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Horizontal divisors on arithmetic surfaces

associated with Belyi uniformizations®

Yasutaka Thara
Research Institute for
Mathematical Sciences,
Kyoto University

For a finite surjective morphism f : ¥ — X between some arithmetic surfaces and
a horizontal prime divisor D on X, we consider questions related to connectedness of
f~Y(D). The results will then be applied to fundamental groups of related surfaces. This
article owes much to Harbater’s work [Hb], and contains an appendix on some proof by T.
Saito.

By an arithmetic surface, we mean any two dimensional integral scheme of finite type
having structure of a flat O-scheme, where O is the ring of integérs of a number field
k (the dimension relative to O is 1). Horizontal divisors are those finite over D./;Let
us begin by describing some special examples. First, if P} is the projective line over
Z,f : PL — P} is defined by y = y¥ = 2 (N > 1), and D is defined by z = 1, then
f~YD) =~ Spec (Z[y]/(y"N — 1)) is connected, being the spectrum of the ring of V:irtual
characters of a finite group (=~ Z/N in this case; cf [S] 11-4). Each irreducible component
of f~1(D) meets some other.components on the special fibers Py ® F, at p|N, to make
f~1(D) connected. This remains valid if Z is replaced by any . Secondly,if f: Y — X is
everywhere etale and D is normal, then distinct irreducible components of f~!(D) cannot
meet each other (cf. e.g. [G] Cor 9-11). As these examples show, when f~!(D) splits into
the union of several irreducible components, the connectedness of f~!(D) is closely related
to ramifications of f at special fibers (vertical prime divisors) of Y. In a sense, it gives a

“horizontally patched” information on such ramifications.

*) Interium report
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The main results proved in this note are as follows. Let X = P}, be the projective t-line
over O (O, k being as above), L/k(t) be a finite extension unramified outside t = 0,1, 00
(the “Belyi uniformization”), and f : ¥ — X be the integral closure of X in L. For

a € k¥(c0), denote by D, the prime divisor on X defined by t = a. Then

Theorem A (Th 2, Prop 1 of §2). (i) If a = 0,1,00, f~Y(D,) is connected; (ii) if a €
Q, f~Y(D.) is again connected; (iii) there exists © and a € O, such that a,1 — a are both

units of O (so that D, does not meet D§ DY D), and that f~'(D,) is connected for any
f.
As direct applications, we obtain, for example:

Theorem B (i) (T. Saito). 7;(PY — D§ DY D) ~ =1(SpecO); (i) if one of t = 0,1, 00

is totally ramified in L/k(t), then m(Y") ~ =;(Spec D).

See §3 for more details (Proposition 2, Cor 1,2,3). Saito’s original proof of (1) is quite
different (see §3, and Appendix).

As for (ii), according to Belyi [B](Th 4 and its proof), every algebraic function field of
one variable L over a number field k contains such an element t that L/k(¢) is unramified

when L Ras a prime divisor of

outside t = 0,1, 00 and, in fact, moreover, totally ramified at t = oo/ So, (i) implies that fowj
(hwng a section cwer (2 : (3

every arithmetic surface over D/h—as a normal model Y such that 7;(Y) ~ =, (Spec D).

In §1, we shall prove a criterion for connectedness of f~'(D) when X = P} (The-
orem 1). This is just a direct consequence of Harbater’s criterion [Hb] for an algebraic
function given as power scries over 9 tb be rational (a modification of Dwork’s criterion).
Logically, this is just a simple remark. But the author could not find a reference with ex-
plicit statement on this connection, and so he thought it necessary to be presented. We note
here that in the geometric cases (geometric surfaces, etc.), the connectedness of f~!(D)

was established under some mild conditions (such as (D?) > 0) in Hironaka-Matsumura
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[H-M] cf. also [Ht]. There, the main point was the extendability of any formal-rational
function on the completion of X along D to a global rational function on X. In our arith-
metic case, one must also take care of neighborhoods of D above archimedean places of O
which is the role of archimedean radii of convergence appearing in the criterion.

In §2, we restrict ourselves to the case where only ¢ = 0,1, 0o can be ramified in f® k
(“Belyi uniformization”), and obtain Theorem 2, Proposition 1.

In §3, we prove Proposition 2 and its corollaries as direct applications of §2.

The next problem would be to find out whether Theorem 1 extends to more general
arithmetic surfaces and a full arithmetic analogue of Hironaka-Matsumura criterion can be
described using an appropriate Arakelov type theory. We hope to be able to aiscuss this
problem more concretely in the near future.

The author wishes to thank Kyoji Saito and Takeshi Saito for helpful discussions.

§1. In what follows, k will denote an algebraic number field, O the ring of integers of k,
and ¥ the set of all distinct embeddings ¢ : & — C. We denote by K = k(t) the rational
function field of one variable, and by L/K a finite extension which may contain constant
field extensions. Let X = P}, = SpecO[t]” Spec O[t~!], and f : ¥ — X be the integral
closure of X in L. For each ¢ € L, let f, : Y, — X, denote the base change ®; ,C
of f. Each f, defines a finite branched covering Y,(C) — X,(C) = P1(C) between (not
necessarily connected) compact Riemann surfaces. For r > 0, put B(r) = {z € C;] z |<

r} Cc P}(C).

Theorem 1. Let Dy be the prime divisor of X = P}, defined by the equation t = 0.
Assume that therc exists r, > 0 for each o0 € ¥ such that f, is unramified above B(r,)

and Il,r, > 1. Then the O-scheme f~'(Dy) =Y x x Dy is connected.

(Note that if L/K is a constant field extension, then f~'(Dy) is the spectrum of the
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corresponding ring of integers.)
This theorem is a direct consequence of the following result of Harbater ([Hb] Prop

2.1 and the preceding remarks).

Lemma (Harbater). Let k be a number field with normalized absolute values | |, (so
that II, | a |,= 1 for all a € k*). Suppose that F(t) € k[[t]] is algebraic over k(t). Then
one can choose r, > 0 for each place v of k, with r, = 1 for almost all v, such that F(t)
is v-adically convergent on the open disc of radius r, (w.r.t. | |,). If, moreover, one can

choose r,'s such that Il,r, > 1, then F(t) is rational, i.e. F(t) € k(t).

Remark 1. For a complex archimedean place v corresponding to 0,5 € ¥,r, in this lemma

corresponds to r,r; = rg in Theorem 1.

Remark 2. We shall only need the case where F(t) belongs to O[[t]] and is integral over
O[t]. In this case, since we may choose r, = 1 for all non-archimedean v, the assumption
is Iyr, > 1. (It is not easy to make use of non-archimedean v with r, > 1; see Remark
4 at the end of §1.) In this case, the proof in [Hb] is easy enough to be sketched. For
each o, F, € C[[t]] is not only holomorphic in the open disc of radius r,, but extends to
a continuous function on its closure, because F, is integral over C[t]. Therefore, by the

Riemann-Lebesgue lemma, one obtains | aZ | v}

— 0(n — oo). Therefore, II, | a2 |=
N(a,) — 0. But since a, € 9, and hence N(a,) € Z, this implies N(a,) = 0 for n > 0,

hence F(t) € D[t]. For more details, and for comparison with classical Dwork criterion,

see [Hb] §2.

Proof of Theorem 1. Choose any geometric point 7 of Y, = Y ®p k above ¢t = 0, and

use the completion of L at n to embed L into k((¢)) (k: an algebraic closure of k).

Claim 1A. LN O([t]] C k(t).
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Proof. Take any F = F(t) = Za,t™ € L N O[[t]], and by multiplying a suitable element
# 0 of O[t], we assume F to be integral over O[t]. Let o € . Then F,(t) = Zalt™ € C[[t]]
extends to a holomorphic function on B(r,) (and hence converges on B(r,)), because F,
is integral over C[t] and f, is unramified above B(r,). Since II,r, > 1, the above lemma

gives F(t) € k[t].
Claim 1B. Let E be the quotient field of O[[t]] (k(t) C E C k((¢))). Then L N E = k(t).

Proof. Since LN E is finite over k(t), every element of LN F is a k(¢)*- multiple of some
g € LN E which is integral over O[t]. Since ¢ € E and integral over O[[t]], ¢ € O[[t]].

Hence g € L N O[[t]] C k(t) by Claim 1A.
Claim 1C. L and E are linearly disjoint over k(t).
Proof. Apply Claim 1B to the Galois closure of L over k(t) (which does not change r,’s).

Claim 1D. Let B be the integrel closure of O[t] in L. Then B ®py O[t]] ~ lim(B/t" B)

1s an integral domain.

Proof. Since B — L is injective and O[[t]]/O[t] is flat, B ®p(q O([t]] = L ®ppqg O[]
is also injective. On the other hand, O[[t]] — E is injective and L/O[t] is flat; hence
Lo O[t]] = L®ppy £ = Ly E is also injective. By Claim 1C, L Q) E is a field.

Therefore, B ®p(q O|[t]] is a domain.

The last isomorphism follows from a general fact; if A is a noetherian ring, M is
a (not necessarily free) finite A-module, and I is an ideal of A, then M @ im(A/I") ~

lim(M/I" M) (cf [A-M] p108).

Claim 2. IfJ,J' are ideals of B such that (i) J+J" = (1), (i) J,J' D (¢), (iii) (JJ")™ C (%)

for some n > 1, then either J = (1) or J' = (1).
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Proof. By these conditions,
lim(B/tVB) ~ lim(B/J™) @ lim(B/J'V)
which reduces the Claim to Claim 1D.

Completing the proof of Theorem 1. If f~!(Dy) = Spec(B/tB) were not connected,
it must be a disjoint union of two non-empty subsets S,S’. Let J (resp. J') be the
intersection of all (minimal) primes of B belonging to S (resp. S'). Then J, J' satisfies the
conditions of Claim 2. Therefore, J or J' = (1), a contradiction. O
Remark 3. Perhaps we should show some example where f~!(D) is disconnected. This
1s the case when L = Q(t,y), with y2 —y = t and D is defined by ¢t = 0. In fact, then
f~H(D) =~ Spec(Z[y]/y(y — 1)) = SpecZ Ui SpecZ. Note that the branch point t = —% is
“archimedean close” to t = 0.

Remark 4. At non-archimedean primes p, the radius of convergence can be striétly smaller
than the distance from the center of the nearest branch point (cf. [Hb] §3 Remark 2, [D-
R]). For this reason, we could not use non-archimedean primes to loosen the assumption

of Theorem 1.

82. Let k,O, L/K, f:Y — X (X = P}) be as at the beginning of §1, and now we
assume that fi; Yy — X} is unramified outside t = 0,1, 00. A prime divisor of X defined

by t = 0,1, or oo will be called cuspidal.

Theorem 2. If fi is unramified outside t = 0,1, 00, and D is a cuspidal prime divisor of

X =P}, then f~'(D) is connected.

Proof. We may assume that D is the cusp defined by ¢t = 0. Replacing t by t!/V with

a suitable NV, we are reduced to the situation where fy is unramified outside t € pup (the
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group of N-th roots of unity). But then the connectedness of f~!(D) is an immediate

consequence of Theorem 1. a

For the closure D, in P} of other rational points t = a € k (a # 0, 1) of P}, we can

only prove:

Proposition 1. If f; is unramified outside t = 0,1,00, and a € k (a # 0,1), f~1(D,) is
connected at least in the following cases; (i) a € Q; (ii) a = (1 — {)™!, where ( is a root of
unity whose order is not a prime power; (ii)' a = (1 — ¢')(¢ —¢')™!, where (,(' are roots

of unity such that none of the orders of ¢, (', ('¢~! are prime powers.

Remark 5. In cases (ii)(ii)’, a is a special unit, i.e., a and 1 — a are both units. This means
that D, does not meet any cuspidal prime divisor. An example of (ii): a :‘(1 +w)7l = —w,
where w is a cubic root of unity.

| By Theorem 1, f~!(D,) is connected if there exists v € GLy(9) (acting on P} by

linear fractional transformations) such that y(a) = 0 and

[T Min(17(0)°1, 11(1)°], I(e0)?]) > 1.

c€EX

We shall show, in each of the cases (1)(i1)(ii)’, that such an element v exists:

Actually, we can also show that when a is a special unit, (ii)(i1)" are the only cases
where there exists some field & 5 a and some v € GL2(9D) satisfying these conditions.
Thus, in particular, when a is (a special unit which is) non-abelian over Q, or when (for
example) a = %(1 + V/5), there does not exist any such v. We do not know whether
f~Y(D,) is connected in such cases.

(1) The case a € Q (a #0,1). Writea = —q/p(p,q € Z, (p,q) =1, ¢ > 0). It suffices

to find an element ¥ € SLy(Z) satisfying y(a) = 0, |y(¢)] > 1 (: = 0,1,00). Define ¢’ € Z
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by 0 < ¢' < ¢, p¢’ = 1(modq), and p’' € Z by p’' = (pg' — 1)/q. Then
Y= (II:I 3;) € SLZ(Z),

v(a) = 0, and v(0) = ¢/¢’, 7(c0) = p/p', (1) = (p + ¢)/(p' + ¢')- But |¢'/g| <1 and

Ip'/p|l = |¢'/q — 1/pq| < 1; hence |¥(0)], |v(c0)| = 1. Moreover,

P +d)(p+a)=d/q-1/a(p+ 9);

hence
-1<4q¢/q-1/¢< (' +d)/(p+a)<d'/qg+1/¢<

hence |y(1)| > 1. Therefore, v satisfies the desired properties.
(i1) In this case, it is enough to take v(t) = 1 — a~'¢. In fact, then y(a) =0, 7(0) =
1, v(1) = ¢, v(c0) = co.

(i1)' In this case, it is enough to take

_[(¢=¢ (-1
7T (c—c' c<<’—1))'
In fact, then det v = (¢ — 1)(¢' — 1)(¢ — ¢') € D%, 4(a) = 0, 4(0) = ¢, v(1) =
C,_lv ’)’(OO) = 1 D

§3. In general, let Y, Z be connected locally noetherian schemes, f : Z — Y be a morphism
and f, : m(Z,() — m;(Y,n) be the induced homomorphism between their fundamental
groups, where ( is any geometric point of Z and n = f(¢). Then by their definitions [G], f.
is surjective if and only if Z' = Z xy Y is connected for any finite ctale connected covering
Y'/Y of Y. We apply this to the determination of m;(Y) for some special arithmetic
surfaces Y, by using horimntal prime divisors Z < Y and the results of §2. |

The following is a direct application.:
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Proposition 2. Let k be a number field, O its ring of integers, and X = P, (the projective
t-line over ). Let L/k(t) be a finite extension field, which is unramified outsidet = 0, 1, oo,
and f : Y — X be the normalization of X in L. Let a € k¥(oco) be either a € Q"(c0)
(including 0,1, 00) or of the‘form (i1) or (ii)' of Proposition 1, and D, be the prime divisor
on X defined by t = a. Let E be any closed subscheme of Y contained in (the support of)
f~Y(Do"D1" D), which does not meet f~(D,) (for example, E = 0). Then the natural
homomorphism

i (fY (D)) — m(Y — E)

is surjective. In particular, (i) if f71(D,)™® 5 Spec®, then m;(Y — E) = =1(SpecD);
(i) if f7Y1(D,)™¢ is a tree-like union of Spec O (see below) and ;(SpecD) = (1), then

Here, f~1(D,)"? (the reduced part of f~1(D,)) is called tree-like if its graph (edges
= irreducible components, vertices on an edge = closed points on the corresponding irre-

ducible component) is a tree. .

Proof. The prime divisor F = f~1(D,)" is a closed subscheme of Y; = Y —E. IfY{/Y; is
any connected finite etale covering, Y{ xy, F ~ Y' xy F, where Y is the integral closure of
Y (and also of P},) in the function field of ¥;. By Proposition 1, Y'xy f~}(D,) = Y'xx D,
is connected; hence Y’ xy F' is also connected. Therefore, 71(F) — m;(Y}) is surjective.
When F' 5 Spec D, this defines a section Spec 9 — Y;, and hence we have a surjection
a : m(SpecD) — m(Y1), and the structural homomorphism 8 : m;(Y;) — m1(Spec D),
with f o a = id. Therefore, m(Y;) = m(Spec©). In case (ii), F has no non-trivial
connected finite etale coverings, because each irreducible component ~ Spec O is simply
connected, and there can be no non-trivial connected “mock coverings” (graph-theoretically

produced finite connected etale coverings) because F' is tree-like. O
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Corollary 1 (T. Saito). 7 (Ph — Do” DY Do) ~ m1(Spec D).

This fact may well have been known, but the author could not find any reference,
except that Example 3.1 in [Hb] §3 is quite close. (It gives 7y (SpecZ[t, (tN —1)71]) = (1),
to which the case ) = Z reduces directly, and [Hb] contains enough tools for treating the
case of general .) As far as the author knows, the first proof of this was provided by
T. Saito. It is a direct application of géneralized Abhyankar lemma (see Appendix). Our

argument gives it an alternative proof which is more archimedean in nature.

Proof. bFirst, take some a as in Prop. 1 (ii) or (ii)’, and choose k such that £ 5 a. In
Prop. 2,take Y = X, F = Dy“D,"D,,. Since D, ﬂE = 0, Prop. 2 (i) applies to this case,
and we conclude that m1(Ph — E) ~ m(Spec D) for O: big enough. But then, for any O,
PL — E cannot have finite etale connected coverings other than constant ring extensions

(which must be etale). Therefore, our assertion holds for any O. O

Corollary 2. Let f : Y — X be as.at the beginning of Prop. 2 (the first two sentences
preserved). Suppose that one of the cusps, say t = oo, is totally ramified in fx = f @ k :

Yi — Xi. Then m(Y) = 7,(SpecD), or more strongly,
(Y — Do¥D;) = m1(Spec D).

Proof. In fact, in this case f~!(Doo )™ ~ Spec O.
In particular,

Corollary 3. Let p be a prime, a,b,c € Z, a+b+c = 0, abc # 0 (mod p), and
L = Q(t,y), where

Y = (~1)5(1 - )

(a “primitive Fermat curve”). Let f : Y — P} be the normalization of P} (the t-line) in



216

L. Then for i,5 € {0,1,00}, 1 # J,

(Y — f71(D:°D;)) = (1)

[Appendix] T. Saito’s original proof of Cor. 1 of Prop. 2

It proceeds as follows. Let L/k(t), f : ¥ — X = PL be as at the beginning of
Proposition 2. Suppose that f : ¥ — X is etale outside Dy“D;“D.,. Let p ‘be any
prime ideal of O, and put X, = X ®p (D/p). Choose any cuspidal prime divisor D;
(i = 0,1,00) on X, and let P be the i;lterséction of D; with X, which is a closed point
on X,. Then the only prime divisor on X passing through P, along which f is possibly
ramified, is D;. From this follows, by the generalized Abhyankar lemma ([G] Exp. XIII §5),
that the ramification indices of fy = f ® k above t = i cannot be divisible by the residue -
characteristic of p. Since p and : are arbitrary, f must be etale also above Dy, D1, Do;
hence 7 (X — DOUDIUDO;,) ~ m1(X) ~ 71 (Spec D), as desired.

Saito has also noted that the same argument holds for a somewhat more general case;
Py —agA D, where A is a finite set of elements of £”(00) satisfying the following conditions.
For each pair of p and a € A, put P(a,p) = D, N X, (a closed point on X;). Then for
each pair (a,p), either P(a,p) # P(d’,p) for all a’ # a (a' € A), or there exists exactly one
a' € A, a' #awith P(a',p) = P(a,}p), and in this case the maximal ideal of the local ring
of X at P(a,p) is generated by two elements defining D, and D, at P(a,p). (Roughly
speaking, the conditions require that the only singularities of | J D, are “ordinary double
points”.)

An example: O =7, A= {0,1,2,3, c0}.
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