goooboooogn
O 8450 19930 1-7

A MICROLOCAL VERSION OF THE RIEMANN-HILBERT CORRESPONDANCE

Emmanuel Andronikof T ( WUmty, Paaty |} )

1. — Introduction

Let X be a complex n-dimensional manifold. Recall that the “Riemann-Hilbert correspondance” consists
of the two following commutative diagrams, together with the assertion that all the arrows are equivalences
of categories :

Rhom(-,0x)
l - !
(1 Db (X)® = 2 (o) 222U Dl )
{ Sol I
Rhom(-,0x)
| - ]
(1.2) Pervav)° ?g Reghol(Dy ) — 2 22x () Hol(lpgg)
Sol

We make use of the following notations :

D&_ (X)is the derived category of bounded complexes of sheaves of C-vector spaces on X with
C-constructible cohomology.

Reghol(Dx) is the abelian category of regular holonomic (left) D x-modules.

Hol(Dg) is the category of modules of the form D ® M where M is a holonomic D-module.
Dx

D?_, (Dx) is the derived category of bounded complexes of Dx-modules with regular holonomic
cohomology. D} (D¥) is the derived catgeory of bounded complexes of admissible D -modules (in the
sense of [S-K-K]) with cohomology in Hol(D§¥).

Perv(X) is the full abelian subcategory of “perverse sheaves” of DY __.(X), where we adopt for
our purpose a definition shifted by n = dim¢ X from the usual one, i.e. given F € ObD%_ (X)), we say
F is an object of Perv(X) iff F[n] is perverse in the usual sense of [BBD] (e.g. if Y C X is a purely
d-codimensional complex set then we say that Cy[—d] is perverse; see §4).

Recall that one sets Sol(M) = RHomp(M,0) or RHompe(M,O) accordingly, and that the arrows

bearing that name in (1.1) and (1.2) were constructed in [K 1], that the equivalence under D}"égx(-) ’
was proven in [K-K] and that the construction of the temperate RHom(:, O)-functor RH and proof that
RH is an equivalence was performed in [K 1, 2].
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An independent proof that Sol is an equivalence is performed in [M 1 and 2]. See [B] for a review of these
results.

The point of interest here is to give a microlocal version of (1.2). Namely, if 7 : T7*X — X is the cotangent

[
bundle of X, and p e T* X = T*X\Tx X, one has the abelian category Reghol(£x ) of germs of regular
€

holonomic modules over the ring of microdifferential operators x , of [S-K-K] which should be equivalent
to a category defined by a suitable microlocalization of Perv(X). The precise statement goes as follows.

We set C* := C\{0} and v : T*X — T*X/C*.

THEOREM 1. — One has the following commutative diagram (1.3) and all the horizontal arrows are
equivalences of categories.

v~ 'Ry, phom(-, Ox)

I !

EL, ® .
Perv(X;C*p)° pRH Reghol(€x p) % @ex ) HOl(ER )
R, f R .
w3 | £ ©0x, 0 £, oz, O
T-phom(-, O g}?, ®em.s ()
Perv(X;p)° s 5 l( x) Reghol(é';l;“’pf) P Tx Hol(EX,)
ol, ’ '
phom(-,Ox), I
Sol,
Here :
&Y is the sheaf of infinite order microdifferential operators of [S-K-K],
" Sg} is the sheaf of holomorphic microlocal operators of [S-K-K] and Sg}’f is its temperate analogue
of [A].

An object of Reghol 8?,’; is by definition of the form E;l}”zf g@) M with M € ObReghol £x ,, with a similar
X
definition for Hol(£5,) and Hol(EX,).

The categories Perv(X; C*p) and Perv(X;p) are defined below.

phom(-,-) is Kashiwara and Schapira’s functor of [K-S 2], and T~phom(-,Ox) is the temperate
version of phom(-, Ox) of [A], while uRH := vy~ Ry, T-uhom(-,Ox).

Assuming the definition of Perv(X;p), the construction of Sol, is implicit in [K-S 1].

The' various microlocalizations of Perv(X) are performed by essential use of the microlocal theory of
sheaves of Kashiwara and Schapira [K-S 2] and by using the microlocal characterisation of perverse
sheaves of loc.cit. '

We stress the point that these microlocalizations rely on necessary real (subanalytic) geometry.

The main tool in the proof is the invariance by canonical transformations which allows one to make
use of the generic position theorem of [K-K] which reduces the situation to that of (regular holonomic)
D-modules.



2. — The category D% _.(X;Q)

Let X be a real analytic manifold, D®(X) the derived category of the category of bounded complexes
of sheaves on X and DI _.(X) its full triangulated subcategory of complexes with IR-constructible
cohomology. The following is detailed in [A, Appendix].

If Q C T*X is any subset of the cotangent bundle of X the fundamental category occuring in [K-S 2] is
DYX;Q) = DY X)/Na

where Ng is the null-system of objects F' whose micro-support SS(F) does not meet 2 (cf. loc.cit).

We set here
D]Ii{—c(X;Q) = DI‘k—c(X)/NQ Nnob D%R,—C(X)

Note that if Q' C € there is a canonical functor D% (X;Q) — DII’R_C(X; Q).
If Q = {p} is a point we write D®(X;p) instead of D*(X;{p}) and so forth.

By the results of [K-S 2] if is easy to see that
LemMa 2.1. — Db (X;p) is a full triangulated subcategory of D*(X;p).

An adaptation of the microlocal kernel operations of [K-S 2] yields also the invariance under “extended
canonical transformations” of loc.cit.

More precisely, let Y be another real manifold and denote by ¢; the j-th projection of X x Y and by (-)¢
the antipodal map of T*Y.

Let px € T*X, py € T*Y and K € 0b D% _ (X x Y) satisfying the following condition :
(2.1) SS(K)N({px} x T*Y) C {(px,py)} in the neighborhood of that point.
For F € Ob D% _.(Y) one defines a pro-object of D]”R_C(X;px) by setting "

(22) &% (F) =" lim" Rg1(Kxxv ® ¢; ' F)

where V runs over the set of relatively compact open subanalytic neighborhoods of ¢ = w(p). Actually
one has the

LEMMA 2.2. — For K € Ob D}, _ (X x Y) satisfying (2.1), this pro-object is an object of DE_ .(X;px)
and the functor ®% : D (Y;py) — Dh_.(X;px) is well defined.

Note that the functor ®x(-) = Rgn(K ® g5 '(-)) would not be defined here in general.

PropPoOSITION 2.3. — Let ¢ : (T*Y),, — (T*X),, be a germ of canonical transformation and A its
associated germ of Lagrangian manifold in T*(X x Y). One may find K € ObD_ (X x Y) with

SS(K) C A in the neighborhood of (px,p%), such that ®% : Dk _(Y;py) — Di_.(X;px) is an
equivalence of categories.



3. — The category DS’:_C(X;Q)

Let now X be a complex n-dimensional manifold, and X the underlying real manifold. Recall that for
F € Ob D¥;,_.(X) one has the following characterisation (cf. [K-S 2]) :

(3.1) (F € ObD{_ (X)) < (SS(F) is C*-conical) <= (SS(F) is C-Lagrangian),

thus we may define for any subset {2 C T*X a full triangulated subcategory of D, _.(X;Q) by setting
62) { D& _.(X;Q) = the full subcategory of D _,.(X;Q) of the objects
3.2 €

F € Ob D% _.(X) such that SS(F) is C*-conic in a neighborhood of .

ProPOSITION 3.1 (See [A, Appendix]). — Let Y be another copy of X, ¢ : (T*Y )py — (T*X)px be a germ
of complex canonical transformation and A C T*(X x Y) its associated complez Lagrangian submanifold.
Then

(i) there exists K € Ob(Dé’:_c(X X Y;.(px,pﬁ’/))) with SS(K) C A in a neighborhood of (px,pl) such
that the functor of proposition 2.3 induces an equivalence of categories

® : Dg_.(Y;py) — Dg_(X;px),

(ii) if moreover ¢ is globally defined on the orbit C*py then there is K € Ob(DE_ (X xY;C*(px,p%))),
with SS(K) C A = CXA in a neighborhood of C*(px,p}) such that ®% induces an equivalence of

categories
@Y : De_o(Y;€Cpy) — De_.(X,C*px).

Point (i) follows easily from proposition 2.3 by (3.1) because ®% preserves local C*-conicity, then (ii)
stems from (i) and formula (2.2) that shows that ®% is defined at any point in the fiber of 7 over 7(p).
For example one has D%_ (X;T*X) = D&_,(X) and if ¢ € X = T%X one has the equivalence
(F € ObDE_ (X; :1;)) <= (F € Ob D% (X) and F|V € Ob D% _ (V) for some open neighborhood V

ofz).

Note that, in general the objects of D& _,(X;p) do not have C-constructible cohomologies and the natural
functor D& _,(X)/Np N D&_.(X) — D%_.(X;p) is not an equivalence.

On the other hand, one has the following geometrical version of the generic position theorem. Recall (cf. .

[K-K]) that a complex Lagrangian subset A C T* X is said to have a generic position at p € 12* X iff
(3.3) ANn7~lx(p) = C*p in a neighborhood of p.

PROPOSITION 3.2. — Let F € ObDL_ (X;p) such that SS(F) is in a generic position at p. Then there
exists F' € Ob DL _ (X;7(p)) such that F' ~ F in D*(X;p).

The proof goes by showing that one may “cut-off” the non C-Lagrangian part of SS(F) in 7~ 1x(p),
i.e. one finds kernels K, K* in D%_C(X x X;(p,p®)) and an open subanalytic neighborhood U of
in X such that K, K* satisfy the conditions of proposition 3.1 (i), ®%. is a quasi-inverse of ®% and
F' .= ®%.((®% F)u) is such that SS(F') is C*-invariant in _1(U) Thus F' € ObD:_ (X; W(p)) by
(3.1) and F' ~ F in D*(X;p) by proposition 3.1.

One may get a quicker proof by using a refined version, obtained in [D’A-S], of a microlocal cut-off lemma
of [K-S 2] where one is allowed non-convex sets.



4. — Microlocalization of Perverse Sheaves

In [K-S 2] one finds the following microlocal characterisation of perverse sheaves :

On object F € Ob D% _ (X) is a perverse sheaf iff it satisfies the following condition

For any non-singular point p € S’S(F) such that 7 : SS(F) — X
(4.1) has constant rank in a neighborhood of p, there exists a complex d-codimensional

submanifold Y C X such that F ~ Cy[~d] in D*(X;p) (cf. [K-S 2, (10.3.7)]).

Thus for any subset @ C T* X we may define a full subcategory Perv(X ;) of DL __(X; ) in the following
manner.

DEFINITION 4.1. — ObPerV(X;Q)de{F € ObDL_.(X;9Q); F satisfies condition (4.1) at any p in a
neighborhood of Q}.

Then the following results from §3 and the characterisation (4.1).

PropPoSITION 4.2. — Let Q = {p} (resp. 2= C*p).

(1) Perv(X;Q) is invariant by extended canonical transformation in the sense of proposition 3.1 (i)
(resp. proposition 3.1 (ii)).

(ii) Let F € Perv(X;p) (resp. Perv(X;C*p)) such that SS(F') is in a generic position at p. Then there
is F' € Perv(X;m(p)) such that F ~ F' in D*(X;p).

(ili) Perv(X;Q) is a full abelian subcategory of DE._ (X ;).

5. — The equivalence Perv(X;C*p)° icd Reghol £x ,,

Recall that Kashiwara’s functor RH of cohomology with bounds of [K 2, 3] is defined on IR-constructible
complexes, more precisely

RH : Dy_.(X)° — D"(Dx),
(where D*(Dx) stands for D*(Mod Dx)), and it is microlocalized in [A] as a functor

T—phom(-,0x) : Dk _(X)° — DfRN](ﬂ'_l Dx),

where the latter category is the full subcategory subcategory of the complexes of D¥(7~1Dx) :=
D¥(Mod(7~!Dx)) with IRy ¢-homogenous cohomology. Since one has

supp{T—phom(F,Ox)) C SS(F),
then for any subset Q C T* X, the functor of triangulated categories
T_“hom(’a OX) : D]lil—c(X; Q)o - leR>o(7r(_11 DX)

is well-defined, where g := Tl Q — X. If moreover 2 = C*§ is a C*-invariant subset we set for
FeobDl (X) :

(5.1) pRH(F) ;f’y“lR'y* T-phom(F,Ox) € Ob Di (75! Dx).



Recall also the following facts
For any F € ObDY%,_,(X) and any j € Z, Hi T-phom(F,Ox) is an &5/ -module,
S?’f is faithfully flat on £x and ¥y~ Ry, 8?” ~ &y,

and we have invariance by canonical transformations, that is, with the hypotheses of proposition 3.1 (i),

one may find a section
s € H*(T-phom(K, Qx xv/x))px p%)>

(where Qx xy;x means the sheaf of maximum degree forms relative to X x ¥ — X)) such that

the correspondance P € “:?,}{x —~ Q€ 85 1’,{, such that Ps = s@ is a ring isomorphism

compatible with a natural isomorphism T-phom(F,Oy),, = —uhom(@’;{[n]F ,Ox )px -
Finally we have a basic formula :
T-phom(F,Ox) ~ Ex! @p-1p, 7 'RH(F),  for F € ObD:_,(X),
from which we get
(5.2) uRH(F) = Ex ®r-1py T 'RH(F) for FeObDL_,(X).

The key point is then the

LEMMA 5.1. — Formaula (5.1) actually defines a functor

pRH : Perv(X;C*p)° — Reghol(€x p).

Proof : Let F € ObPerv(X;C*p). By the invariance by extended (resp. quantized) canonical transfor-
mations, we may assume that SS(F') has generic position at p, thus, by proposition 4.2 (iii) we may find
F' € Perv(X;x(p)) such that F ~ F' in D*(X;p), thus

WRH(F), = pRH(F')y = (Ex @e-ip, 7 RH(F")), ,

by (5.2), and the latter is an object concentrated in degree zero, which coincides with the germ at p of a
regular holonomic £x-module.

Q

That pRH : Perv(X;C*p)° — Reghol (£x ) is an equivalence is then readily deduced, by using again
invariance by canonical transformations, from Kashiwara and Kawai’s generic position theorem of [K-K].

Details will appear elsewhere.
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