_{K}^{o})})$ that maximize

$C(X_{(1)},$
$\ldots,$ $X_{(n-1)},$

$n)=n^{-1}\sum_{i=1}^{k}\frac{[\Sigma_{i=n_{j}}^{-1+n_{j+1}}\tau_{:}^{1/2}]^{2}}{\Sigma_{i=n_{j}}^{-1+n_{j+1}}T_{i}}$ ,

with probability 1 subject to the constraints that

$0<C_{o}n^{-1/3} \leq\triangle_{i}N^{o}=N_{j+1^{\circ}}-N_{j^{o}}=\frac{n_{j+1^{O}}-n_{i^{o}}}{n}\leq C^{o}n^{-1/3}<1$ , (7)

$n_{j^{O}}-n_{j-1}^{o}-a_{n}\leq n_{j+1^{\circ}}-n_{j^{o}}\leq n_{j^{o}}-n_{j-1}^{o}+a_{n}$ , (8)

where $a_{n}=n^{1/3}\log n,$ $j=1,$ $\ldots,$
$k$ , some constants $C_{o}$ and $C^{o}$ .

The number $k$ of cells is set at $k=\lambda n^{1/3}$ where $\lambda$ is a constant. For any

indices $n=$ $(n_{1}, \ldots , n_{K})$ of the K-cutpoints $(X_{(n_{1})}, \ldots , X_{(n_{K})})$ that satisfy

(7) and (8) in Cl’ and for a quantity $Q_{n}$ independent of the cutpoints,

$\sup_{1=n_{1}<n_{2}<\ldots<n_{K}=n-1}|C(X_{(1)},$ $\ldots,X_{(n-1)},$ $n)-P(H, n/n)-Q_{n}|=o_{p}(n^{-2/3})$ .

The set of indices $n^{o}=$ $(n_{1}^{o}, \ldots , n_{A’}^{o})$ that satisfies Cl’ converges to the set

$p^{o}=(p_{1’}^{o}p_{A’}^{o})$ that maximize $P(H, p)$ in the sense that, for $N_{j}^{o}=n_{j^{O}}/n$ ,

$\sup_{1\leq j\leq K}|N_{j}^{o}-p_{j}^{o}|arrow 0$ in probability.

For $\triangle_{4}N^{o}=N_{j+1^{\circ}}-N_{j^{o}}$ and $\triangle p_{j^{o}}=p_{j+1^{O}}-p_{j^{o}}$ , the stronger result holds:

$\sum_{j=1}^{k}[\frac{\triangle_{j}N^{o}}{\triangle_{Pj^{O}}}-1]^{2}\Delta p_{j}^{o}=o_{p}(1)$ .

PROOF
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It can be shown that

$C(X_{(1)},$
$\ldots,$

$X_{(n-1)},$ $n)$ $=$ $\frac{\pi}{4}+O_{p}(k^{1/2}/n^{1/2})-O_{p}(k^{-2})+O_{p}(k/n)$

$P(H, n/n)$ $=$ $\frac{\pi}{4}-O_{p}(k^{-2})+o_{p}(n^{-2/3})$

where $O_{p}(k^{-2})$ terms in $C(X_{(1)},$
$\ldots,$

$X_{(n-1)},$ $n)$ and $P(H, n/n)$ are identical.

Subtract appropriate terms that do not depend on the choice of the K-

cutpoints. $\square$

Bl’ is different from Bl in that Bl’ imposes a constraint on the cell widths

of $g^{o}$ . Cl’ differs from Cl in two aspects: the cutpoints $(X_{(n_{1}^{\circ})}, \ldots, X_{(n_{K}^{o})})$

of $f_{n}^{o}$ in Cl’ involves maximization of $C(X_{(1)},$ $\ldots,X_{(n-1)},$ $n)$ while those

$(X_{(n_{1})}, \ldots , X_{(n_{K})})$ of $f_{n}$ in Cl do not; Cl’ imposes an additional constraint

(8) that requires the neighboring cell widths of $f_{n^{o}}$ to change slowly. Applying

(8) repeatedly gives

$1- \frac{(k-1)a_{n}}{n_{2}^{o}-n_{1}^{o}}\leq\frac{n_{A’}^{o}-n_{k}^{o}}{n_{2}^{o}-n_{1}^{o}}\leq 1+\frac{(k-1)a_{n}}{n_{2}^{o}-n_{1}^{o}}$.

The ratio of the indices of the last cell to those of the first, $(n_{h’}^{o}-n_{k}^{o})/(n_{2}^{o}-n_{1}^{o})$ ,

is $O_{p}(\log n)$ because $k=O(n^{1/3})$ and $n_{2}^{o}-n_{1}^{o}=O_{p}(n^{2/3})$ . Hence the bound

$a_{n}=n^{1/3}\log n$ is large enough to guarantee the maximization in Cl’.

We need a maximal inequality because the cutpoints themselves depend

on the sample and are random variables. It is difficult to control terms under
$n^{-2/3}$ because of the huge number $(n/k)^{k}$ of possible choices of cutpoints.

Asymptotics for the known number of cells do not work. We have to reduce

the number of possible choices of cutpoints by insisting neighboring cell sizes

do not vary too rapidly.
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$n$ Theoretical Mean Sample Mean MSE

10 0.750 0.579 0.0705

50 0.750 0.677 0.0400

100 0.750 0.729 0.0104

500 0.750 0.749 0.0005

Table 1: Error between sample and theoretical cutpoint in 100 repetitions

8 Simulation

For the underlying density in EXAMPLE 1 where the theoretical histogram

is identical to the density, we assume that we know there are t.wo cells in

advance. Then we compute $n_{2}^{o}/n$ where $N$ is the index of the center cutpoint

for sample sizes $n=10,50,100$ , and 500 for one hundred times. Then we

compute the mean and MSE to the theoretical center cutpoint $p=0.750$ .
The result is in table 8. Convergence of $n_{2}^{o}/n$ in probability to $p=0.750$ is

observed from the result.
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