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On Q-structures of quasi-symmetric domains

Ichiro Satake (佐武一郎)

Department of Mathematics

Chuo University

0. It is well known that in the theory of automorphic forms, especially in the

discussion of cusp singularities, the upper half-plane is more convenient than the

unit disc. The tube domain is a natural generalization of the upper half-plane to the

higher dimensional case. However, there are certain types of (bounded) symmetric

domains, natural generalizations of the unit disc, which can not be realized as

a tube domain. In the $1960’ s$ Piatetski-Shapiro introduced the notion of Siegel

domains of the $lst\sim 3rd$ kind and obtained the following results:

1) Every homogeneous bounded domain can be realized as a Siegel domain of

the 2nd kind.

2) Every symmetric domain of classical type with a given boundary component

can be realized as a Siegel domain of the 3rd kind having that boundary component

as the base space.

The result 2) has been generalized to the case of arbitrary symmetric domains by

Kor\’anyi and Wolf. (For these references, see [S4].)

To be more precise, we give a definition of a Siegel domain of the 2nd kind. Let

$U$ and $V$ be a real resp. complex vector space of dimension $n$ resp. $m:U\simeq R^{n}$ ,

$V\simeq C^{m}$ . The space $V$ will be viewed as a real vector space of dimension $2m$
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endowed with a complex structure $I$ . Setting $V(C)=V\otimes_{R}C$ and

$V_{\pm}=\{v\in V(C)|Iv=\pm iv\}$ ,

one has

$V(C)=V_{+}\oplus V_{-}$ , $v_{+}=V_{-}$ , (V, $I$) $\simeq V_{+}$ .

Let $C$ be an open convex cone in $U$ (with the vertex at the origin $0$ ), which is $\zeta(non-$

degenerate” in the sense that $\overline{C}\cap(-\overline{C})=\{0\}$ . Let $A$ be an alternating bilinear

map from $V\cross V$ into $U$ , which is “C-positive” in the sense that

(1) $\{\begin{array}{l}A(v,Iv’)issymmetricinv,v^{/}\in VA(v,Iv)\in\overline{C},andA(v,Iv)=0\Leftrightarrow v=0\end{array}$

For a data $(U, V, C, A, I)$ satisfying these conditions, the Siegel domain (of the 2nd

kind) CP defined by it is a domain in $U(C)\cross V+\simeq C^{n+m}$ given by

(2) $\mathcal{D}=\{(u, w)\in U(C)\cross V+|{\rm Im} u-\frac{1}{2i}A(w,\overline{w})\in C\}$.

When $V=\{0\}$ , one has $\prime D=U+iC$ , which is called a tube domain, or a

Siegel domain of the 1st kind. In what follows, we will consider only the case where

$V\neq\{0\}$ .

Now, making use of the results on the automorphism group of a homogeneous

Siegel domain due to Kaup-Matsushima-Ochiai and Murakami, we have shown that

the (bounded) symmetric domains are characterized among homogeneous Siegel

domains by three conditions (i), (ii), (iii) (see [S4] , Ch.V). While the first two

conditions (i), (ii) are very natural, the last one (iii) looks rather artificial. We call

a Siegel domain $\prime D$ quasi-symmetric if it satisfies the conditions (i), (ii).

As is shown in the text, the conditions (i), (ii) can be stated with only $(U, V, C, A)$

without referring to the complex structure $I$ . When $(U, V, C, A)$ is fixed, the set $S$



140

of all complex structures $I$ satisfying the condition (1) is viewed as a “deformation

space” of $\prime D$ . It is known that $S$ becomes always a symmetric domain of classical

type ([S3]).

As mentioned above, any symmetric domain with a fixed boundary component

$\mathcal{F}$ has a structure of a fibre space (a Siegel domain of the 3rd kind) over $\mathcal{F}$ . In

this expression, a fibre $\mathcal{D}$ over a point in $\mathcal{F}$ is a quasi-symmetric domain, whose

deformation space $S$ coincides with $\mathcal{F}$ . It is known that all quasi-symmetric domain

of (standard’ type is obtained in this manner (for definition, see 4). However, there

are quasi-symmetric domains of non-standard type that are not obtained in this

form.

All the results on quasi-symmetric domains mentioned above had already been

obtained some fifteen years ago (in the $1970’ s$ ). But the reason why we want to

revive it now is the following.

1. To show that one can easily determine all Q-structures of a quasi-symmetric

domain $\prime D$ .

2. In case $D$ is a symmetric tube domain, the cusp singularities (of the first

kind) arising from $\prime D$ have been studied by many mathematicians. In particular,

there has been a remarkable progress concerning the relationship between the ge-

ometric invariants of the cusp and the zero-value of the zeta functions associated

with the cone $C$ , starting with the “Hirzebruch conjecture” (1974) in the Hilbert

modular case, proved (analytically) by Atiyah-Donnelly-Singer (1983) and M\"uller

(1984). Recently (1991), an extension of this conjecture to the most general case

was obtained (algebraically) by Ogata and Ishida (cf. [SO1], [O1] , [I1]). But
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as a further generalization, it seems interesting to consider the cusp singularities

of the second kind arising from quasi-symmetric domains to relate their geometric

invariants with the special values at negative integers of the above-mentioned zeta

functions.

In this report we will summarize the results on 1 and give a brief account on 2

in the end.

1. Automorphism groups. We start with explaining a Heisenberg group

$\tilde{V}$ defined by the data $(U, V, A)$ . By definition $\tilde{V}$ is the direct product $U\cross V$ (as a

topological space) endowed with a product given by

$(u, v) \cdot(u’, v’)=(u+u’-\frac{1}{2}A(v, v’),$ $v+v’$).

Then, with the natural homomorphisms, one has an exact sequence

(3) $1arrow Uarrow\tilde{V}arrow Varrow 1$ .

When there exists $(C, I)$ satisfying (1), $U$ coincides with the center of $\tilde{V}$ .

We are also concerned with the following linear groups:

(4) $\{\begin{array}{l}G_{1}=Aut(U,C)=\{g_{1}\in GL(U)|g_{1}C=C\}G=\{(g_{1},g_{2})\in G_{1}\cross GL(V)|g_{1}oA=Ao(g_{2}\cross g_{2})\}G_{2}=Sp(V,A)=\{g_{2}\in GL(V)|(1,g_{2})\in G\}\end{array}$

Again with the natural homomorphisms one has an exact sequence

(5) $1arrow G_{2}arrow Garrow^{\rho_{1}}G_{1}$ .

Clearly one has $G\subset Aut\overline{V}$ , so that one can form a semidirect product $G\cdot\tilde{V}$ .
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Among these groups, notice that $G_{2}$ is a reductive algebraic group with $I\in G_{2}$

and the map $g_{2}\vdasharrow I^{-1}g_{2}I$ is a Cartan involution of $G_{2}$ . Thus

$G_{2I}=G_{2}\cap GL(V, I)$

is a maximal compact subgroup of $G_{2}$ and the symmetric space $G_{2}/G_{2I}$ associated

with $G_{2}$ is identified with

(6) $S=S(V, A, C)=$ {complex structures $I’$ of $V$ satisfying (1)},

which may be viewed as the deformation space of $\prime D$ . It is known that $S$ becomes

always a symmetric domain of classical type (see [S3]).

Now, considering the complexification of $\tilde{V}$ , one has

$\tilde{V}(C)=V_{+}\cdot U(C)\cdot V_{-}$ (topological direct product),

$\tilde{V}\cap V_{+}\cdot V(C)=U$ .

Hence one can define a natural action (and automorphy factor) of $\tilde{V}$ on $V_{+}\cross V(C)$ ,

which preserves $\prime D$ ([S4] , Ch.III, \S 5). On the other hand, the group $G_{I}$ defined by

$G_{I}=\{(g_{1},g_{2})\in G|g_{2}\in GL(V, I)\}$

acts naturally on $D$ , the action being compatible with that of $\tilde{V}$ mentioned above.

Hence the semidirect product $G_{I}\cdot\tilde{V}$ acts on $\prime D$ . It can be shown easily that the

group of affine automorphisms $Aff(D)$ of $D$ coincides with $G_{I}\cdot\tilde{V}$ .

2. Quasi-symmetric domains. A Siegel domain $\mathcal{D}$ is called quasi-symmetric

if the following two conditions (i), (ii) are satisfied.

(i) $C$ is self-dual homogeneous cone.
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$C$ being homogeneous means of course that $G_{1}$ acts transitively on $C$ . In general,

given a (positive definite) inner product $<>onU$ , one sets

$C’=\{u\in U|<u,$ $u’>>0$ for all $u’\in\overline{C}-\{0\}\}$ .

Then C’ is also a non-degenerate open convex cone in U. $C$ is called self-dual if

there exists an inner product on $U$ such that $C=C^{*}$ .

Under the condition (i) one has $G_{1}={}^{t}G_{1}$ , whence follows that $G_{1}$ is a reductive

(algebraic’ group (in a weaker sense), i.e. the identity connected component $G_{1}^{o}$ of

$G_{1}$ coincides with that of an algebraic group defined over R.

(ii) In the sequence (5) the projection map $\rho_{1}$ is “surjective” (in a weaker sense),

$i,e$ . one has $\rho_{1}(G^{o})=G_{1}^{O}$ .

Under the assumptions (i) , (ii) the group $G$ is also “algebraic” (in a weaker

sense). Since one has $(G/G_{2})^{o}\simeq G_{1}^{O}$ and both $G_{1}$ and $G_{2}$ are reductive, so is $G$ . It

follows that there exists a (unique) connected (algebraic “ normal subgroup $G_{1}’$ of

$G$ such that one has

(7) $G^{O}=G_{1}’\cdot G_{2}^{O}$ , $G_{1}’\cap G_{2}=(finite)$ .

Then the map $\rho_{1}|G_{1}’$ : $G_{1}’arrow G_{1}$ is an isogeny (local isomorphism). Hence,

denoting the Lie algebras of $G,$ $G_{1},$ $G_{1}’,$ $G_{2}$ by the corresponding lower case bold

letters, one has

$g=g_{1}’\oplus g_{2}$ , $g_{1}’\simeq g_{1}$ ,
(8)

$g_{1}’=\{(x, \beta(x))|x\in g_{1}\}$ ,

where $\beta$ is a representation of $g_{1}$ on $V$ . Since $I\in G_{2}^{O}$ , one has by (7) $[G_{1}’, I]=0$ ,

which means that $\beta(g_{1})\subset g1(V, I)$ .
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Now, fixing an inner product $<>$ on $U$ satisfying (i), one denotes the adjoint

of $x\in$ End $U$ by $t_{X}$ . Then the map $x–tx$ is a Cartan involution of $g_{1}$ ; let

$g_{1}=k_{1}\oplus p_{1}$ be the corresponding Cartan decomposition. It is known that, for a

suitable $e\in C$ , one has

(9) $k_{1}=\{x\in g_{1}|xe=0\}$

(see Example below). Hence by a natural correspondence one has $p_{1}\simeq g_{1}/k_{1}\simeq U$

(isomorphisms of vector spaces). Let $T$ denote the element of $p_{1}$ corresponding to

$u\in U$ . Then $T_{u}$ is uniquely characterized by the following properties:

(10) $T_{u}\in g_{1}$ , ${}^{t}T_{u}=T_{u}$ , $T_{u}e=u$ ;

especially one has $T_{e}=1_{U}.$ (Note that the vector space $U$ endowed with the

product defined by $uou’=T_{u}u’$ is a formally real Jordan algebra. See e.g. [S4],

Ch.I, \S 8.)

3. Admissible triples. We normalize the correspondence between $<>$ and

$e$ in a suitable manner so that it becomes bijective. Then one sets

(11) $a(v, v’)=<e,$ $A(v, v’)>$ .

Clearly $a$ is a non-degenerate alternating bilinear form on $V$ and $a(v, Iv’)$ is sym-

metric and positive definite. (When these conditions are satisfied, a pair $(a, I)$ is

called a “hermitian structure” on $V.$ ) If one sets

$h(v, v’)=a(v, Iv’)+ia(v, v’)$ ,

then $h$ is a positive definite hermitian form on $V$ . The adjoint with respect to $h$ is

denoted by $*and$ the set of self-adjoint (i.e. hermitian) elements in End (V, $I$ ) is

denoted by Her (V, $a,$ $I$).
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Now, for any $u\in U$ , there is a uniquely determined element $\varphi(u)\in EndV$ such

that one has

(12) $<u,$ $A(v, v’)>=a(v, \varphi(u)v’)$ .

As is easily seen, the map $\varphi$ is linear and one has

$\varphi$ : $Uarrow$ Her (V, $a,$ $I$), $\varphi(e)=1_{V}$ .

In view of the fact that $\{(x, \beta(x)|x\in g_{1}\}$ is the Lie algebra of an “algebraic”

subgroup $G_{1}’$ of $G$ , one obtains the following relation

(13) $\{\beta(tx)=\beta(x)^{*}(x\in g_{1},$$u\in^{*}U\varphi(xu)=\beta(x)\varphi(u)+\varphi(u)\beta(x)$

,

).

This together with (10) implies

(14) $\varphi(u)=2\beta(T_{u})$ , especially $\beta(1_{U})=\frac{1}{2}1_{V}$ .

The first equation in (13) means that the representation $\beta$ and the linear map $\varphi$

are equivariant. A pair $(\beta, \varphi)$ satisfying (13) is called equivariant. The equation

(14) shows $\beta$ and $\varphi$ determine each other uniquely. For $(\beta, \varphi)$ to be an equivariant

pair is a very strong condition, so that one can easily classify all equivariant pairs,

which essentially gives also a classification of quasi-symmetric domains $\mathcal{D}$ (cf. [S1],

[S2], or [S4], Ch.V, \S 5).

In general, a triple $(e, a, \beta)$ formed of $e\in C$ , a non-degenerate alternating bi-

linear form $a$ on $V$ , and a representation $\beta$ : $g_{1}arrow g1(V, I)$ is called admissible,

if there exists a linear map $\varphi$ : $Uarrow Her(V, a, I)$ with $\varphi(e)=1_{V}$ satisfying (13).

(This condition can be stated without referring to the complex structure $I.$ ) As

explained above, (for any $e\in C$), the bilinear map $A$ determines an admissible
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triple $(e, a, \beta)$ , and conversely any admissible triple $(e, a, \beta)$ determines $A$ . Thus

there exists a one-to-one correspondence between $A$ and certain equivalence classes

of $(e, a, \beta)$ . Therefore, as a data to define CP one can take $(U, V, C, e, a, \beta)$ instead

of $(U, V, C, A)$ . Then the deformation space $S$ can be written as

$S=S(V, a, \beta)$
(15)

$=$ {$I|(a,$ $I)$ is a hermitian structure of $V$ and $[\beta(g_{1}),$ $I]=0$}.

4. Determination of Q-structures. By a Q-structure of a quasi-symmetric

domain $\mathcal{D}$ we mean Q-structures of the real vector spaces $U$ and $V$ such that $(C, A)$

is defined over $Q$ and $I\in S$ is “rational” in the sense to be specified below. By

what we mentioned in 3, such a Q-structure can be determined in the following

steps.

1) To determine Q-forms of $(U, C)$ , that is to say, Q-forms of $(U, g_{1})$ .

2) To construct the representation (V, $\beta$) defined over Q. (This can be done

immediately by the result of [S1].)

3) To determine $(e, a)$ defined over Q.

4) To determine (rational points” $I$ in S. (This was given in [S5].)

We note that a (complete reducibility” holds on the data $(U, V, C, e, a, \beta, I)$

defining a quasi-symmetric domain $\mathcal{D}$ . First, let

(16a) $U= \bigoplus_{i=1}^{t}U^{(i)}$ , $C= \prod C^{(\cdot)}$ , $C^{(i)}\subset U^{(i)}$

be the direct decomposition of $(U, C)$ into irreducible factors. Then one has the

corresponding decomposition

(16b) $g_{1}=\bigoplus_{i=1}^{\ell}g_{1}^{(i)}$ , $g_{1}^{(i)}=\{1_{U^{(l)}}\}_{R}\oplus g_{1}^{(i)s}$ ,
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where $g_{1}^{(i)s}$ is simple or $=\{0\}$ . One has also the decompositions

(16c) $\{\begin{array}{l}V=\bigoplus_{i=1}^{t}V^{(i)}e=\Sigma e^{(i)}I=\Sigma I^{(i)}\end{array}$

$a=\Sigma a\beta=\oplus\beta_{(\dot{\cdot})}^{(i)}$

,

where $e^{(i)}\in C^{(i)},$ $(a^{(i)}, I^{(i)})$ is a hermitian structure of $V^{(i)},$ $\beta^{(i)}$ is a representation

$g_{1}^{(1)}arrow g1(V^{(i)}, I^{(i)})$ , and $(e^{(i)}, a^{(i)}, \beta^{(i)})$ is admissible. It follows that the classifi-

cation of quasi-symmetric domains $D$ over $R$ reduces to the case where $(U, C)$ is

irreducible and the classification over $Q$ to the case where $(U, C)$ is Q-irreducible.

Suppose now that $(U, C)$ , i.e. $(U, g_{1})$ , is defined over $Q$ and Q-irreducible. Then

there exists a totally real number field $F$ of degree $\ell$ such that $(U^{(1)}, g_{1}^{(1)})$ is defined

over $F$ and one has

$U=R_{F/Q}(U^{(1)})$ , $g_{1}=R_{F/Q}(g_{1}^{(1)})$ ,

where $R_{F/Q}$ is the Weil functor. Thus the determination of Q-forms of $(U, C)$ is

equivalent to determining F-forms of $(U^{(1)}, C^{(1)})$ . If moreover (V, $\beta$ ) is defined over

$Q$ , then $(V^{(1)}, \beta^{(1)})$ is defined over $F$ and one has

(V, $\beta$) $=R_{F/Q}(V^{(1)}, \beta^{(1)})$ .

EXAMPLE: $(III_{m_{1};m_{2}})$ . Let us first explain the construction of an irreducible

R-form denoted by this symbol. Let $m_{1},$ $m_{2}$ be positive integers and let

$n= \frac{1}{2}m_{1}(m_{1}+1)$ , $m=2m_{1}m_{2}$ ,

$U=Sym_{m_{1}}(R)$ , $C=\mathcal{P}_{m_{1}}(R)$ , $V=R^{2m_{1}m_{2}}$ .
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To be more intrinsic, one prepares two real vector spaces $V_{1}\simeq R^{m_{1}}$ and $V_{2}\simeq R^{2m_{2}}$

and sets

(17) $U=S(V_{1}\otimes V_{1})$ , $V=V_{1}\otimes V_{2}$ ,

$S$ denoting the symmetrizer. Thus $U$ is the space of symmetric contravariant tensors

of degree 2. The Lie algebra $g_{1}=g1(V_{1})\simeq gl_{m_{1}}(R)$ acts on $U$ in a natural manner,

so that one can make an identification $g_{1}=LieAut(U, C)$ . On the other hand, let

$\beta_{1}$ denote the action of $g_{1}$ on $V_{1}$ and define the representation $\beta$ : $g_{1}arrow g1(V)$ by

setting $\beta=\beta_{1}\otimes 1$ . Then $\beta$ satisfies the condition stated in 3. It is known that in

this case all the representation $\beta$ satisfying this condition is obtained in this form

([S1]).

Now, if one fixes $e\in C\subset U=S(V_{1}\otimes V_{1})\subset Hom(V_{1^{*}}, V_{1})$ , then for its inverse

$e^{-1}$ (as a mapping) one has

$e^{-1}\in C^{*}\subset U^{*}=Sym(V_{1})\subset Hom(V_{1}, V_{1}^{*})$ .

From the fact that $a$ and $I$ are invariant under $\beta(k_{1})=\beta_{1}(k_{1})\otimes 1$ one has

$a=e^{-1}\otimes a_{2}$ , $I=1\otimes I_{2}$ ,

where $(a_{2}, I_{2})$ is a hermitian structure of $V_{2}$ . Therefore one has

(18) $G_{2}\simeq Sp(V_{2}, a_{2})$ , $S\simeq S(V_{2}, a_{2})$ (Siegel space).

From these one can deduce that the alternating bilinear map $A$ : $V\cross Varrow U$

corresponding to the tripe $(e, a, \beta)$ is given by

(19) $A(v_{1}\otimes v_{2}, v_{1}’\otimes v_{2}’)=S(v_{1}\otimes v_{1}’)\cdot a_{2}(v_{2}, v_{2}’)$ .



149

Now, since the above construction is algebraic, one has that, starting from

$V_{1}$ and $V_{2}$ defined over $Q$ and defining the Q-structures of $U,$ $g_{1},$ $V$ in a natural

manner, one gets the representation $\beta$ defined over Q. If one takes $e\in C$ and $a_{2}$

to be Q-rational, then one gets the bilinear map $A$ defined over Q. Finally, taking

$I_{2}\in S(V_{2}, a_{2})$ to be “rational” in the sense of [S5], one obtains a data $(U, V, C, A, I)$

over Q. More generally, let $F$ be a totally real number field of degree $\ell$ . Taking

$V_{1},$ $V_{2},$ $\beta,$ $e$ , and $a_{2}$ defined over $F$ , one obtains a data $(U, V, C, A, I)$ over $F$ in a

similar way. Then, pulling down the field of definition by the Weil functor $R_{F/Q}$ ,

one obtains a Q-irreducible Q-form of $($III. $1;m_{2})^{\ell}$ . It should be noted that in this

case there exists another type of Q-forms obtained from a totally indefinite division

quaternion algebra $D_{0}$ over $F$ .

Remark 1. The domain of type $(III_{m_{1};0})$ is nothing but a Siegel upper half

space $(III_{m_{1}})$ . The only case for $(III_{m_{1};m_{2}})$ with $m_{2}>0$ to be symmetric is the

case $(III_{1;m_{2}})\simeq(I_{m_{2}+1,1})$ .

Remark 2. By definition $I\in S$ is “rational” if the corresponding Cartan

involution $yrightarrow I^{-1}yI$ of $g_{2}$ is defined over Q. This condition does not necessarily

mean that $I$ is Q-rational. In the case of the above Example, there surely exist

(rational points” in $S$ . But there are also cases where $S$ has no rational points and

so $D$ has no Q-structures! (cf. [S5])

In general, when $C$ is isomorphic to the product of $\mathcal{P}_{m_{1}}(D_{1}),$ $D_{1}=R,$ $H,$ $C,$ $C$

and $\prime D$ are called of standard type. In that case, replacing the totally real number

field $F$ in the above construction by a suitable division algebra over $Q$ with a

positive involution (i.e. a totally indefinite or totally definite division quaternion
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algebra $D_{0}$ over a totally real number field $F$ , or a central division algebra $D_{0}$ over

a CM-extension $Z$ over $F$ with an involution of the 2nd kind), one can do a similar

construction. It is known that $al1$ Q-irreducible Q-forms of a quasi-symmetric

domain of standard type are obtained in these manners ([S6]).

In the non-standard case, where $C$ is a cone defined by a quadratic form, one

can construct Q-forms of $D$ in a similar way by using the spin representation(s) $\beta_{1}$

and the corresponding Clifford algebra.

5. Cusp singularities of the 2nd kind. For a given Q-structure of the

quasi-symmetric domain $\mathcal{D}$ , one can consider arithmetic subgroups of $\tilde{V},$ $G$ , etc.

First, let $\tilde{L}$ denote an arithmetic subgroup of $\tilde{V}$ and set $M=\tilde{L}\cap U,$ $L=\tilde{L}+U/U$ .

Then $M$ and $L$ are a lattice in $U$ and $V$ , respectively, in the usual sense, and one

has an exact sequence

(20) $1arrow Marrow\tilde{L}arrow Larrow 1$ .

The quotient $\tilde{V}/\tilde{L}$ is compact. (Note that $\tilde{L}$ is determined by $M,$ $L$ , and a quadratic

character $L arrow\frac{1}{2}M/M.$ )

Next, let $\Gamma$ be an arithmetic subgroup of $G_{I}$ and set $\Gamma_{2}=\Gamma\cap G_{2},$ $\Gamma_{1}=\Gamma G_{2}/G_{2}$ .

Then $\Gamma_{2}$ and $\Gamma_{1}$ are an arithmetic subgroup of $G_{2I}$ and $G_{1}$ , respectively, and one

has an exact sequence

$1arrow\Gamma_{2}arrow\Gammaarrow\Gamma_{1}arrow 1$ .

Note that $\Gamma_{2}$ is a finite group. Suppose now that $\Gamma$ is torsion-free and one has

$\Gamma\cdot\tilde{L}=\tilde{L}$ . Then one has $\Gamma_{2}=\{1\}$ and $\Gamma\simeq\Gamma_{1}$ .
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For such $\Gamma$ and $\tilde{L}$ , the semidirect product $\overline{\Gamma}=\Gamma\cdot\overline{L}$ is an arithmetic subgroup

of $G_{I}\cdot\tilde{V}=Aff\mathcal{D}$ , acting properly discontinuously and freely on $\mathcal{D}$ . Hence one can

consider the quotient space $\tilde{\Gamma}\backslash D$ .

Especially, when Q-rank $G_{1}=1$ , the double coset space $\Gamma_{1}\backslash C/R_{+}^{x}$ being com-

pact, one can complete locally the space $\tilde{\Gamma}\backslash D$ by adding a point $p$ (a point at

infinity). If one sets

(21) $X=\tilde{\Gamma}\backslash D\cup\{p\}$ ,

then $X$ has a structure of normal analytic space with an isolated singularity at $p$ .

The point $p$ is called a cusp of the second kind.

The Mumford’s method of toroidal desingularization can also be applied to this

case to yield a smooth completion

(22) $\overline{X}=\tilde{\Gamma}\backslash D\cup\bigcup_{i}D_{i}$ ,

where D. $s$ are toric bundles with an abelian variety $V/L$ as a common base space.

The 2-cohomology class of $\overline{X}$ determined by $D$; is denoted by $\delta_{i}$ .

One defines the contribution of the cusp $p$ to the Todd genus of $X$ by

(23) $\chi_{\infty}(\overline{\Gamma}\backslash D, p)=(\prod_{i}\frac{\delta_{l}}{1-e^{-\delta_{i}}})_{n+m}[\overline{X}]$ .

This is a rational number determined independently of the choice of the desingu-

larization (22).

On the other hand, let R-rank $G_{1}=r$ and define the norm of $u\in C$ by

$N(e)=1$ , $N(g_{1}u)=(\det g_{1})^{\frac{r}{n}}N(u)$ $(g_{1}\in G_{1}^{O}, u\in C)$ .
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Then $N(u)$ extends to a homogeneous polynomial function of degree $r$ on $U$ . One

then defines the zeta function of $C$ relative to $\Gamma_{1}\cdot M$ by

(24)
$Z(C, \Gamma_{1}\cdot M;s)=\sum_{x:\Gamma_{1}\backslash C\cap M}N(x)^{-s}$

.

This is a special case of the Sato-Shintani zeta functions of prehomogeneous vector

spaces (see [SO1]). The properties of this kind of zeta functions are still not well

known except for the functional equations. (In this direction, a remarkable result

was obtained recently by Ibukiyama-Saito.)

For the special values of this zeta function, it seems natural to conjecture the

following relation

(25) $Z(C,{}^{t}\Gamma_{1}\cdot M^{*};$ $- \frac{m}{r})=c\frac{\chi_{\infty}(\tilde{\Gamma}\backslash \mathcal{D},p)}{vo1(V/L)}$ ,

where $M^{*}$ is the dual lattice of $M$ and the volume $vol(V/L)$ of the abelian variety

$V/L$ is measured by $a$ (i.e. it is the Pfaffian of $a$ with respect to $L$ ). $c$ is a universal

constant independent of $\Gamma_{1}\cdot M$ (perhaps one has $c=\pm 1$ ).

In the case $V=0$, i.e. when $D$ is a tube domain, the validity of (25) was

proved (algebraically) by Ishida [I1]. This may be regarded as a generalization of

the “Hirzebruch conjecture” (proved analytically by A.-D.-S. and M.) ([SO1], [O1]).

The simplest case with $V\neq 0$ is given by $(III_{1;m_{2}})\simeq(I_{m_{2}+1,1}),$ $F=Q$ , in which

case one has $m_{1}=n=r=1$ and the above zeta is nothing but the Riemann zeta

function. In this case the validity of (25) with $c=1$ has been well known. The

same case with an arbitrary $F$ was treated by [O2] recently. It is desirable to obtain

an algebraic proof of (25) in the general case independently of the classification.
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