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Horizontal divisors on arithmetic surfaces

associated with Belyi uniformizations*)

Yasutaka Ihara
Research Institute for
Mathematical Sciences,
Kyoto University

For a finite surjective morphism f : Y\rightarrow X between some arithmetic surfaces and

a horizontal prime divisor D on X, we consider questions related to connectedness of

f-1(D). The results will then be applied to fundamental groups of related surfaces. This

article owes much to Harbater’s work [Hb], and contains an appendix on some proof by T.

Saito.

By an arithmetic surface, we mean any two dimensional integral scheme of finite type

having structure of a flat O-scheme, where O is the ring of integers of a number field

k (the dimension relative to O is 1). Horizontal divisors are those finite over D. , Let

us begin by describing some special examples. First, if $P_{Z}^{1}$ is the projective line over

$Z,$ $f$ : $P_{Z}^{1}arrow P_{Z}^{1}$ is defined by $yarrow y^{N}=x(N\geq 1)$ , and $D$ is defined by $x=1$ , then

f-1(D)\simeq Spec(Z[y]/(yN-1)) is connected, being the spectrum of the ring of virtual

characters of a finite group ( \simeq Z/N in this case; cf [S] 11.4). Each irreducible component

of $f^{-1}(D)$ meets some other components on the special fibers $P_{Z}^{1}\otimes F_{p}$ at $p|N$ , to make

f-1(D) connected. This remains valid if Z is replaced by any O. Secondly, if f : Y\rightarrow X is

everywhere etale and D is normal, then distinct irreducible components of f-1(D) cannot

meet each other (cf. e.g. [G] Cor 9.11). As these examples show, when f-1(D) splits into

the union of several irreducible components, the connectedness of f-I(D) is closely related

to ramifications of f at special fibers (vertical prime divisors) of Y. In a sense, it gives a

“horizontally patched” information on such ramifications.

*) Interium report
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The main results proved in this note are as follows. Let $X=P_{\mathfrak{O}}^{1}$ be the projective t-line

over $O$ ( $O,$ $k$ being as above), $L/k(t)$ be a finite extension unramified outside $t=0,1,$ $\infty$

(the “Belyi uniformization”), and $f$ : $Yarrow X$ be the integral closure of $X$ in $L$ . For

$a\in k^{\cup}(\infty)$ , denote by $D_{a}$ the prime divisor on $X$ defined by $t=a$ . Then

Theorem A (Th 2, Prop 1 of \S 2). (i) If $a=0,1,$ $\infty,$ $f^{-1}(D_{a})$ is connected; (ii) if $a\in$

$Q,$ $f^{-1}(D_{a})$ is again connected; (iii) there exists $O$ and $a\in O$ , such that $a,$ $1-a$ are both

units of $O$ (so that $D_{a}$ does not meet $D_{0}^{\cup}D_{1}^{\cup}D_{\infty}$ ), and that $f^{-1}(D_{a})$ is connected for any

$f$ .

As direct applications, we obtain, for example:

Theorem $B(i)$ (T. Saito). $\overline{\prime}\iota(P_{!_{-}}^{1_{T}}-D_{0}^{\cup}D_{1}^{\cup}D_{\infty})\simeq\pi_{1}(SpecO);(ii)$ if one of $t=0,1,$ $\infty$

is totally ramified in $L/k(t)$ , then $\pi_{1}(Y)\simeq\overline{\prime_{I}}\iota(SpecO)$ .

See \S 3 for more details (Proposition 2, Cor 1,2,3). Saito’s original proof of (i) is quite

different (see \S 3, and Appendix).

As for (ii), according to Belyi $[B]$ ( $Th4$ and its proof), every algebraic function field of

one variable $L$ over a number field $k$ contains such an element $t$ that
$L_{4}/k(t)isun_{A}ra_{rme}\star\wedge L\# 1sp^{m_{\backslash }ifie_{d_{\vee(}^{d_{\backslash }}\sigma}}\dot{s}\sigma r^{f}$

outside $t=0,1,$ $\infty$ and, in fact, moreover, totally ramified at $t=\infty f$ So, (ii) implies that $40\iota\backslash \vee r$

$der?e$

every arithmetic
$SurfaC4w_{v^{\mathcal{M}}}\alpha se(\{nc\backslash \vee r$

In \S 1, we shall prove a criterion for connectedness of $f^{-1}(D)$ when $X=P_{1_{\vee}^{\urcorner}}^{1}$ (The-

orem 1). This is just a direct consequence of Harbater’s criterion [Hb] for an algebraic

function given as powcr scries over $O$ to be rational (a modification of Dwork’s criterion).

Logically, this is $j$ ust a simplc rclnark. But thc author could not find a refcrence with ex-

plicit statement on this $COllIlectioIl$ , and so hc $t$ hought it necessary to bc presented. NVe note

here that in the $gco$ mctric cascs (gcomctric $s$ urfaccs, etc.), the conncctedness of $f^{-1}(D)$

was established under some mild conditions (such as $(D^{2})>0$ ) in $Hiro11a1_{\backslash }\cdot a-\wedge\backslash$ Iatsumura
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[H-M] cf. also [Ht]. There, the main point was the extendability of any formal-rational

function on the completion of $X$ along $D$ to a global rational function on $X$ . In our arith-

metic case, one must also take care of neighborhoods of $D$ above archimedean places of $4\supset$

which is the role of archimedean radii of convergence appearing in the criterion.

In \S 2, we restrict ourselves to the case where only $t=0,1,$ $\infty$ can be ramified in $f\otimes k$

(Belyi uniformization”), and obtain Theorem 2, Proposition 1.

In \S 3, we prove Proposition 2 and its corollaries as direct applications of \S 2.

The next problem would be to find out whether Theorem 1 extends to more general

arithmetic surfaces and a full arithmetic analogue of Hironaka-Matsumura criterion can be

described using an appropriate Arakelov type theory. We hope to be able to discuss this

problem more concretely in the near future.

The author wishes to thank Kyoji Saito and Takeshi Saito for helpful discussions.

\S 1. In what follows, $k$ will denote an algebraic number field, $O$ the ring of integers of $k$ ,

and $\Sigma$ the set of all distinct embeddings $\sigma$ : $k-$ C. We denote by $K=k(t)$ the rational

function field of one variable, and by $L/K$ a finite extension which may contain constant

field extensions. Let $X=P_{1^{\urcorner}}^{1}=SpecO[t]^{\cup}SpecO[t^{-1}]$ , and $f$ : $Yarrow X$ be the integral

closure of $X$ in $L$ . For each $\sigma\in\Sigma$ , let $f_{\sigma}$ : $Y_{\sigma}arrow X_{\sigma}$ denote the base change $\otimes_{k},{}_{\sigma}C$

of $f$ . Each $f_{\sigma}$ defines a finite branched covering $Y_{\sigma}(C)arrow X_{\sigma}(C)=P^{1}(C)$ between (not

necessarily connected) compact Riemann surfaces. For $r>0$ , put $B(r)=\{z\in C;|z|<$

$r\}\subset P^{1}(C)$ .

Theorem 1. Let $D_{0}bc$ tfic prime divisor of $X=P_{1^{\urcorner}}^{1_{\vee}}$ defi$ned$ by the cquation $t=0$ .

Assume that therc exists $r_{\sigma}>0$ for $each\sigma\in\Sigma such$ that $f_{\sigma}$ is un$raJni!ied$ above $B(r_{\sigma})$

an $d\Pi_{\sigma}r_{\sigma}\geq 1$ . Then the O-scheme $f^{-1}(D_{0})=Y\cross x^{D_{0}}$ is connected.

(Note that if $L/K$ is a constant field extension, then $f^{-1}(D_{0})$ is the spectrum of the
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corresponding ring of integers.)

This theorem is a direct consequence of the following result of Harbater ([Hb] Prop

2.1 and the preceding remarks).

Lemma (Harbater). Let $k$ be a number field with normalized absolute $valu$es $|$ $|_{v}$ (so

that $\Pi_{v}|a|_{v}=1$ for all $a\in k^{x}$ ). Suppose that $F(t)\in k[[t]]$ is algebrai$c$ over $k(t)$ . Then

one can choose $r_{v}>0$ for each place $v$ of $k$ , With $r_{v}=1$ for almost all $v,$ $such$ that $F(t)$

is v-adically convergent on the open di$sc$ of radius $r_{v}$ (w.r. $t$ . $|$ $|_{v}$ ). If, moreover, on$e$ can

choose $r_{v}’s$ such that $\Pi_{v}r_{v}\geq 1$ , then $F(t)$ is rational, $i.e$ . $F(t)\in k(t)$ .

Remark 1. For a complex archimedean place $v$ corresponding to $\sigma,\overline{\sigma}\in\Sigma,$
$r_{v}$ in this lemma

corresponds to $r_{\sigma}r_{\overline{\sigma}}=r_{\sigma}^{2}$ in Theorem 1.

Remark 2. We shall only need the case where $F(t)$ belongs to $O[[t]]$ and is integral over

$O[t]$ . In this case, since we may choose $r_{v}=1$ for all non-archimedean $v$ , the assumption

is $\Pi_{\sigma}r_{\sigma}\geq 1$ . (It is not easy to make use of non-archimedean $v$ with $r_{v}>1$ ; see Remark

4 at the end of \S 1.) In this case, the proof in [Hb] is easy enough to be sketched. For

each $\sigma,$ $F_{\sigma}\in C[[t]]$ is not only holomorphic in the open disc of radius $r_{\sigma}$ , but extends to

a continuous function on its closure, because $F_{\sigma}$ is integral over $C[t]$ . Therefore, by the

Riemann-Lebesgue lemma, one obtains $|a_{n}^{\sigma}|r_{\sigma}^{n}arrow 0(narrow\infty)$ . Therefore, $\Pi_{\sigma}|a_{n}^{\sigma}|=$

$N(a_{n})arrow 0$ . But since $a_{n}\in O$ , and hence $N(a_{n})\in Z$ , this implies $N(a_{n})=0$ for $n\gg O$ ,

hence $F(t)\in O[t]$ . For more details, and for comparison with classical Dwork criterion,

see [Hb] \S 2.

Proof of Theorem 1. Choose any geometric point $\eta$ of $Y_{A^{\sim}}=Y\otimes_{1_{\vee}^{\urcorner}}k$ abovc $t=0$ , and

use the completion of $L$ at $\eta$ to embed $L$ into $\overline{k}((t))$ ( $\overline{k}$ : an algebraic closure of $k$ ).

Claim 1A. $L\cap O[[t]]\subset k(t)$ .
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Proof. Take any $F=F(t)=\Sigma a_{n}t^{n}\in L\cap O[[t]]$ , and by multiplying a suitable element

$\neq 0$ of $D[t]$ , we assume $F$ to be integral over $D[t]$ . Let $\sigma\in\Sigma$ . Then $F_{\sigma}(t)=\Sigma a_{n}^{\sigma}t^{n}\in C[[t]]$

extends to a holomorphic function on $B(r_{\sigma})$ (and hence converges on $B(r_{\sigma})$ ), because $F_{\sigma}$

is integral over $C[t]$ and $f_{\sigma}$ is unramified above $B(r_{\sigma})$ . Since $\Pi_{\sigma}r_{\sigma}\geq 1$ , the above lemma

gives $F(t)\in k[t]$ .

Claim IB. Let $E$ be the quotient field of $4\supset[[t]](k(t)\subset E\subset k((t)))$ . Then $L\cap E=k(t)$ .

Proof Since $L\cap E$ is finite over $k(t)$ , every element of $L\cap E$ is a $k(t)^{\cross}-$ multiple of some

$g\in L\cap E$ which is integral over $O[t]$ . Since $g\in E$ and integral over $O[[t]],$ $g\in O[[t]]$ .

Hence $g\in L\cap O[[t]]\subset k(t)$ by Claim 1A.

Claim 1C. $L$ an$dE$ are $lin$early disjoin $t$ over $k(t)$ .

Proof Apply Claim 1B to the Galois closure of $L$ over $k(t)$ (which does not change $r_{\sigma}’ s$).

Claim 1D. Let $B$ be the integrel clos$ure$ of $O[t]$ in L. Then $B \otimes_{\mathfrak{O}[t]}O[[t]]\simeq\lim_{arrow}(B/t^{N}B)$

$is$ an integral $domain$ .

Proof Since $Barrow L$ is injective and $O[[t]]/O[t]$ is flat, $B\otimes_{O[\ell]}O[[t]]arrow L\otimes]_{-}7[t]4\supset[[t]]$

is also injective. On the other hand, $O[[t]]arrow E$ is injective and $L/O[i]$ is flat; hence

$L\otimes_{O[t]}O[[t]]arrow L\otimes_{L^{\urcorner}[t]}E=L\otimes_{k(t)}E$ is also injective. By Claim 1C, $L\otimes_{k(t)}E$ is a field.

Therefore, $B\otimes_{\mathfrak{O}[t]}O[[t]]$ is a domain.

The last isomorphism follows from a general fact; if $A$ is a noetherian ring, $M$ is

a (not necessarily free) finite A-module, and $I$ is an idcal of $A$ , then $M \otimes\lim_{arrow}(A/I^{n})\simeq$

$\lim_{arrow}(M/I^{n}M)$ (cf [A-M] p108).

Claim 2. If $J,$ $J’$ are $ide$als of $B$ such that (i) $J+J’=(1),$ $(ii)J,$ $J’\supset(t),$ $(iii)(JJ’)^{n}\subset(t)$

for some $n\geq 1$ , then either $J=(1)$ or $J’=(1)$ .
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Proof By these conditions,

$\lim_{arrow}(B/t^{N}B)\simeq\lim_{arrow}(B/J^{N})\oplus\lim_{arrow}(B/J^{\prime N})$

which reduces the Claim to Claim ID.

Completing the proof of Theorem 1. If $f^{-1}(D_{0})=Spec(B/tB$ } were not connected,

it must be a disjoint union of two non-empty subsets $S,$ $S’$ . Let $J$ (resp. $J’$ ) be the

intersection of all (minimal) primes of $B$ belonging to $S$ (resp. $S$‘). Then $J,$ $J’$ satisfies the

conditions of Claim 2. Therefore, $J$ or $J’=(1)$ , a contradiction. $\square$

Remark 3. Perhaps we should show some example where $f^{-1}(D)$ is disconnected. This

is the case when $L=Q(t, y)$ , with $y^{2}-y=t$ and $D$ is defined by $t=0$ . In fact, then

$f^{-1}(D)\simeq Spec(Z[y]/y(y-1))\cong SpecZUSpec$ Z. Note that the branch point $t=- \frac{1}{4}$ is

“archimedean close“ to $t=0$ .

Remark 4. At non-archimedean primes $\mathfrak{p}$ , the radius of convergence can be strictly smaller

than the distance from the center of the nearest branch point (cf. [Hb] \S 3 Remark 2, [D-

$R])$ . For this reason, we could not use non-archimedean primes to loosen the assumption

of Theorem 1.

\S 2. Let $k,$ $O,$ $L/K,$ $f$ : $Yarrow X(X=P_{\mathfrak{O}}^{1})$ be as at the beginning of \S 1, and now we

assume that $f_{k}$ ; $Y_{k}arrow X_{k}$ is unramified outside $t=0,1,$ $\infty$ . A prime divisor of $X$ defined

by $t=0,1$ , or $\infty$ will be called cuspidal.

Theorem 2. If $f_{k}$ is unramified outsidc $t=0,1,$ $\infty$ , an $dD$ is a cuspidal prim$e$ divisor of

$X=P_{O}^{1}$ , then $f^{-1}(D)$ is connected.

Proof We may assume that $D$ is the cusp defined by $t=0$ . Replacing $t$ by $t^{1/N}$ with

a suitable $N_{7}$ we are reduced to the situation where $f_{k}$ is unramified outside $t\in\mu_{N}$ (the
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group of N-th roots of unity). But then the connectedness of $f^{-1}(D)$ is an inmediate

consequence of Theorem 1. $\square$

For the closure $D_{a}$ in $P_{O}^{1}$ of other rational points $t=a\in k(a\neq 0,1)$ of $P_{k}^{1}$ , we can

only prove:

Proposition 1. If $f_{k}$ is unramffied outside $t=0,1,$ $\infty$ , and $a\in k(a\neq 0,1),$ $f^{-1}(D_{a})$ is

connected at least in the followin$g$ cases; (i) $a\in Q;(\ddot{u})a=(1-\zeta)^{-1}$ , where $\zeta$ is a root of

uniiy whose order is not a prime power; $(ii)’a=(1-\zeta’)(\zeta-\zeta’)^{-1}$ , where $\zeta,$ $\zeta’$ are roots

of unity such that $n$one of the orders of $\zeta,$ $\zeta’,$ $\zeta’\zeta^{-1}$ are prime powers.

Remark 5. In cases (ii)(ii)’, $a$ is a special unit, i.e., $a$ and $1-a$ are both units. This means

that $D_{a}$ does not meet any cuspidal prime divisor. An example of (ii): $a=(1+\omega)^{-1}=-\omega$ ,

where $\omega$ is a cubic root of unity.

By Theorem 1, $f^{-1}(D_{a})$ is connected if there exists $\gamma\in GL_{2}(O)$ (acting on $P_{O}^{1}$ by

linear fractional transformations) such that $\gamma(a)=0$ and

$\prod_{\sigma\in\Sigma}{\rm Min}(|\gamma(0)^{\sigma}|, |\gamma(1)^{\sigma}|,$

$|\gamma(\infty)^{\sigma}|)\geq 1$ .

$1!Ve$ shall show, in each of the cases (i)(ii)(ii)’, that such an element $\gamma$ exists.

Actually, we can also show that when $a$ is a special unit, (ii)(ii)’ are the only cases

where there exists some field $k\ni a$ and some $\gamma\in GL_{2}(O)$ satisfying these conditions.

Thus, in particular, when $a$ is (a special unit which is) non-abelian over $Q$ , or when (for

example) $a= \frac{1}{2}(1+\sqrt{5})$ , thcre does not cxist any such $\gamma$ . We do not know whether

$f^{-1}(D_{a})$ is connected in such cases.

(i) The case $a\in Q(a\neq 0,1)$ . Write $a=-q/p(p, q\in Z, (p, q)=1, q>0)$ . It suffices

to find an element $\gamma\in SL_{2}(Z)$ satisfying $\gamma(a)=0,$ $|\gamma(i)|\geq 1(i=0,1, \infty)$ . Define $q’\in Z$
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by $0\leq q’<q,$ $pq’\equiv 1(mod q)$ , and $p’\in Z$ by $p’=(pq’-1)/q$. Then

$\gamma=(\begin{array}{ll}p qp q’\end{array})\in SL_{2}(Z)$ ,

$\gamma(a)=0$ , and $\gamma(0)=q/q’,$ $\gamma(\infty)=p/p’,$ $\gamma(1)=(p+q)/(p’+q’)$ . But $|q’/q|<1$ and

$|p’/p|=|q’/q-1/pq|\leq 1$ ; hence $|\gamma(0)|,$ $|\gamma(\infty)|\geq 1$ . Moreover,

$(p’+q’)/(p+q)=q’/q-1/q(p+q)$ ;

hence

$-1\leq q’/q-1/q\leq(p’+q’)/(p+q)\leq q’/q+1/q\leq 1$ ;

hence $|\gamma(1)|\geq 1$ . Therefore, $\gamma$ satisfies the desired properties.

(ii) In this case, it is enough to take $\gamma(t)=1-a^{-1}t$ . In fact, then $\gamma(a)=0,$ $\gamma(0)=$

$1,$ $\gamma(1)=(, \gamma(\infty)=\infty$ .

(ii)’ In this case, it is enough to take

$\gamma=(\begin{array}{llll}(- \zeta’ \zeta’ -l(- \zeta’ ((\zeta’ -1)\end{array})$ .

In fact, then $\det\gamma=((-1)((’-1)(\zeta-(’)\in O^{\cross}, \gamma(a)=0,$ $\gamma(0)=(^{-1}, \gamma(1)=$

$\zeta^{\prime-1},$ $\gamma(\infty)=1$ . $\square$

\S 3. In general, let $Y,$ $Z$ be connected locally noetherian schemes, $f$ : $Zarrow Y$ be a morphism

and $f_{*}$ : $\pi_{1}(Z, ()arrow\pi_{1}(Y, \eta)$ be the induced homomorphism between their fundamental

groups, where $\zeta$ is any geometric point of $Z$ and $\eta=f(()$ . Then by their definitions [G], $f_{*}$

is surjectivc if and only if $Z’=Z\cross YY’$ is connected for any finite etale connected covering

$Y’/Y$ of $Y$ . We apply this to the determination of $\pi_{1}(Y)$ for some special arithmetic

surfaces $Y$ , by using horizontal prime divisors $Zarrow Y$ and the results of \S 2.

The following is a direct application.
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Proposition 2. Let $k$ be a $n$ umber field, $O$ its ring ofintegers, and $X=P_{\mathfrak{O}}^{1}$ (the projecti$v^{r}e$

t-lin$e$ over O). Let $L/k(t)$ be a finite extension field, which is unramified outside $t=0,1,$ $\infty$ ,

and $f$ : $Yarrow X$ be the normalization of $X$ in L. Let $a\in k^{\cup}(\infty)$ be either $a\in Q^{\cup}(\infty)$

(including $0,1,$ $\infty$ ) or of the form (ii) or (ii)’ ofProposition 1, and $D_{a}$ be the prime divisor

on $X$ deffied by $t=a$ . Let $E$ be any closed subscheme of $Y$ contain$ed$ in (the support of)

$f^{-1}(D_{0}^{\cup}D_{1}^{\cup}D_{\infty})$ , which does not meet $f^{-1}(D_{a})$ (for example, $E=\emptyset$ ). Then the natural

$h$omomorphism

$\pi_{1}(f^{-1}(D_{a})^{red})arrow\pi_{1}(Y-E)$

is surjecti $ve$ . In particular, (i) if $f^{-1}(D_{a})^{red}arrow\sim Spec4\supset$ , then $\pi_{1}(Y-E)arrow\sim\pi_{1}(SpecO)$ ;

(ii) if $f^{-1}(D_{a})^{red}$ is a tree-like union of $SpecO$ (see below) and $\pi_{1}(SpecO)=(1)$ , then

$\pi_{1}(Y-E)=(1)$ .

Here, $f^{-1}(D_{a})^{red}$ (the reduced part of $f^{-1}(D_{a})$ ) is called tree-like if its graph (edges

$=irreducible$ components, vertices on an edge $=$ closed points on the corresponding irre-

ducible component) is a tree.

Proof The prime divisor $F=f^{-1}(D_{a})^{red}$ is a closed subscheme of $Y_{1}=Y-E$ . If $Y_{1}’/Y_{1}$ is

any connected finite etale covering, $Y_{1}’X_{Y_{1}}F\simeq Y‘\cross YF$ , where $Y’$ is the integral closure of

$Y$ (and also of $P_{L^{\urcorner}}^{1}$ ) in the function field of $Y_{1}’$ . By Proposition 1, $Y’\cross Yf^{-1}(D_{a})=Y’\cross xD_{a}$

is connected; hence $Y’\cross YF$ is also connected. Therefore, $\pi_{1}(F)arrow\pi_{1}(Y_{1})$ is surjective.

When $Farrow SpecO\sim$ , this defines a section $SpecOarrow Y_{1}$ , and hence we have a surjection

$\alpha$ : $\pi_{1}(SpecO)arrow\pi_{1}(Y_{1})$ , and the structural homomorphism $\beta$ : $\pi_{1}(Y_{1})arrow\pi_{1}$ (SpecO),

with $\beta 0\alpha=id$ . Thcrefore, $\pi_{1}(Y_{1})arrow\sim\pi_{1}(S_{1})ecO)$ . In casc (ii), $F$ has no non-trivial

connected finite etale coverings, because each irreducible component $\simeq SpecO$ is simply

connected, and there can be no non-trivial connected “mock coverings” (graph-theoretically

produced finite connected etale coverings) because $F$ is tree-like. $\square$
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Corollary 1 (T. Saito). $\pi_{1}(P_{L^{\urcorner}}^{1}-D_{0}^{\cup}D_{1}^{\cup}D_{\infty})\simeq\pi_{1}(SpecO)$ .

This fact may well have been known, but the author could not find any reference,

except that Example 3.1 in [Hb] \S 3 is quite close. (It gives $\pi_{1}(SpecZ[t, (t^{N}-1)^{-1}])=(1)$ ,

to which the case $O=Z$ reduces directly, and [Hb] contains enough tools for treating the

case of general O.) As far as the author knows, the first proof of this was provided by

T. Saito. It is a direct application of generalized Abhyankar lemma (see Appendix). Our

argument gives it an alternative proof which is more archimedean in nature.

Proof First, take some $a$ as in Prop. 1 (ii) or (ii)’, and choose $k$ such that $k\ni a$ . In

Prop. 2, take $Y=X,$ $E=D_{0}^{\cup}D_{1}^{\cup}D_{\infty}$ . Since $D_{a}\cap E=\emptyset$ , Prop. 2 (i) applies to this case,

and we conclude that $\pi_{1}(P_{O}^{1}-E)\simeq\pi_{1}(SpecO)$ for $O$ : big enough. But then, for any $O$ ,

$P_{!\supset}^{I}-E$ cannot have finite etale connected coverings other than constant ring extensions

(which must be etale). Therefore, our assertion holds for any O. $\square$

Corollary 2. Let $f$ : $Yarrow X$ be as at the beginning of Prop. 2 (the fi$rst$ two $sen$ tences

preserved). Supp$ose$ that on$e$ of the cusps, say $t=\infty$ , is totally ramified in $f_{k}=f\otimes k$ :

$Y_{k}arrow X_{k}$ . Then $\pi_{1}(Y)arrow\sim\pi_{1}(SpecO)$ , or more strongly,

$\pi_{1}(Y-D_{0}^{\cup}D_{1})\cong\pi_{1}(SpecO)$ .

Proof In fact, in this case $f^{-1}(D_{\infty})^{red}\simeq Spec$ O.

In particular,

Corollary 3. Let l) be a prime, $a,$ $b,$ $c\in Z,$ $a+b+c=0,$ $abc\not\equiv 0$ $(mod p)$ , and

$L=Q(t, y)$ , wherc

$y^{p}=(-1)^{c}t^{a}(1-t)^{b}$

(a “primitive Fermat curve“). Let $f$ : $Yarrow P_{Z}^{1}$ be the Ilormalization of $P_{Z}^{1}$ (the t-line) in
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L. Then for $i,j\in\{0,1, \infty\},$ $i\neq j$ ,

$\pi_{1}(Y-f^{-1}(D_{i}^{\cup}D_{j}))=(1)$ .

[Appendix] T. Saito’s original proof of $Cor$. $1$ of Prop. 2

It proceeds as follows. Let $L/k(t),$ $f$ : $Yarrow X=P_{\overline{\llcorner})}^{1}$ be as at the beginning of

Proposition 2. Suppose that $f$ : $Yarrow X$ is etale outside $D_{0}^{\cup}D_{1}^{\cup}D_{\infty}$ . Let $\mathfrak{p}$ be any

prime ideal of $O,$ . and put $X_{p}=X\otimes o(O/\mathfrak{p})$ . Choose any cuspidal prime divisor $D_{i}$

$(i=0,1, \infty)$ on $X$ , and,let $P$ be the intersection of $D$; with $X_{\mathfrak{p}}$ , which is a closed point

on $X_{\mathfrak{p}}$ . Then the only prime divisor on $X$ passing through $P$ , along which $f$ is possibly

ramified, is $D;$ . From this follows, by the generalized Abhyankar lemma ([G] $Exp$ . XIII \S 5),

that the ramification indices of $f_{k}=f\otimes k$ above $t=i$ cannot be divisible by the residue

characteristic of $\mathfrak{p}$ . Since $p$ and $i$ are arbitrary, $f$ must be etale also above $D_{0},$ $D_{1},$ $D_{\infty}$ ;

hence $\pi_{1}(X-D_{0}^{\cup}D_{1}^{\cup}D_{\infty})\simeq\pi_{1}(X)\simeq\pi_{1}(SpecO)$ , as desired.

Saito has also noted that the same argument holds for a somewhat more general case;

$P_{\mathfrak{O}}^{1}-\bigcup_{a\in A}D_{a}$
where $A$ is a finite set of elements of $k^{\cup}(\infty)$ satisfying the following conditions.

For each pair of $\mathfrak{p}$ and $a\in A$ , put $P(a, \mathfrak{p})=D_{a}\cap X_{p}$ (a closed point on $X_{p}$ ). Then for

each pair $(a, \mathfrak{p})$ , either $P(a, \mathfrak{p})\neq P(a’, \mathfrak{p})$ for all $a’\neq a(a’\in A)$ , or there exists exactly one

$a’\in A,$ $a’\neq a$ with $P(a’, \mathfrak{p})=P(a, p)$ , and in this case the maximal ideal of the local ring

of $X$ at $P(a, \mathfrak{p})$ is generated by two elements defining $D_{a}$ and $D_{a’}$ at $P(a, p)$ . (Roughly

speaking, the conditions require that the only singularities $of\cup D_{a}$ are “ordinary double

points”.)

An example: $O=Z,$ $A=\{0,1,2,3, \infty\}$ .
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